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1. INTRODUCTION

Let X\, ..., X, be independent random variables with distribution F. Let
A(x,, ..., x,) be a real valued function symmetric in its arguments. The
L/-statistic with kernel /i is defined as

Ul(h) = ( : ) T KX

m <ol ER

U,(h) 15 the nonparametric uniformly minimum wvariance estimator of
O=E(hiX,, .., X)) It is the minimiser with respect to o of

Yo (X, LX) —a)

legidp = im N

B4
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Asymptotic properties of these statistics may be found in Lee (1990). For
instance:

() U,(h)— 0= EM(X,, ..., X,)) almost surely
irEl'h{X!r ""Xﬂll}l =0
(ii) n'"*(U,(h)—8) 5 N0, a7)
where o7 =var(E(h(X,, ..., X)) | X)) <=
(i) Ifo;=0, nU,(h)—= ¥, 4 (% —1) in distribution where {x;} is
a sequence of iid chi-squared random variables and {4,} are the eigenvalues
of an appropriate operator.

Many statistical functionals and estimators are approximately [/-statis-
tics and the above results are frequently used to establish their asymp-
totic properties. For example, M, estimators, which are minimisers of
ey« =i, zn S, -, X, ), often have representations with a U/-statistics
leading term. See Bose (1998) and Lee (1990) for other examples.

Often the original observations are censored from the right. This means
that ¥, ..., ¥, is another sequence of iid random variables, independent of
{X,}, with commeon distribution G, and one observes (Z = min[X,, ¥],
g =I{X, <Y}, 1 =i <n).Itis a natural question how the results above get
modifiedunderthis model. Such results would be potentiallyuseful for studying
the asymptotic properties of statistical functionals in the censored case.

Note that the usual U/-statistics gives equal weight to all combinations. If
the kernel size is one, this amounts to using the empirical distribution
which puts mass 1/n at all X, as the estimate of F. This equal weighting is
not appropriate in censored data.

There are several estimates of F in the literature for censored data. The
most famous is the Kaplan-Meier estimate. To describe this, suppose
Z = --- =27  arethe ordered Z-values. Ties within X-values or ¥-values
may be nrdered arbitraril}' but ties among X's and ¥'s are treated as though
X precedes Y. Let dy.qy =4, if Z., =2, 1 =i, j=<n The Kaplan-Meier
estimator F, of F is defined as

F{ &y n s x)
1—F,(x) = 1[ (1_% ) . (1.1)

It is easily seen that F, puts mass only at the Z-valies and the mass at 2,

equals
W = J[a u] ‘I_'[:I n—j Hien
"on—i41 0 \n—j+1

. FUE O§iE.
=;§[l'.ﬂ} jl.ll (1+%)' {1-2‘]

J
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Thus, if there is no censoring, then d;,_,, = 1 and hence W, = 1/n for all
l<i<sn

Suppose now that &( -) is a real valued function. If we use the Kaplan—
Meier weights in the criterion mentioned in the beginning with m = 1, we
get the estimator S, (k) /S, (1), where, for any ¢, we define

Su(@)=[4dE,= 3 Uz, W, a3

Stute and Wang (1993) and Stute (1993) considered 5,,(¢) to be the
analogue of the sample mean of {§(Z)}. If the random variables are
uncensored it reduces to the usual sample mean. Because of the above dis-
cussion, 5,,(#)/5,,(1) may also be considered as an analogue of the sample
mean. Note that 5, (1) is not equal to 1 in general

Now consider kernels of size two. By extending the above analogy, Bose
and Sen (1999) introduced the following U-statistics of degree two under
this model. Let ¢( -,-) be a real function, symmetric in its arguments. Let

21 sicjgn 'im:za:m z}:n} Wn Wjﬂ o '5‘2&{';#}
EI{J <jen Hﬁnwj.u ‘5‘2&(1},

Un(@h) = say.  (L4)

Our goal in this paper is to study the asymptotic distributional properties
of this statistic. Such results may turn out useful in studying the asymptotic
properties of M, estimates and other quadratic statistical functionals in the
censored case.

Let us introduce some further notations and mention some of the resulis
already known for the above statistics:

Let i be the distribution of Z;. Then (1—H)=(1—-F)1-G). For
any distribution D, let D{a} = D(a)—D(a—) be the jump of D at any
point a, let Ay ={a: D{a} =0} be the set of atoms of D, and let 7, =
inf{x: D(x) = 1}. The following results are known:

(i) (Stmute and Wang, 1993) Ifj [d(x)| Fldx) < oo then as n — oo,

S i) — an‘a{.r} Fdx) almost surely, (1.5)
where
F{x} if X =<Ty
F{x}={F(T;:'}‘I'I{THE-"‘{H}F{rn} f x=ty.
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(i) (Stute, 1995, Theorem 1.1) Under assumptions given in (2.12)
and (2.13) later, to ensure finite variance and to control the bias, the
following representation holds,

Su(@)=n"" i {9(Z) 7olZ) 6, +7(Z)1=6,) —:(Z)} + R,, (L.6)

where R, = op(n"""*). The functions y,(-), j=0,1,2, are defined in Sec-
tion 2. (The representation appears to need a condition stronger than
assumed by Stute (1995). See Remark 1 in Section 2) This implies that
n'?2 (¢ d(F,—F)— N(0, a%) where

=V($(Z) 7(Z) 6+ (Z)(1 - 8)—1:(2)). (1.7)

(iii) (Bose and Sen, 1999) If E, |§(X,, X,)| < oo, then as n — oo,

Un () — S,(4)/5:(1)  almost surely, (1.8)

where

S:(4) =jﬂ $lxy, x) Fdx,) F(dx,)

oo o B0 F) F(dx) + Tty € Ay} 3, F) Fiza)

and

¢fx, F)= J (xy, x3) Ffd—"'z)"'f{rn E-"‘{n} d(xy, ty) F{rn}-

frz <]

Gijbels and Veraverbeke (1991) considered a class of truncated Kaplan—
Meier U-statistics, |7 --- {7 A(x,, ..., x,) TI/~, F.(dx,), where 0<T <71, is
fixed. They derived the limiting normal distribution for these statistics by
using integration-by-parts. They rightly remark that from the point of
application, this truncation is undesirable.

Here we study the asymptotic distribution of L5,(¢) in its full generality.
In Section 2 we show that a'2(U,,(¢) —S:(d)/5:(1)) is asymptotically
normal solely under appropriate moment conditions. Our moment condi-
tions are equivalent to the requirement that ¢(-,-) belongs to the tensor-
product of appropriate Banach spaces (see Section 3). This extends the CLT
of Stute (1995) given above. As already mentioned, it appears that their
condition needs to be strengthened slightly to obtain this result.
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Our analysis follows Stute (1995). For simplicity, we start with a §{-,-)
with support [0, T'] = [0, T'] for some T < 7;. For such restricted ¢, Stute
(1995) expressed his statistic as a sum of three leading terms. One of them
is a mean of iid random variables and the other two are the final result of
projections of several approximating {/-statistics of orders two and three.
Similarly, we express our statistics as a combination of the projections of
Jour Ul-statistics (in the usual sense) plus a remainder. The asymptotic
normality then follows. The support restriction is then removed by an
argument similar to that given in Stute (1995).

The normal limit for vsual U-statistics can be degenerate under the well-
known condition of degeneracy. Similarly, the above limit in the censored
case can also be degenerate. We address this issue in Section 3. There we
show that under the appropriate condition of degeneracy in the censored
case, and with an appropriate centering £, n{U,, (¢)—4#) has an asymptotic
distribution given by a double Wiener integral. The condition for degener-
acy is different from the uncensored case. Thus, simations can arise where
the uncensored [/-statistic is not degenerate but its censored version is and
vice-versa. We demonstrate all these by a few examples.

In the degenerate case also, we start with a restricted ¢. But the analysis
is more delicate and cumbersome. First, extracting the relevant leading
(degenerate) U/-statistics requires significant additional work. Second, the
remainder term needs to be of a much smaller order. Third, removal of the
compact support assumption is more involved. In particular, all these need
higher order Taylor's expansion, leading to several additional U'-statistics.
Once the representation is established, the limit distribution is then given
by the double Wiener integrals of the degenerate U-statistic kernels which
appear as the leading terms_ See Theorem 3(a) and Remark 4 for a discussion
of this. Our method may be extended to establish limit theorems for kernels
of degree greater than two. But the algebra will become quite formidable.
We wonder if there is some simpler approach to this problem.

