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Abstract: In this paper, we provide a general formulation for the problems
that arise in the computation of many robust and nonparametric estimates in
terms of a combinatorial optimization problem. There is virtually no hope
for solving such optimization problems exactly for high dimensional data,
and people usually resort to various approximate algorithms many of which
are based on heuristic search strategies. However, for such algorithms it is
not guaranteed that they will converge to the global optimum as the number
of iterations increases, and there are always possibilities for such algorithms
getting trapped in some local optimum. Here we propose genetic algorithm
with elitism as a way to solve that general problem by probabilistic search
method. We establish convergence of our algorithm to the global optimal
solution and demonstrate the performance of this algorithm using some nu-
merical examples.
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1 Introduction

It is well known that computation of several estimates in robust and nonparametric multi-
variate analysis poses a very challenging problem. Many of these estimates require solv-
ing combinatorial optimization problems to determine some optimal subsets of the data
points from the collection of all possible subsets with certain specified sizes that depend
on the dimension of the data. ConsiderX1, . . . , Xn ∈ Rd. Our problem is to

maximize or minimizeh(X i1 , . . . , X ik)

where{X i1 , . . . , X ik} is a subset of{X1, . . . , Xn} of sizek andh is a non-negative
real valued function. Before we proceed with further discussion, let us present some
interesting examples of multivariate estimates which can be formulated as a combinatorial
optimization problem as above.

Example 1: Tukey’s Halfspace Depth:Tukey (1975) proposed the halfspace depth of a
d-dimensional pointx relative to a data setX1, . . . , Xn ∈ Rd as the smallest proportion
of observations in any closed halfspace with boundary throughx. For the bivariate case,
some efficient exact algorithms to compute the depth contours and the deepest point are
proposed by Rousseeuw and Ruts (1996, 1998) and Ruts and Rousseeuw (1996). For
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dimensiond > 2, Struyf and Rousseeuw (2000) proposed some approximation algorithm
for computing the halfspace depth of a point but it still remains a challenging problem.

Let us consider a subset of indicesβ = {i1, . . . , id−1} of sized − 1. Then we will
denote byH(β), the unique hyperplane inRd containingx andX i’s with i ∈ β. Let
h(Xi1 , . . . , Xid−1

) denotes the absolute difference between the number of data points that
fall in one side ofH(β) and the number of data points that fall in its other side. It is in-
teresting to note that maximizingh(Xi1 , . . . , Xid−1

) yields the multivariate Hodges’s sign
test statistic (Hodges, 1955). Chaudhuri and Sengupta (1993) showed that this is equiv-
alent to finding the halfspace depth atx, which is obtained by minimizing the smallest
proportion of data points on either side ofH(β). In other words, the halfspace depth of
the pointx can be written as

Depth(x) =
n + d− 1

2n
− 1

2n
max h(Xi1 , . . . , Xid−1

).

Example 2: Transformation Retransformation (TR) Medians: Chakraborty and Chaud-
huri (1996, 1998) proposed an affine equivariant version of multivariate median based
on a transformation retransformation technique applied to the vector of coordinate-wise
medians. Chakraborty et al. (1998) used the similar TR strategy to define an affine equiv-
ariant version of spatial median and angle test. The method can be described as follows:
Consider the transformation matrix

X(α) = [X i1 −X i0

... · · · ...X id −X i0 ]

whereα denotes the subset of indices{i0, . . . , id} of size d + 1 and d is the dimen-
sion of the observations. Then we transform the data points asY

(α)
i = {X(α)}−1X i

for i 6∈ α and let θ̂
(α)

be the computed coordinatewise median/spatial median based
on the transformed observationsY

(α)
i . Then the affine equivariant median is defined as

X(α)θ̂
(α)

. Chakraborty and Chaudhuri (1999) showed that this transformation retransfor-
mation technique with the optimal transformation matrix leads to location estimates with
simultaneously high efficiency and high breakdown point. Note that, the efficiency of the
estimate depends on the transformation matrixX(α). Chakraborty and Chaudhuri (1998)
and Chakraborty et al. (1998) have shown that in the case of both coordinatewise medians
and spatial median, the optimal subsetα is obtained by minimizing

v(α) =
trace

[
{X(α)}T Σ̂−1X(α)

]
/d

{
det

[
{X(α)}T Σ̂−1X(α)