Interestingly, [/-statistic leading terms hawve also been encountered by
earlier authors in the context of the Kaplan—Meier process. See, for example,
Susarla and Van Ryzin (1980), who consider n'/?(}* (F,—F)(x)dx,
and Koul and Susarla (1982), who study n'"%a," (i (F, — FO)(x) h,(x) dx.
(Here M, =0, 1, =0, g, = 0 are appropriate constants, &, ( - ) deterministic,
and F? survival functions, n= 1.) However, they work with a slightly
modified estimator F,.

2. THE NORMAL CONVERGENCE

In this section we tackle the regular case and prove a central limit
theorem for U, (¢). First we define the functions involved in Eq. (1.6)
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to establish notation and to facilitate a comparison with the result of
Stute (1995).
Define

Hy(z)=P(Z<28=0)= | (1—F(») G@y)

H(2)=P(Z<z6=1)=| (1-G(y=)) Fdy)

()

1 5
h(x)= THI}J Hx <w} ¢(w) p(w) H,(dw)

P(x) = J J Ho<x, v<w) %Hﬂdﬂ H,(dw)

Cl) = [ Iy <x}(1-H())* H(dy)

e Gdy)
<« (1= H(»))(1=G(y))

Define the empirical (sub)distribution function estimators of #, H,, and
H, as

Hz)=n" i] HZ <z}
H (z)=n" i HZ <£z2,8 =0}

Hu(z)=n" 5: HZ <z 8=1}.

Lemma 1 expresses Su,(¢) as a function of {(Z,4,),1<i<n} and H,,
H,, H, when H is continuous. The proof is along the proof of Lemma 2.1
of Stute (1995) and hence is omitted. It may be found in Bose and Sen
(1996).
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Lenma 1. I H is continuous, then

Hg(ds)

1 1
Su@)==; ¥ ¢=;z.,z;:r&ﬁfﬂm{"l_m '“g(”m——m)

lgicjgn

+nj": hg(l+m)h'm[dr}}.

We now extract the leading terms of 5:,(¢) by expanding the exponent
above. A higher order expansion will be used in the next section. However,
we decided to present the simpler expansion of this section separately for
the sake of transparency and also as an insight into the more detailed
analysis of the next section.

Define
" r - 1 - Eﬁ(dk}
A =n) '“g(Hnu—H,,(z}}) a(d2)— J-m [_H(z)
=ty —
=BH+CIRF
where

1 H,(dz)

B=n [ tog (1 ) Hatan [ {250
2= Hgldz) 2~ Hy(dz)

Ca=) 1—H{z) e T=HEY

Observe the two terms in the exponent for the expression of S, (¢) given in
Lemma 1. Using the bivariate Taylor’s expansion for exp(x+ y) around
(a0, 1) (note that expla, ) = y,(Z)),

1
Suld) =5 ¥ MZ,Z;H.&;[FD(Z}?u(zf}{1+ﬁa+£?‘m+3,«,+£?},}

lgi<jgn

1
+E et iB, +C,+8B, +Cf,,}2],

where 4; and A, lie between (a,., @) and (ap., ap), respectively.

The contributions to the leading term come from the C,, terms. The C,,
term called 7, below will be seen to contribute three (approximately) V
statistics called T, T,,, and T,;.
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Lemma 2(a) claims the negligibilty of the remaining contribution from
T, . Lemma 2(b) and 2(c) claim the neglibility of the terms involving 8, and
the terms involving the squares. The lemma is proved under a support
condition on ¢ and the square integrability of the kernel. The omitted
proof is availale in Bose and Sen (1996) but we stress that the main benefit
of the support condition (2.8) is that all denominators are bounded away
from () and thus integrability problems are avoided.

To isolate the leading terms, first note that forz < Z,_,

1 1-H(2) L [H,(z)—H(z)]*
1-H,(z) [1-H@E] 1-H@E) [1-H()] [1-HGE)]

Hence
C,.= —J"_f” J”’ Ht <2} Ht < s}(1—H(t)) " H,(ds) H(dr)
+2 J” Ht<Z 1 —H(1))™" Hg(dt)

_J"”’ It < Z,W1—H(1)) " Hy(d1)

+[" 1<z} . _[ﬁ{g;z—[flffg i Mt
Let
(1, ) = $1, 0) 1) (). @1
Then

1
Tii=— Y $Z4.2)3867(Z) 1(Z){Cut+Cp}

n lgicjgn

1
== 3 8/2.2)¢4C,

R ojgisjcn
s _LM g, v) I{t <u,t < s}(1—H(1))2
x H,(ds) H(dt) H,,(du) H,, (dv)

+2 Lﬂm gsu, v) Ht < w}(1—H(0) ' Holdr) Hy (du) Hy(dv)
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_J;.,,.r, go(u, v) It <ul(1—H(t))"" Hy(dt) H, (du) H,(dv)

[ ; - [H,(H)—H(t)]
) 8OO T <M S 0]

w M (dt) H, (du) H,(dv)
=—-T,+2T,-T,+R,,  say (2.2)

MNow

g - _Jﬂ:ma g5, v0) I{t < u, t <s}(1— H(1))

x [H,(ds) Hy(di) H,(du) H,(dv)
+ H(ds) Ho(dt) H,(du) H,(dv)+ H(ds) H,(dt) H,,(du) H,(dv)
+ H(ds) Hy(dt) H,(du) H,,(dv)— 3H(ds) H,(dr) H,(du) H,(dv)]—R,,

@3
g 5 =2J"m &, v) It < ul(1— H(1)) ' [Hoa(de) Hy(du) H,(dv)
+ Ha(dt) H(du) H(de)+ Hy(dt) H(d) H, (do)
—2H,(di) H,(du) H,(dv)] + Ry Q4
~Ta=—|  glu0) Hi<ul(1=H(0)" Hy(d0)[H,y(du) H,(do)
+ H,(du) H, (dv)— H, (du) Hy(dv)]+ Ra. (2.5)

Mote that after cancellations,

T: = _T:u! +2T.¢z _T.us+ R)d:l

= —jm [ 8w, ) It <w 1 < 5} (1= H(0) H,(ds) Hy(dr) H,(du) H, (dv)

+Jﬂ“‘r g1, v) Hi {”}(I—H{f}}"’ H(dt) H,(du) H,(dv)

+R,+Ry,+ Ra+ R, (2.6)
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Lenma 2. Suppose the following two conditions hold:

Ed*(X,, X;) <. 2.7
There exists 0 =T <ty such that §ix, v) =0 for T<x, vy <1y (2.8)

Then
(a) forj=1,2 3,
r= {0
5 O(n"' logn) almost surely.

R,=0(n"loglogn) almost surely.

(b)
1 : =
T := p Z g:,(Z2,,2)6,8,B,=0(n") almost surely
lgijgnm
(c)
1
L=z, L $Z0Z) 06,00+ 4)Ba+Cot But Cp)’

= O(n" log log n) almost surely.

Having identified the leading terms, it is now a matter of expressing them
in a more compact form. From (2.6), and Lemma 2{a)-2(c), it follows that
if {2.7) and (2.8) hold,

1
Suld)—— Y 8(Z.2Z)6 6, =T\ +T,+T,

lgicjgn

=(—Tu+2To—Ts)+R., (29

where R, = O(n' log n) almost surely. Expression for (-7, +27,—1T,) is
given in (2.6).
Using the fact that for x < 7y,
ya(x) = (1-G(x—))"
H(dv) = (1-G(v—)) F(dv),
Hy(dr) = (1-F(1)) G(d1),
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the first term in (2.6) may be written as n~' £7_, y,(Z,), where
1lx) = Jﬂ gs(u, v) Clunx) H(du) H (dv), (2.10)

and the second term in (2.6) may be written as n ' 27_; 1:(Z)N1—4),
where

. 1
'FJI:I}=J mgﬁ(u, L‘} I{I{H’} H,[.cfu} Hll:d!,‘}. {2.11]
Define

Py(x) = E[¢(x, Z) po(Z) 3],
L(Z, é; ¢) = F(Z) po(Z) 6+ (1 —3) p3(Z)—pa(£).
Note here that

p(Z)=S(2) /(1 -H(Z)),

W(Z) = [ Hw <Z} SP ()1 H(w)) ™ Hy(dw)
= [ Hw <2} ysw)(1— HOw) ™" Ho(dw),
where
SP(w) :=J“ gs(u, v) Hu> w} H(du) H,(dv)
= J" Py(u) Hu> w} H,(du).

We are now ready to give the central limit theorem. The proof is given in
the Appendix.

TraeorREM 1. Suppose that the following conditions hold:

E 8 8:83(Z, Z) <0 2.12)
E 6, 8, |g,(Z,, Z,)| C(Z,) C(Z,) <
E8,{E(3,82(Z,, Z,)| Z)}'2C(Z,) <0
E 8,{E@,8,(Z,, 2,) C(Z,) Z,)}? < 0. @.13)
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Then

nt Z M2, . £, ) W, W, =pn"! Z LiZ,d;:d)+os(n VY (2.14)
lgicjgn ]
Remark 1. Let us consider now the conditions under which Stute
(1995) obtained his representation (Eq. (1.6)):

E[$(Z,) 1u(2,) 3,)* <ox, 1)
[ 16001 €12(x) Fdx) <ce. (52)

Condition (51) (Condition (1.5) in Stute (1993)) is the appropriate second
moment condition and Condition (82) (Condition (1.6) in Stute (1995))
controls the bias n'*(E { ¢ dF,—[ ¢ dF') which may not converge to zero.
See Stute (1994) for a discussion of this issue.

Notice that Condition (2.12) is the exact analogue of Condition (51), and
the first condition in (2.13) is the analogue of Condition (52). The other
two conditions in (2.13) arise because we are now dealing with §(-,-)
belonging to a certain tensor-product space. This space is defined in
Section 3 (Egs. (3.6}+3.7)) where we also include a discussion on these four
conditions. Note also that in all the three conditions in (2.13), we have used
C(-) rather than CY3(-) as in (82). Replacing CY3(-) by C(-) in (82)
strengthens the assumption but this seems to be an essential require-
ment. We were unable to establish the square-integrability of y.(-) in
Theorem 1.1 of Stute (1995) otherwise. The analogues of 3,( -) in our case
are y,(-) above and y;,(¢)(-,-), j=1,2,3, in (3.843.9) (Theorem 2,
Section 3) which are actually the tensor-products of j.( -) with itself and
the other two functions of Eq.(1.5) (ie, py(#)(-.-)=p(-)@yp,_,(-),
j=1273).

Remark 2. Consider the denominator 8, (1) of U, (¢). For the sake of
simplicity, assume that F(-) and G(-) are continuous. Then the leading
summand L.({Z,, d,; 1) of (2.14) takes the form

L(Z,,é; 1)
=6, F(t5)(1-G(Z,))"!
+(1=8)[Flta )1 - G(Z,)) " = Fzu Y1 = Flza))(1 - H(Z,)) ']

| P [ 1< 2)01-600) * 6@y

—F(tu )(1—F(ta)) j Hy<Zj(1-G(y) " (1-F(y)™ G(dy}]-
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Suppose Fit,;)=1; then L(Z,,d,; 1)=1=5,(1). Thus if conditions
(2.12) and (2.13) hold for ¢ = 1, then

n'(Su (1) = 1) = op(1). (2.15)

MNow,

n' 2 (Un($) — S2($)/S2(1)) = ' 2 (S2($) — S2(¢) )/ S2( 1)
— 'S ($)(S2u(1) =52 (1))/ (S2a(1) S2(1)).

Thus if ¢ and the constant function 1 satisfy (2.12) and (2.13), we get a
representation for ¢85, (d) +¢,5,,(1) by Theorem 1 and consequently the
asymptotic normality of U,,(¢) (note that §,,(1)— F(z,) almost surely
under our conditions by the SLLN of Bose and Sen (1999)). In the special
caseof continuous F( - Jand G{ - yand F(t,;) = 1, lim,_, o' U, (d)—S:(d)/
S,(1))=lim,_,  n""*(S,, (¢)—S,(¢)) in distribution by (2.15) above.

Exampeie 1. Consider the variance kernel, namely,

d(x;, %)= (x _-rz}zfrz-

To facilitate comparison with the uncensored case, as well as to keep the
discussion technically simple, assume that F and & are both continuous
and F{ty)=1.Let

#=j"m xF(dx) a2=j°° (x— p)? F(dx).

Then,
Py(x) = [ §(x, 0) yo(v) Hi(dv)

= J:. #(x, v) Fdv)
= (x—p)*/2+a*/2,

S0 = [ $w 0) 7a(w) 7o(v) THu> x} Hy(dui H, (dv)
= Jﬂ Py (1) yo(u) Hu = x} Hy(du)
- j': [(u—p)*/2+a* /2] Hu= x} F(du)

al [JZ (u—p)* Hu> x) F{du}+rr"‘(1—fo}3']=
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so that

_ _53(x)
ralx) = 1*_" H(x)

=%[ (A—HG) [ w=p)* H{u>x) qu}+a2=:1—m:xn-’]
700 = [ Hy < x}(1=H() " 1(2) Holdy)
- [ [ Hy<x}-HGHA-G())"
x{J:: (u—p) H{u> )} F{du}}{?{dy}

+0*[" Ity < (1 -G(»)* Glay) ]
Finally we get,
L(Z,, 6,; ¢)—a® = Py(Z,) 6,74(Z,) + (1 —&,) 1:(Z))—14(Z)) —a*
=3[9 Z N2, —p)* —a"]

+1 (=3 =HZ) " [ (u=p)* H{u> Z,} Fdu)
4" Hy <z} -HONA-6()

[ = Huz ) Faw | Gy

Note that the first term on the right side above is exactly the Hajek
projection of the variance kernel in the uncensored case (that is, when
, =1 and G is the point mass at oo).

Examere 2. Consider the problem of testing H: F=F, vs H: F£F,.
Koziol and Green (1976) studied the Cramer—von Mises test-statistic
= A(F (x)—Fy(x))* F,(dx) in the random censoring framework. Let us
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now modify this statistic slightly as follows, in conformity with the
structure of our U-statistic L, (¢). Define, with §,,(1)=3%7_, W,

o= [ (£ WuliZ <x}/SuD—Ei) ) Fi(@
= Su(1)? 5 Wi, [ (112, <) F(0)? Fyd)

+(Su(1) 2 Y Wal, [ (I{Z,., < x} —Fy(x))

iy

X (I{Z;., < x} — Fy (x)) Fy(dx)

B {S]“(I}}--Z[ i} Wilé(z; T 2;__“}-!-2. Z Hinwh¢(2;:n= z}:n}]s

i

where
P(x,, x;) = j (H{x < x} = F0)) I {x < x}—Fy(x)) Fy(dx).

Assume, again, that F,, G are continuous. We shall now show that, if
Fy(ty) < 1, then under H,, n"*(CV,—¢) is asymptotically normal for an
appropriate centering constant ¢—a scenario quite different from the
uncensored case where ¢(x,, x,) is a degenerate kernel under #,, and hence
nCV¥, is asymptotically a weighted sum of i.i.d » random variables.

In Section 3 (Example 5), we show that if Fy(ty)=1, ¢(-,-) is a
C-degenerate kernel (Definition 1, Section 3), and the limit of nCV, is
similar to that in the uncensored case.

Now under continuity and with F;{ty) < 1, we have under i,

Ei(Z) =J_r:, MZ,, 1) Fyldu)
=J": (I{Z, < x} —F(x)(Fy(x Aty )—Fy(x) Fy () Fo(dx)

and

E[6, d,70(Z4)) yo(Z,) $(Z,, Z,)] =JF: (Fo(xnty)—Fy(x) F,:,{r”}}z F,(dx)

=F§(Tn W1—Fy(ty }}2a‘r3-
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Further, by reworking the arguments of Lemma 2.1 through Theorem 1.1
of Stute (1995), with W, replaced by W2, we get

WY Wi Z)

S PRI E L I (B e

— [ % (62, 2) G(2) 420 -0)1(2)~2(2)) +orn P |

H o (ds) H

=n""0,(1)=0 as n— oo,
under the stronger conditions that (see (51), (52) in Remark 1)

E[§(Z,, 2,) y3(Z,) 6,]" <, (581)

[ 160x, )1 70 (x) €72(x) Fdx) <c0. (852)

(We remark here that the negligibility of n'* ¥"_, WL d(Z,.,, Z.,) perhaps
holds under weaker conditions, by analogy with the uncensored case. This
can probably be established by the martingale arguments of Stute and
Wang (1993), which, however, is beyond the scope of the present work.
Hence we take the weak representation approach of Stute (1995)).