]}1/d
,

over α, whereΣ̂ is some consistent affine equivariant estimate of the scatter matrixΣ.
So again, we have a combinatorial optimization problem withh(X i0 , . . . , X id) = v(α),
whereα = {i0, . . . , id}.
Example 3: Minimum Covariance Determinant (MCD) Estimator: A popular high
breakdown estimator of multivariate location and scale matrix is minimum covariance de-
terminant estimator proposed by Rousseeuw and Leroy (1987). The objective is to find
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k observations out ofn observations whose classical covariance matrix has the lowest
determinant. The MCD estimate of location is then the average of thesek points, and the
MCD estimate of scale matrix is their covariance matrix. Ifk = [(n+d+1)/2], the max-
imum breakdown point is attained by the MCD estimates. In this case, the combinatorial
optimization problem is

minimizeh(X i1 , . . . , X ik) = det [cov (X i1 , . . . , X ik)] .

Example 4: Least Median of Squares (LMS) Regression:Consider the linear multiple
regression model

yi = α + xT
i β + εi, i = 1, . . . , n (1)

Thep-dimensional vectorsxi contain the explanatory variables,yi is the response andεi

is the error term. Rousseeuw (1984) proposed least median of squares (LMS) regression
method as a robust alternative to least squares to find an estimate of the parameters(α, β).
To attain the maximum possible breakdown point, takek = [(n + p + 1)/2] and define
the LMS estimate ofα andβ as

(α̂LMS, β̂LMS) = arg min
α,β

|yi − α− xT
i β|k:n

where|yi − α− xT
i β|k:n is thek-th order statistic ofy1 − α− xT

1 β, . . . , yn − α− xT
nβ.

Rousseeuw and Hubert (1997) suggested an algorithm called PROGRESS to compute
the above LMS estimate of regression coefficients. Their method can be outlined as fol-
lows: Consider a hyperplane passing throughp+1 data points(yi1 ,xi1), . . . , (yip+1 ,xip+1)
and adjust the intercept termα to get the best fitting hyperplane parallel to the above hy-
perplane through the data points. Take it as a candidate fit and then minimizeh1[(yi1 ,xi1), . . . ,
(yip+1 ,xip+1)], over all possible hyperplanes passing throughp + 1 data points, whereh1

is [(n + p + 1)/2]-th ordered absolute residual obtained from this candidate fit.
For p = 1, it is an exact algorithm to find the LMS estimates. However, forp ≥ 2, it

gives only an approximate solution to the LMS regression. To resolve this issue, we can
consider two parallel hyperplanesy = α̃1 +xT β̃ andy = α̃2 +xT β̃ containingp+2 data
points(yi1 ,xi1), . . . , (yip+2 , xip+2) among themselves. Leth2[(yi1 , xi1), . . . , (yip+2 , xip+2)]
be the[(n + p + 1)/2]-th ordered absolute residual obtained from the fit

y =
α̃1 + α̃2

2
+ xT β̃.

Then LMS estimates are obtained by minimizing

h2[(yi1 , xi1), . . . , (yip+2 , xip+2)]

over all possible subsets ofp + 2 observations.
Note that, whether we use PROGRESS or the exact algorithm described above, the

problem of finding LMS estimates can be reduced to a combinatorial optimization prob-
lem of the same type as described earlier.

The naive way to solve any combinatorial optimization problem is to search all pos-
sible configurations and then the number of times the objective function is evaluated is
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of ordernk, wheren is the number of data points andk is the size of the subset. More-
over, many of these optimization problems areNP − hard (Garey and Johnson, 1979),
that is they belong to the class of problems for which there is no known algorithm that
solves each instance of the problem to optimality in computing time bounded by a fixed
degree (irrespective of the dimension, etc.) polynomial function ofn, wheren is the
number of data points. Computing MCD estimator is one such example. For that rea-
son many combinatorial optimization problems are tackled by constructing approximate
rather than exact optimization algorithms. In that case the goal is to construct an approx-
imation algorithm that runs in low order polynomial time and has the property that final
solutions are “close” to globally optimal ones. In this paper, our objective is to construct
an approximation algorithm, which works reasonably well for most of the combinatorial
optimization problems in statistics literature and in many other fields. In Section 2, we
discuss complete random search and many other commonly available heuristic optimiza-
tion algorithms (e.g. iterated conditional mode algorithm). We also discuss some problem
specific algorithms like FAST-MCD (Rousseeuw and van Driessen, 1999) for computing
MCD estimates. In Section 3, we introduce genetic algorithm with elitism (EGA) as a
stochastic optimization algorithm, which can be used to solve general combinatorial op-
timization problems considered here. We also discuss the Markov chain nature of the
successive populations in the genetic algorithm and discuss its convergence. We present
some simulation and real data examples in Section 4 to compare EGA with completely
random search and commonly available algorithms. In Section 5, we make some conclud-
ing remarks and discuss some possible merits and demerits of the proposed algorithm.