By these observations, and by Theorem 1 and Remark 2, it follows that
under i, continuity, and for Fy(tg) < 1,

RV, — (1 —Fy(ti))2/3) = N(O, o(Fp, G))  as n— oo,

for an appropriate v £, G) = 0, provided the conditions of Theorem | hold
for ¢i(-,-) and the constant function 1, and (551)—(552) hold for the
function ¢(x, x). (Note here that lim, _, _ (S,,(1))* = Fi(ty)).

Remark 3. Theorem 1 in principle may be extended to statistics of the
form below, involving higher order kernels by using arguments similar to
those used above. However, the algebra may be quite formidable.

z!{ll o83 <ian ¢(za| zma zlu o § R ] 2‘1* :n} H?JMH?Q;; o H?JHI
E]{”q‘z. "-‘J;ERW W ___W o

ijm " e im

Uka ('ﬁ) e
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3. THE DEGENERATE CASE

In this section, we obtain the limit distribution of S, (¢), and hence of
L5, (d), when the kernel ¢( -,-) satisfies a degeneracy condition. Note that
the two terms in the representation (2.14) are all first order projections of
several U-statistics of order two or more. The first term is the projection
Py(Z) 6y,(Z) = E[38, g,(Z, Z,) | 4, Z] of the second order U statistic I, (¢)

given by

" 1
hid) == Y £(Z.2)634

H legic jgm

=Jﬂ: iy g;(u, v) H, (du) H,,(dv). (3.1

The other terms are the projections of the U'-statistic in (2.2).

If Fy(Z) =0, it is easy to see that the leading term in (2.14), L(Z,, §,; ¢),
equals zero.

Alternatively, if F;(Z) is a constant and E[dy,(£)] = 1, then it is easy to
see that L(Z,, 8,;d) is a constant. For example, if ¢ =1, and F(r,;)=1,
then under continuity, L{Z,,4,; 1) = 1. See Remark 2. This motivates the
following definition of degeneracy under censoring.

Dermarion 1. Call ¢ -, -) C-degenerate if (2.12) holds and at least one
of the following holds:

(A)

Fi(x) = E[¢(x, Z) dy,(Z)] = jﬂ'ﬂx, u) yolu) Hy(du)=0  Vx

(B)
Pix)=c#0 and  Edpn(Z)=F(wy)=1.

Undercontinuity of F( - Jand G( -), F;(x) = jr_’; ¢ x, u) Fldu)and E dy,(2)
= F[ Tu }.

Recall that the condition of degeneracy for uncensored ['-statistics is
j‘fm i x, u) Fldu) =c ¥Vx e K Thus random censoring may enforce C-degen-
eracy—when F(1;) < 1—on an otherwise nondegenerate ¢( - , - ). Conversely,
a ¢{-,-) degenerate in the standard sense may become non-C-degenerate
under censoring, as we saw in the case of the Cramer—von Mises statistic in
Example 2, Section 2.
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ExampLe 3. Let F be continuous and ¢, be the pth quantile of F for
some p <} In other words, F(£,)= p. Now suppose 1; = £,, <1, so that
Ty =4, that is, F(r,)=2p. Let dx) = sign(x—<,) and d(x,, x;) :=
@(x, ) #(x2 ). Then we have

P(x) = §(x) EH(Z) 07(2))
= 3§00 [ §(u) Fauy
= BON=F &)+ (Fey) = F(,))
= $(x)—p+(2p—p)) =0.

Hence ¢(x,, x,) 8 a C-degenerate kernel, but not degenerate in the usual
sense.

Exameie 4. Let, again, F be continwous and define pulr,)=
§, xF(dx). Let §(x) = x—p(ty) and §(x,, x;) = ¢(x) §(x; ). Then

Py(x) =) [ (u—pte.)) Fldu) = §x) p(ru)(1 = F(zy)).

Thus if either Fit,; ) =1 or g(t,) =0, ¢(-,-) becomes a degenerate kernel.

Exawmere 5. Consider the Cramer—von Mises statistic CF, of Example 2,
Section 2. Assume now that F,(7,) =1, in addition to continuity of F,, G.
The ¢( -, -) defined in that example now becomes C-degenerate, since

Pi(0) =[" $(0,u) Fyldw)
J {I{u{x — B (x)(Fy(xnty)—Folx) Folzy)) Fyldx),

and F(x a1, )—F(x) Fit,)=0.

In Definition 1, note that if Case (B) holds, we may reduce it to Case (A)
by considering the kernel (¢(-,-)—c). Hence in the following, by C-degen-
eracy we shall mean Case (A) WOLG. To derive the limit distribution, note
that by C-degeneracy, Egs. (2.9)+2.11) and (2.14), since Py(z)=(z) =
7u(z) =0, we getn'285,,(9) = 0p(1) asn — 0. Since n T ci.cen G20 Z1) 6,0,
is now a (first-order) degenerate U-statistic, we seek the limit distribution
of nS,, (¢), as n — oo. Thus we need an o,(n"') expansion of 5,,(¢). It turns
out that there are additional L/-statistics which now contribute. Since these
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[/-statistics are degenerate in any case, they had not appeared in the dis-
cussion of the normal limit. Below, we express 5, (¢) as a sum of U, (¢)
and five other degenerate [-statistics, plus an op(n') remainder. In
obtaining these expansions, we again first impose the restriction (2.8),
and continuity of H(-), in addition to C-degeneracy. Subsequently, the
restriction is removed as in the proof of Theorem 1 of Section 2.

Refer to the representation for 8, (¢) in Lemma 1. We now use a degree
3 expansion for exp(x+y) around (a,, a;) (recall that exp(a,) = y,(Z),
see definition of a,, after the statement of Lemma 1) and get

S2a(d) =i Z #(Zi, Z) 6, |: vo(Z:) yo(Z)) {1+{En+cn +B,+Cy)

2
n lgicjgn

1 1
+E (B,+C,+B,+C, }2}+a e +d.(_a~if,+_4fn_4“+_4m_4f,+_a~i§“}]

1
=Uan(d)+ Y 5(2,Z)4 6(B,+B,)

lgicjgn

1
+— z S.;i[znz;} d; "S;fcm"'c}n}

R lgicjgnm

1
+F Z g,j[Z.,zj} ‘51 ﬁf{Bazn-l_B?ﬂ}

lgicjgn

1
+— ¥ gl(Z.2)6,68,8B,

H lgicjgnm

1
+53 Y 5(Z.Z))6 6/(CL+CY)

lgicjgn

1
+— Z gﬁ(zlnzj} d; "S;Cmcj.q

R lgicjgn

1
+= Y g(Z.Z)8,6(B.+B,)(C+Cp)

n lgicjgn
1
M I R
g
=Un(@)+ ) T, say, (3.2)

k=1

where 4, 4,,, B,,, C,. 1 =i < n, are defined as before, and the definition of
T.. 1=k =8, is clear.
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The terms T, and T,, in addition to U, (), determine the limit distribution
af 5., (¢). All other terms will be shown to be o(n™") almost surely. Further,
T, and T, admit representations as a sum of degenerate [/-statistics plus a

remainder. For this purpose, we need a higher-order expansion for C,, than
that in Section 2.

Recall that €, =[1I(s <Z) Hu(ds)/(1 = Hy(s))=[ I(s < Z,) Hy(ds)/
(1—H{(s)).

Write, fors <2,
1 =(1—H,.(3}}2_3 1—H, (s)
1—H(s) (1—H(s))® ~(1—H(s))

1 (H.(s)— H(s))?
3 1
P acae) T —HE) U =H6)

Thus
Cu= j Hs=Z) (s <)) I(s <t,)(1-H(s)) ™ H,(dt,) H,(dt,) H,(ds)
=3[ I(s<Z) (s < )(1—H(s))  Hy(dr) Ha(ds)
+3[I(s<Z)(1-H() ™! Holds)
~[ Hs < Z)(1—H(9) " Hy(ds)
+J" I(s < Z) R (ds), (3.3)

where R, (ds) = [H,(s)—H(5)]' (1 —H(s)) " (1 —H,(5)) " H 4(ds).
For real variables z, z;, { = 1, define the functions

alzy, oz )=1(z; < z) Iz, <z, 1 —H(z))"", nz2,

and

a,(z) = J"R ay(x, z) Hy(dx).

The following lemma gives the representation for T.. Its proof, given
in the Appendix, uses an argument similar to that used in the proof of
Lemma 2(a) along with properties of degenerate L'-statistics.
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Levma 3. Under (2.7) and (2.8), we have

1
:=_2 E gﬁl:znz}ﬁaa(cm-l-c }

R lgicjgn

= — [jg,,{u v) as(s, £, 1) HD{JS}H[JH}] (H,— H)(dr) H,,(dv)

!*!

o |

+J= " |:J gy, v) ay(s, u) H {du}] (H ,— H,)(ds) H ,(dv)

—n oy (@) +op(n™) as - oo, (3.4)
where o, (¢) = jsr* g;(u, v) ay (s, u, v) Hy(ds) H,(du) H,(dv).
Let

ax(d) = j'u’ galu, v) asls, w, 1) a:l(5 v, ) Holds) Hy (du) Hy(d5) H (dv) H(dr),

oty (dh) =j‘sr’ S.p(”: v) asls, u, ¥) ax(5 v) Hylds) Hy(ds) H,(du) H, (dv),

ie, a.ld), o (d), o,(¢) are the expectations of the three U-kernels given in
(3.5) below with {r =1}, {r =5}, and {s = 7}, respectively.

The next lemma provides the expansion for T,. Its proof is given in the
Appendix.

Lemma 4. Under (2.7) and (2.8)

1
TGEE Z g:(Z;, £) 6, 6,C,C,,

legijgm

1,

= [J g4(u, v) as(s, u, 1) as (5, v, 7) Ho(ds)

x H\(du) H,(d5) H, (‘fu}] (H,—H)(dt)(H,—H)(dl')
_J"= . [ gﬁ(u u} H;(# U, f} Hz(.ﬁl L} H,:,(d#}

x H, (du) H, (ﬂfu}] (H,—H)(dt)(H,—H, )(d5)

1 - .
+EJ::+:: [an g (1, v) ay(s, u) a,(3, v) H,(du) H, (ﬂi’v}]
x (H,,— Hy)(ds)(H,, — H,)(d5)

1 1
7 (320 —wa(9) 3 (@) Jostn™) @3
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Lemma 5 provides the negligibility of the terms T,, T, —T;, T;, T,. The
term T, involving B, and B,,, is similar to that treated in Lemma 2(b) and
a refinement of that proof is now needed. Similarly, the proof for T, is a
refinement of the proof of Lemma 2(c) along with properties of cumulative
hazard functions and degenerate U-statistics. The proofs for the other
terms are easier and very similar to those of the proofs of Lemmas 2(b) and
2(c). We refer the reader to Bose and Sen (1997) for the proofs.

Levma 5. Under (2.7) and (2.8), we have a.s., as n — oo,

1
Ti== Y g(Z.2)6, 6(B,+B,)=o0(n")

lgicjgnm

= 1
;=EZE{ H(Bl,+Bl,) =0
22{ B.B,=0@™)

T5=i2 Y g(Z.2Z)6, 8(CL+CL)=o(n)

B oygidjga

22{ H By + B )Cin+Cp) = O(n *logn)''?)
T.= 6"22{ b et (4] + AL A, + A, AL+ A])
= O(n*2(log n)*®2).

Theorems 2 and 3 are the main results of this section. Theorem 2 pro-
vides a representation for 8., (¢) as a sum of six degnerate U-statistics with
an appropriate remainder for a general ¢, which does not necessarily satisfy
the truncation condition (2.8). However, we impose the integrability
restrictions on ¢ given in Theorem 1. These restrictions mean that §{-,-)
belongs to a tensor-product space which seems to be the proper anologue,
under random censoring, of the usual symmetric L -tensor product space

{$: 2= R | ¢( -, ) symmetric, EQ(X,, x5) =0 Vx; € B, E$*(X,, X,) < o}

in the case of classical U-statistics (see, for example, Dynkin and
Mandelbaum (1983)).

Theorem 3 describes the limit distribution of nS;, (¢) in terms of appro-
priate double Wiener integrals which are limits of linear combinations of
products of mean-zero normal random variables. It is based on the repre-
sentation given in Theorem 2. For the limit distribution of nlfs (), see
Remark 5 after Theorem 3.

To state Theorem 2, first recall that g,(z,, z,) = ¢(z,, 23) y(2,) yo(z2)-
Then C-degeneracy is, of course, equivalent to E{d,g,(z,, Z;)} =0¥z, e R
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The following are the four conditions on ¢, given in Eqs. (2.12) and (2.13),
which are really the finiteness of the following four vector space norms.
MNote that (V) is just condition (2.12).

(M) (- NT :=Ed dgi(Z4, Zy) <o

(M) C-,- 2 i= E 8, 6, |g,(£,, Z,)| ClZ,) C(Z4;) <o
(Nz) -, Wz i= E‘S:{Eiﬁzgi (Z,,2,)|Z)}'"* C(Z) <=
(N ) -3 1= E6,{E(8,8,(2,, 2,) C(Z,) | Z))} < 0

Denoting the Banach spaces

¥2={¢(-,-) | ¢ symmetric, C-degenerate and ¢l + ¢l + ¢z + ¢l < oo},
¥i={¢:R>R|E&HZ) po(Z)) =0, E & ¢%(Z) y2(Z)) < o0,
E 6, 19(Z,)] yo(Z,) C(Z,) < 0}, (36)

it is clear that N, —N,, are equivalent to ¢ € ¥;. It can be shown that the
class of functions {¢(-) (- )| ¢(-) € ¥]} is total in ¥. In other words,

¥: =¥ ® ¥] = symmetric tensor-product of ¥ with itself. (37
Note that for ¢ € ¥], the norm is
gl = (E 8,:¢%(Z,) yalZ,))' 7+ E &, [$(Z))] 7u(Z,) C(Z,).
The norm on ¥; is thus a cross-norm generated by that on ¥, (See Light
and Cheney (1985, Chap. 1).)

Next for the ease of writing, we introduce the following short-hand for
the (degenerate) L'-statistics obtained in Lemmas 3 and 4. Let

Pul(d)s, v) = j"'f*fu, v) ol te) polv) as(s, w) H,(du)
P @)1, v) 1= J" J“ Bt ) yolte) o (v) @z (s, u, 1) Ho(ds) H,(du)
paa(@)(s, 5) 1= J" J“ Bt ) yolte) o (v) @z (s, u) ax(5, v) Hy (du) Hy(dv)

Pa (@)t 5) = [ [ | 6, v) 350 7o(v) as(s, 1,1) a3 (5, v)
x Hy(ds) H, (du) H,(dv)
v @) 7= [ [ [ [, 0) vaw) ya(v) as(s, 1, 1) as(5, v, )
x H,(ds) H, (du) H,(d¥) H,(dv). (3.8)
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Further, write the corresponding U-statistics in terms of the respective
empirical measures,

J L.,‘,, ys ()1, T Y H,— H)(de)(H,— H)(dP ) := ys($)(H,— H, H,— H),

and so on. Then we have the following theorem. The proof is given in the
Appendix.

TreoREM 2. Assume (Ny), (MN2), (Ny), and (Ny) hold. Then S,.(d)

admits the following representation:

Sl @) = Una ($)+ y2 ($W Hoo — Ho, Hy )=y ($)(H, — H, Hy)—n" "o ()
+3 Y2 ($) Hao— Ho, Hio— Ho) —yu($)(H, — H,, Ho— Hy)
+3yu(@)H,—H, H,— H)
+n7 (Goa(d) —on(d)+ia(@))+op(n"). (3.9

(Note that U, (¢) could be written, using the above convention, as
gl;i(Hn! s Hnl }J

Before describing the limiting distribution, let us take a look at the
representation (3.9). Note that, of the U-kernels appearing in (3.9), g4(-.-),

yu(@)(-.-), and yu(@)(-.-) are symmetric while p,, (¢)(-,-). }’sjf'ﬂ{ v
and y,(d)(-,-) are asymmetric (see (3.8)). Further, denoting V| := (Z,, 4,),

i =1, let us write

1
Usu(p) = ZZ 0 4y g\ Z,, Z)) : =—2Z (Vi 1)),

1
3 rul¢ W Hy—Hy, Hy—H,)

= lz Z} [(1=8)(1=8)) y2a(Z, Z))—(1=8,) E(1-9) yna($)(Z,, Z)

—(1=6)) E(1-0) yn(d)(Z, Z))+ E{(1—6,)(1=0,) y.($)(Z,, Z;) ]

22 F2($)(Vi, V)

i<}
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(@), — H, H,~H)

~ i % D5 O(2.2) = Er($) 2, 2)

—Eyu($NZ, Z))+ Eyy ($NZ,, Z,)]

1 _
= F.z.-:; FulV. F))

a9 (H o —Hy, H,)

1
=3 a [(1—=8,) 8,y ()L, Z))—6,E(1-38) 0 ($NZ, Z))]

=13 T 0., (3.10)

inj
and define 7,,(-,-), faz( -, -) analogously.
Note also that
a, (¢) = Edp, (¢ NZ, Z) = E(1-9) yu(¢NZ, Z)
az(¢) = Eyn(¢NZ, Z)
ap () = E(1—0) p)(Z, Z).