2 Some Specific and General Purpose Algorithms

2.1 Completely Random Search

The simplest probabilistic algorithm is the completely random search, which chooses a
subset of data points at random and evaluates the objective function at that subset and
then repeat this procedure for a large number of times. The maxima or minima of the
objective function values in these iterations is taken as the approximate global optimum
of the original problem. The biggest advantage of this method is that it is very simple to
implement and if the number of iterations (say,I) goes to infinity, the probability of hitting
the true optimum goes to one. In other words, it is a convergent algorithm. But in most
of the problems, especially whenn andk are large, the number of iterations required to
get the true optimum is considerably high. If the total number of possible configurations
is

(
n
k

)
, the expected number of iterations to hit the true value is also

(
n
k

)
. If we stop after

a finite number of step, the approximation may be nowhere near to the true optimum.

2.2 Deterministically Guided Search

Let us first discuss the algorithm FAST-MCD proposed by Rousseeuw and van Driessen
(1999) for computing MCD estimates. To describe the method briefly, it starts with a
subset of data points and then proceeds in a deterministic way until the objective function
value stabilizes in the subsequent steps. Then it repeats the same procedure for many
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randomly chosen initial subset of observations and takes the minimum of these iterations
as approximate solution to the optimization problem. While this algorithm runs quite
fast, it can only be used to solve a specific problem of finding MCD estimates. It is
not probabilistic in nature after the initial subset is fixed and there is no guarantee of
convergence of the algorithm to the true solution. If we repeat with randomly chosen
initial subsets, of course the probability of obtaining the true solution converges to one as
the number initial subsets goes to infinity, but then the algorithm becomes similar to the
completely random search with may be a slight improvement in the expected hitting time.

A general purpose optimization algorithm of this type is iterated conditional modes
algorithm (ICM) proposed by Besag (1986). A single iteration consists ofk steps, where
k is the size of the subset. At each step, it updates only one element of the subset given
the rest of the element. Suppose at them-th iteration, the system is at the subsetS, then
it updates thei-th element by choosingXj, 1 ≤ j ≤ n, which maximizes the objective
function value evaluated at the subsetS with thei-th element replaced byXj. When there
is no improvement in the objective function value for a long time, we stop. Again there
is no randomness in this ICM algorithm once the initial choice is fixed, one proceeds in
a purely deterministic manner from the initial choice. This kind of algorithm very easily
gets trapped in local optima and there is no in-built mechanism to get out of local optima
(see Winkler, 1995). There is no guarantee of convergence to the global optimum.

We have reviewed two types of algorithms. For the first type the probability of hitting
a true optimum converges to one but the expected hitting time is very large and if we
stop after a fixed stopping time, we may have a very high variance for the approximate
solution. The second type of algorithm will run very fast but deterministic in nature and
may get trapped in a local optimum without ever getting out of it.

3 Genetic Algorithm With Elitism

Genetic algorithms (GA) are stochastic search methods based on the principles of natural
genetic systems (Goldberg, 1989). The basic idea is to maintain a population of possi-
ble solutions that evolves and improves over time through a process of competition and
controlled variation.

To begin with, each subset ofk indices is represented by a binary stringS of lengthL
and a random sample of sizeM is drawn from2L strings to form the initial population.
For a maximization problem of the non-negative objective functionh, we define thefitness
of a string asfit(S) = h(X i1 , . . . , X ik) or equivalently, for the minimization problem,
fit(S) = {1 + h(X i1 , . . . , X ik)}−1 or any other decreasing function ofh, where the
string S corresponds to the subset of indices{i1, . . . , ik}. When the total number of
strings,2L, is greater than the total number of subsets, we assign the fitness value 0 to
the strings, which do not correspond to any subset. Next we generate amating poolby
coping the individual strings of the current population using probability proportional to
size sampling with the sizes given by their fitness function values. Many strategies for the
generation of mating pool are available in the literature (Goldberg, 1989; Michalewicz,
1996). To perform crossover on the mating pool, one chooses pairs of strings randomly
at a time fromM strings untilM/2 pairs are obtained. Then for each pair of strings, one
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performssingle point crossoverwith probability pc. Mutation is the mechanism which
changes the string randomly and allows the process to come out of any possible local
optima. Every characterβi, i = 1, . . . , L in the stringS changes to(βi + 1)mod2 with
probabilitypm.