Since g, Fi; are degenerate kernels (of (F7, }:)), the limit distribution of
1S, (¢) can now be expressed as a constant plus double Wiener integral
of the kernel (g, + X, ;, d,,7,), where d, = —1 if (i, j) e {(3,1),(3, 2)} and
d,; =1 otherwise.

For details on multiple Wiener integrals, see Parthasarathy (1992,
pp. 105-111) and Dynkin and Mandelbaum (1983). For a generalization,
see Prakasa Rao and Sen (1995, Section 2).

Consider the closed vector spaces (writing £ = E ;)

Ly:={y(v) | Ef(V) =0, Ef*(V) < o0}
and
Ly ® Ly :={§(V,, V2) | (-, - ) symmetric, Ei(v,, V) =0
Voo, B2V, V) < o0}

Let W (&) be the Wiener integrals of £, e L, and &, e L, ® L, (of first and
second order, respectively). Wi (£,) is normal with mean 0 and variance

EE1(V). Note that for y, i, € Ly, considering W, (s, +y2) (- )b, +2)(-))
and by linearity of H5( -),

Walhs (00) Y20 )+ (00) ¥y (22)) = (W3 (6) Wi () — Ela) /2
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Now recall the spaces ¥, and ¥ defined before Theorem 2 and the
functions 3, (z) =7,(#)(z), 1.(z) =y,(d)(z) defined at the beginning of
Section 2 (cf. Theorem 1.1 of Stute (1995)), where ¢(z) € ¥;. Note that for

#(z,, 2:) = ¢(z,) §(z,), § € ¥;, we have
() = Ep, (§)(Z) $(Z) yo(Z) = E(1-8) 3 (dN Z)
a(d) = Eyi (9N Z)
a,3(¢) = Ep (§XZ)(1 —8) y,(§ ) Z).

MNow we are ready to present Theorem 3.

THEOREM 3.
(a) Forgde ¥y,

852 ~(500) 220 + 001 ) & oW (845 )

L[]
1

=ﬁ (szgﬁ}+{§] d,fwz(ﬁf(m), as n-—sco.
(b) Ford=4(-)4(-).dev,
185, ($)— G E(r2($)(Z)— (1-8) 1, ($NZ) Y — Ep (§)(2) $(Z) 674(Z))
4 {3 (W(ddyo)— EG%0ya) + W, (§dy,) Wi (1-0) 7,(8))

— (W ($d1,) Wi (7:(8))— ()
+1 W2 —0a()) — W, (2 () Wi (1= 6) 1(§))
—ap(@N+3(WH((1=08) 1 () —a(¢))}.

The proof of Theorem 3 is given in the Appendix.

Remark 4. Unlike in the case of classical degenerate U'-statistics, the
limit distribution of nS,,(¢) is not centered in general, as the quantity (see
Theorem 3(a))

b() =3 () — 22 )+ s ($)) —ets (¢)

need not be zero. However, in case ¢(-,- )= ¢(-) §{ - ), § € ¥, we have (see
Theorem 3(h))

big) = 0= E((1—8) p(@NZ)—1:(§N(2))* =2E{1:(§)(Z) §(Z) 63(2))}

= E(§(Z) 0ys(Z) + (1 =8) p(§NZ)—1:($)(2))* = EF*(Z) yi( Z).
(3.11)
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Note that the left side of the last step above is precisely the limiting
variance for | ¢ dF, in Theorem 1.1 of Stute (1995), as EJ(Z) dy,(Z) =0.
Thus for ¢(-,-) =¢(-) d(-), de ¥,, the limiting distribution of nS,,(¢) is
centered if and only if the mean-zero random variable ((1—4) y,(¢)(Z)—
12(@)NZ)) does not contribute to the limiting variance of [ dF,.

Remark 5. The limit distribution of alf,, (¢) can now be written down
easily from Theorem 3(a), via Slutsky’s theorem, since

nl, () = (S5,(1)) " (nSy, () —b()) +(S,,(1)) " b(¢),

and 8;,(1) — 5:(1) almost surely.

Remark 6. The U-statistics corresponding to the C-degenerate product
kernels presented in Examples 3 and 4 above may now be treated using
Theorem 3(b) and Remark 5. However, it may be noted that the expres-
sions for the limiting random variables in Theorem 3(b) will not become
any simpler even in these special cases.

For the Cramer—von Mises statistic of Example 5, we will have to apply
Theorem 3(a). However, this example could also be treated by the fune-
tional CLT that follows from Theorem 1.1 of Stute (1995) (see Remark
on p. 438 of Stute (1995)). By that theorem we have, in the setup of

Example 5, for x < 7,

Y Wod{Z.. <x}—Fo(x)

-y [ﬁ.fl—m:z.n-’ 1{Z, <x}—Fa(x)
+(1=8)(1 = H(Z)) ™ (Fy() - F(Z)) I{Z, < x}

—J x} C(Z aw) F, (dw}]-l—c:rpfn ), (3.12)
and by Remark 2, 8, (1) =1+o0,(n""?), so that

ot = [ (w2 § mtz,, < /s.-Fi | ) Eiao

3 JZ W2(x) Fy(dx),
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where Wix), —oc=x=r1,, is a mean-zero Gaussian process whose
covariance is the same as that of the leading empirical process on the right
side of (3.12).

APPENDIX

Here we collect the proofs of the results for the leading terms. The proofs
for the terms which are negligible are omitted and the reader is referred to
Bose and Sen (1996, 1997) for these.

Proof of Theorem 1. First assume that in addition to (2.12) and (2.13),
{2.8) holds and ff is continuous. This implies (2.7) holds. From Lemma 2
and relations (2.9), (2.10), and (2.11),

Su(d)=n"" :{;;m g2, 2)8,6;+n"" Zﬂl {r(Z)1=6)—r(Z)} + R,
(A1)

where R, = O(n' log n) almost surely. The theorem follows in this special
case by taking another projection of the first term. We now remove all the
restrictions imposed so far.

First, drop condition (2.8), but retain the continuity of . Observe that
H{zty}=0. Fix ¢ > 0. Since (2.12) and (2.13) are valid, choose a function
iy, satisfying (2.12) and (2.13) and vanishing outside of (—o0, T']x (—oo, T']
for some T < t; such that, with ¢, := ¢—¢,,

Eé, 6,82 (2,,Z,) <¢&?
E&, 8, 18,(2,, 2,) C(2,) C(Z,) <&
E6,{E(0,8,(Z,, Z,) | Z,)}'* C(Z)) <e
E6,{E(0,8,(4,.24,)C(Z,)]|Z,)}* <&’

(A2)

It is then enough to show that n'/*($,(¢,) — E¢d.(X,, X3)) = Op(e). This
follws exactly as in Stute (1995) except that we are now dealing with a sum
over two indices instead of one. We omit the details (however, see the proof
of Theorem 2) but mention the crucial facts needed:

i |B.l=1

{ij] Sup!{a{n |Cn| = DP(I}
(iii) (1 —H,(1) " (1—H(r)) is bounded from above on ¢ < Z,.,
(iv) Expansion for variance of U'-statistics.
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MNow consider the situation when F and & may have separate discontinu-
ities but 4, n 4; = ¢. A quantile transformation traces everything back to
uniformly distributed Z’s. See Bose and Sen (1996) and Stute and Wang
(1993).

Finally, if there are commeon jumps, say {x}, of F and G, replace each x,
by [x,, x; +&] where ¥ g, < o0 and mowve the & mass at x; to x,+¢&,. Extend
the time scake for F and ¢, by putting for example Fix)=F(x;) if x, <
x < x;+e¢. Since tied uncensored observations precede censored ties by
convention, 8, (¢)— Ez¢ remains unchanged. F and G now do not have
common jumps. The integrability conditions remain valid and thus the
representation is obtained on the extended time scale. The right side of
(2.14) is the same on both time scales. This finishes the proof. |

Proofof Lemma 3. Note that from (3.3),

= 1
L== 22 #2.2)6.6p(Z)v(Z)C,

R 1gisjgn
= [, 8w 0) Iu#v) ayls, w1, 1,)
R

x [H,(d,) H,(dt,) Ho(ds) H, (du) H,,(dv)]

=3[ 8o, 0) I(ut v) as(s, u, OLH,(d1) Hyo(ds) Ho(du) Hoa(dv))
+3 J"Rj gs(u, v) Hu#v)ayls, u)[H,q(ds) H, (du) H, (dv)]
— .. &l v) @y @) I 0) H,y(du) Hy (dv)]

+JFE3 gal, v) I 2 v) Iy <) Ry (ds) Ha () Hyo(dv)
=T, 3T, +3T, —T,+T say.

Since supg |H, (s)— H(s)|" = O(n**(logn)*™®) as., we have T, =
O(n**(log n)*"*) a.s. We omit the details.

To tackle T, through T, first ignore the diagonal domains {1, =1},
{v=1t, =1,} etc. We shall show that the diagonals lead to the term n "o, (¢)
in the end. Without these, T,,, 1 €k <4, are U-statistics (with asymmetric
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kernels) again, as in (2.2). Further, because of degeneracy, each T, 1<
k= 4, has mean zero, and all the first-order projections add up to zero. (By

degeneracy,
[ A o).} @) =0 V(ws.t,1),

and projections on the v-coordinate

| { |, 8w o). Hdn)...H, ::a'u:r} H,,(dv)

cancel out one another across T,, 1 =k =4, because of the coefficients
(1,—=3,3,1). Here | < p=< 4.) Therefore, we may go right up to the second
order projections. By the well-known orthogonality of the projections, the
remainder will thus be 0,(n*?). Note, however, that T ,, having degree 2,
will leave no remainder at all.

The proof will be complete if we show that the second-order projections
of T, 1 £ k<4 add up to the two terms on the right side of (3.4) and the

diagonals contribute n~ 'a, ().
Taking projections, we have, with g,(u, v) asin (2.1),

T:u! it Eu: +JFR5 S.pfu, v)agls, u, by, 1)

x [(H,— H)dt,) Hde: ) Hy(ds) H,(du) H, (dv)

+ H(d, )W H, —H)(de) Hy(ds) H (du) H,y(dv)

+ H(dr,) H(de:)( Hy— HyWds) H,(du) H, (dv)

+ Hidt,) H(dt,) Hy(ds)(H,, —H)(du) H, (dv)]+0p(n7)

—3T,=F,-1 L“ gs(u, v) ay(s, u, O[(H,— H)(dt) Hy(ds) H,(du) H,,(dv)

+ H(dt)(H,— Hy)ds) H,(du) H,,(dv)
+H(dt) Hy(ds)(H, — H, )du) H,,(dv)]+0p(n™")

My =Fa+3 L, g5 (u, v) ay (s, W) (H,o — Hy )(ds) H,(du) H,, (dv)
+ Hy(ds)(H, — H, )(du) H,,(dv)]+ 0p(n ")

—Tu=F, _-LH g, v) ay () Hy — H W) Hy(dv).
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Here F,, 1 < k<4, are the first-order projections and as noted earlier,
satisfy ¥i_, F,.=0. The second-order projections not involving the
v-coordinate are zero, by degeneracy. Equation (3.4), except for —n~"a, (),
follows by adding the above expressions, since by tedious algebra, most of
the second-order terms cancel out.

To tackle the diagonals, note that T, and T, are already diagonal-free
(in Ts, the diagonal {s = v} is zero because §,(1—4§,) =0¥1 < j < n). Write
T, and —3T, as:

T,=n>" Z };. E{ Z {'51 ‘5;(1 —d;) S.jfz.:z;}

ighf ]

xNZ,<Z) (2, <Z) I(Z, <Z,)(1-H(Z,))"}

—3T,=—-3n" Z b Z 16, 0(1-8,) g,(2,.2Z)

i) &k [

x (Z, < Z,) I(Z, < Z))(1— H(Z,))™2}.

It is easy to see that, except for {j=1{} (in T,; and T;) and {j =m} (in 7)),
all other diagonals are either zero (for example, j=£k) or o(n") (for
example, i = 1) or Op(n™7) (for example, j = k = m), by degeneracy and /or
SLLN for U-statistics, since the diagonals lead to U'-statistics of smaller
order. The “errant” diagonals {j=/} and {j=m} lad to the following
three U-statistics:

PRI NN 7% T YU 0 Nt Vel R O S

it jtkal i jotkstm i jek

Since all the three U-kernels have the same expectation, namely, «,(¢), the
result follows from the SLLN for U-statistics. This completes the proof of
Lemma3. |

Proofof Lemma 4. From (3.3), and writing the variables corresponding
to C;, as 5, 1, ... etc., we have, with g, (i, v) asin (2.1),

Li=; [J gs(u,0) a(s, 1,1y, 1) (3, v, 1y, 1) H(dt,) H,(d1,)
x H,q(ds) H,(di,) H,(dF,) H(ds) H,,(du) H,, (dv)
—6 J"R? galu, v) als,u, ty, 1) as(3, v, ) H (dey) H(d)

x H,(ds) H,(dt,) H,(ds) H, (du) H,, (dv)
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+6 Lﬁ 2401, v) ay(s, u, 1y, ) ax(3, v) H,(dt,) H,(dt,)
% Hoolds) Hoo(dF) Hy(du) H,(dv)

=2 [ gyuv) ayls.u 1y, 1) a(v) H,(dty) H(dry)

® Ho(ds) H, (du) H, (dv)

+9 Lﬁ galu, v) as(s, u, 1)) ax(F, v, £)) H,(dt,) Hy(ds)
x H, (di,) H(ds) Hyy (du) H,y(dv)

—18 J"Rs gelte, v) asls, w, ) ax (5, v) H(de)) Hoo(ds)
® Mo (d5) H, (du) H,, (dv)

+6 |, () as (s 1. 1,) a,(0) H,(dty) Hio(ds) H,(du) H,y(dv)
+9 [ £,(1,0) @x(s,1) 4, 5, v) H(ds) H (d5) H,,(d) H,, (dv)
=6 [, £,(1,0) ax(s, u) a, () H,o(ds) H,,(du) H, (dv)

+[, 800 ) 0, a,(0) Hy(dw) Hy (do) ]+ R,

10
=Z T_:Ji:-l_ﬁm say ,
k=1

Here R, is the sum of all the R(ds)-integrals arising out of
z—:;E,{mH, {...} CCj,. Hence by the same arguments as in the case 7, in
the proof of Lemma 3, we clearly have

B, =0n*Ylogn)*)as, as n—ox.
As for the T, 1<k <10, we again separate the diagonal and the non-

diagonal part. The nondiagonal parts then form U-statistics, but now there
is no degeneracy, due to the presence of the factors a,(-), | <r< 4, in the
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U-kernels. Now decompose TV, the nondiagonal part of T, 1 <k < 10,
in terms of its first- and second-order projections as

T = +FOLFR 10,07, 1<k<9,

Tfﬁj = Huo +FE;|:| +FE]!D=

where g, is the expectation of the kernel of T, 1 <k < 10. It may now be
verified by brute force, thanks to massive cancellations, that

10 10
S m=0=3 FY,
'8 | ' |
10 =
Y F = sum of first three U-statistics in (3.5).
' |
A crucial fact in this verificationis that for2 i<k k=3,

JFR H&{Z!, 2oy evey Zjms & St ...,Z&}H(ﬂf!‘}

=a&-!(zl: Z3s ceen Zj s g s ""zk}'

As for the diagonal parts, the diagonals involving three or more indices
(coordinates) are obviously of the order Q(n %) almost surely, by the SLLN
for U-statistics as before. For any two coordinates (z;,,z,), denote by

{z, =2z,} the sum of all the U-statistics obtained from TH™, 1 <k <8,
by restricting to the diagomal {z, =z,}. Note that T, 5 and T, ,, are
diagonal-free. Now verify again by brute force that
i) {s=351=n"Goy(¢)+o(l))as.
(i) {n=f}+{=0L1+{n=0}+{6=0}=n"Go)+ol1))as.
i) {n =5} +{n=5+{i, =s}+{h =5} =n"'(~as(@)+o(1)) as.
(V) Eia, .5 ntorsspes 60y 124 =2, } =07 '(0+0(1)) as.
This completes the proof of Lemma 4. |

Proof of Theorem 2. Note that by (3.2) and Lemmas 3-5, (39) holds
for a f -,- ) satisfying (2.7) and (2.8). For a given ¢( -,-) satisfying (N,)
through (N, ) and &= 0, we can get a degenerate ¢( -, - ) satisfying (2.7) and
(2.8) and

I —dlls <e lé—dll.. <e,

- - (A3
16—l <é, 16—l <e. )
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For instance, one could take a degenerate ¢ of the form

(E{é{Z,,Zz} Gyl L) (£, <T)} )
B2y, 2,)— x E{|§(Z,, ;)| 6,1(Z,) [(Z, <T)}
o ur(191)
(E{¢(zlszz} (2 1Z,<T)} )
x E{l¢(z1, Z,)| 0:70(Z:) I(Z, <T')}
ar(lél)
(E{Mz:,zzlﬁa d:70(£)) )
Xyl Z) 12, < T) N2, <T)}
ar(ldl)
Nz, =T) =z =T),

&rfza, 22} =

ld(z,, )|

where

ur(ld)) = E{|9(Z,, Z,)| 6, 0,70(Z,) yolZ:) 1(Z, T ) HZ, <T')}

and 0 < T =< o0 is chosen large enough (or close enough to t if 7y < o0) 50
that (A3) holds. Note that degeneracy of ¢ is crucially used in constructing
¢ in the fact that

Jlim E($(z1,2) 0n(Z) [(Z<TH =0 VzeR.

After choosing ¢ satisfying (A3), let
¢.-. = ¢ _'ig'

Then ¢, is also degenerate, in particular

[ 4.(x1, x,) Fldx,) Fldx,) = 0,

and (3.9) holds for ¢.
It follows that, in order to establish (3.9) for ¢, it suffices to show

nSa(d) =0p(e), as n— oo (Ad)

(Note that the kernels 4, d,g;, y,(¢), 2=i<3, 1 <j<3, are all square-
integrable by our assumptions (N, (N, ), hence by degeneracy,

nUs,(4,) = 0,(2), myy(§, W Ho— Hyy, Hy )= 0,(2),

and so on, as n— o0).
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Mow from Lemma 1,

1Sy, (¢,)
1 -
=;!{Z} .21, Z)) 6, 6,30(Z) yo(Z){exp( A, + A, ) — 1} +n.Us (4,)
=02 (,) +n0 2 (b,)+n(4,),  say, (AS)

where using the identity e”.e’ —1 = (e"— 1 )(e'— 1)+ {(e"— 1)+ (e"—1)}.

mwi}_ 2 z $.(Z, Z) 9, &;Tan}Tnfz;}ft’A”—1}.{6“'"—1},

lgicjgn

U§Nd) = 22 $.(Z,, Z,) 8, 8,3 Z) yo( Z;) (e —1).

J-pﬂj

Consider U2(¢,) first. We have

e |
n|US (gl <~ (Z)
1 ]
s;z 37 Z ) Bl +1CL1) | X 6.2, Z)) 6,70(Z,)|-04(1)
el ji
=(f,+6,).0,(1),  say, (A6)

using the facts that |ed=—1| < |4,| e, 4, =B, +C,, and ¢" =0,(1)
(see the proof of Theorem 1.1, Stute (1995), p. 436).
Further,

1."
ﬂn = ; Z! 51?0(21} |Bn| E 'ﬂ-.l:zn zj} Jj}rl'.'l

Hq(ds) )
(1—H,(s))*
H o (ds) )
(1-H(s))*

Z $.(Z,2Z }'ﬁj]’ﬂ{.z}

j#i

d:70(Z) (J I(s<2)

<5y
=% @) ([ 16<2) g8

x 'iér{zn z}} ﬁf}rﬂl:zf} DP(I}
Jei

HZ, <Z)
d,(1—d, Z)—————
"5”.;;: ( ) ol } _H(Z, }}

X -0p(1), (AT)

1
7 Y $(Z.Z) 87(Z)

jeik
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using |E,|$(2n}"j![3 <Z)(1—H (s))* Hy(ds), by Eq. (2.4) of Stute
(1995) and the fact that

sup (1—H(s)/(1—H.(s)) = Os(1), (A8)

< .

as on p. 436 of Smte (1995).
Now by a symmetry argument and the degeneracy of ¢,,
2, =2) |1

G—HZ | T, &, % 2) @)

\_/;I'j-ph,k

{5 3 60-0)02)

}

1 I(Z,<Z) | 1
= —HE {1'5,{1 —3,) W(Z)) —H(Z,)" ﬁ;;’:,z 8.(Z,, Z)) 6;7.,(Z)) }
1 ! IZ,<2Z)
<7 E{0,01-6) n(2) s
|1 .z )1 2) | ]
1
<—E3{E@6:83(2,, Z,)| 2,)}'* C(Z)
\/r_r e
1 g
=—[d.C . M € —=. (A9)
v Jn
using Holders inequality and the fact that
1(Z,<Z) .
E ((1 —dz) “Tw ) ) =C(4).
By (A7) and (A9),
B,=0:(//m as n-w (A10)
MNext, to deal with @, write
Coo = [1(s< Z)((1=H,(5) " Ho(ds) — (1 - H(s)) " Hy(ds))
= [1(s < Z)(1 - H(s)) ™" (H,o(ds) — Hy(ds))
(H,(s)—H(s)) :
+[16<2) g Gy Ha @ &
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Then
1 n
:=; 2 ]’D{.Z} |Cm| E ¢¢{Z,zj} '5;}’0(2}}
s s =2
<13 on2) (‘ J e (Hads)— Ha(ds)
(s < Z) |H (s)—H(s) |
+[ L2 O TO y(a9.0,1)
X jg ¢.-.(znzj} (S}}?D z
= W +AD 0,(1), say, using (*). (All)
MNow

1 1
00 =23 on2)|1 -0z, 2)-a@)
i Hra

® Z 8.(Z,, Z,)) 6,7,

j#i

Y (-d)aZ.2)

kot f katd, jutid

1 2 1
<-Y dnl(Z) |-
R

—a(Z,)) ¢.(Z, Z,) &,

23 57Z) a(Z)

- Y 2. Z)y(Z),  (Al2)

jei

since a, (£, Z,) =0, §,(1—4,) =0. Further, since

E((1-d) a2, Z)| Z)=a(Z), Kk#i
E(1-8) a1(Z. Z))| Z) = C(Z),  k#i

H,(ds)
(1—H(s))

vV C(Z,) <C(Zy),

@(Z,) = [ 16 <Z)(1 - H) 7= < C(2),



KAPLAN-MEIER U-STATISTICS 121

we see from (A12) that, by arguments similar to those in {A9),

gl = D,{H}+Dp{-‘3!r\/’_ﬂ =0.(2). (A13)
Next

31321 25{1 5}},0[2}@

ik

IEI

»

Z b (Z, z;} "S;Fn

TETNEY:

KZ, <Z)
.};ﬁ“ JE}FD(Z}—HMEW

1

s e VB S Z)—HZD) 4.2, Z) 316
Hojuj il e i k)®
1(Z <2)
‘5&::1 =0 ) iz }};wz FALHS
= 05(e)+0p(e/\/n) = Op(2). (Al14)

From (Al11), (Al3), and (Al4), 8, = O.(z), so that, by (A6), (A10) and the
above

nU5)(8,) = Ople). (A15)
As for UL(¢,), we have, by arguments keading to (A6),

n |05 (@)

1
e Z 9. (Zis Z)| 8, 8,75(Z,) Yo (Z) M| By +1Cou )| By | +1C 1) Op(1)

Z{ IIB;.,|+ 2 {HIBlLIC,

Jn'._f J-pﬁ_.l
+-= Z |Cm| |C_fﬂ| ] DP(I}
an-._.l

Using the preceding estimates and methods, it may be established, after
considerable algebra, that the above three terms are of the order O,(g/n),

0,(z//n), and O, (e), respectively. Hence

nU8)(8,) = 04(e). (Al16)
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The theorem follows from (Al5), (Al6), and (AS), since it is already noted
that nlU,,(¢,) = Os(2). 1

Proof of Theorem 3. (a) Follows from Theorem 2 by the result of
Dynkin and Mandelbaum (1983), using the isometry in the definition of W,
and approximation by product functions.

(b) Follows directly from (a) by specializing to (2, 2Z,) =
#(Z,) §(2,), since for this ¢

B = $(Z)) 170(2)) $(Z2) 270(Z5)
P (BNZ1, Z2) = ((1—81) 1y (GNZ)— E(1=8) 11(8)) $(Z2) 6272(Z2)

and so on Note that the result ako follows directly by writing
Yipab = a)X,; b))% ab, and using the iid. CLT and SLLN
term by term. |
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