3.1 The Algorithm

In this paper, we take the strategy of replacing the worst string of the new population
with the best string of the current population. Genetic algorithms with this strategy are
referred asgenetic algorithms with elitismor EGA. The basic steps in an EGA is described
as follows:

Step 1: Let l be the smallest integer such thatn ≤ 2l. Then each element of the subset
{i1, . . . , ik} can be represented as a binary string of lengthl. Concatenate these
strings representing elements to get a string of lengthL = kl to represent a partic-
ular subset of indices.

Step 2: Generate an initial populationP of sizeM and calculate the fitness of each string
S of P .

Step 3: Find the best stringSbest of P . If the best strings are not unique, then call anyone
of the best string inP asSbest.

Step 4: Construct the mating pool. Perform crossover and mutation operation on the strings
of the mating pool and obtain a populationPtmp.

Step 5: Compare the fitness of each stringS of Ptmp with Sbest. Replace the worst string of
Ptmp with Sbest if the fitness of each string inPtmp is less than the fitness ofSbest.
Otherwise no replacement takes place inPtmp. RenamePtmp asP .

Step 6: Go to step 3.

3.2 A Markov Chain Representation of EGA And Its Convergence

Let F1 > F2 > · · · > Fs be the ordered fitness values of all possible strings ands is the
number of distinct fitness values. Since the total number of strings is2L, we haves ≤ 2L.
Let P denotes a population ofM strings andP denotes the collection of all populations.
We can immediately partitionP as

Pi = {P : P ∈ P and max
S∈P

fit(S) = Fi}, i = 1, . . . , s.

Note that,F1 is the maximum possible fitness andP1 is the collection of populations
containing the strings with maximum fitness. Thus, if our population is inP1, we know
that we have got an optimal subset of data points. Letpi be the number of populations in
Pi andPij be thej-th population inPi, for j = 1, . . . , pi andi = 1, . . . , s.

In any generation, the algorithm creates a populationPkl from somePij. Since we are
preserving the previous best in the population, we cannot generate a populationPkl from
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Pij, if k > i. Because the maximum fitness value of the new population is at leastFi. The
creation of a populationPkl from Pij can be viewed as a transition fromPij to Pkl and let
u(ij)(kl) denotes the corresponding transition probability. Then

u(ij)k =
pk∑

l=1

u(ij)(kl)

denotes the probability of transition fromPij to any population inPk, for j = 1, . . . , pi

andi, k = 1, . . . , s.

Proposition 3.1 For all j = 1, . . . , pi andi = 1, . . . , s

u(ij)k > 0 if k ≤ i
= 0 otherwise.

It is clear from the above discussion that one can consider any populationPij as a state
of a Markov chain. Letu(N)

(ij)(kl) be the probability that EGA results inPkl at theN -th step

given that the initial state isPij andu
(N)
(ij)k denotes the probability of reaching a population

in Pk in N steps with the starting population asPij, then

u
(N)
(ij)k =

pk∑

l=1

u
(N)
(ij)(kl).

The following Theorem asserts that starting from any populationPij, EGAs eventually
result in one of the populationsP1l of P1. In other words, as the number of generations
N −→∞, the EGAs converge to a population containing the optimal subset.

Theorem 3.2 For an EGA with the probability of mutationpm ∈ (0, 0.5],

lim
N→∞

u
(N)
(ij)k = 0 for 2 ≤ k ≤ s; j = 1, . . . , pi andi = 1, . . . , s

and

lim
N→∞

u
(N)
(ij)1 = 1 for j = 1, . . . , pi andi = 1, . . . , s.

The proof of the above theorem follows from the results in Bhandari et al. (1996)
and we give an outline in the appendix. The proof does not depend on the crossover
operation, but mutation should be performed with probabilitypm > 0. Note that, the
transition probabilities from one population to another depend on the process of mating
pool generation, but these probabilities will always obey the conditions in Theorem 3.2.
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4 Some Illustrative Numerical Examples

Let us first consider finding out the optimal transformation to be used in the transformation
retransformation methodology (Chakraborty and Chaudhuri, 1998; Chakraborty et al.,
1998). For that purpose, we simulate data sets from standard normal distribution with
means equal to zero and covariance matrix equal to the identity matrix for dimensions
d = 2, 3, 4, 5 and 10 and sample sizesn = 50, 100, 500 and 1000. We have compared
EGA with a completely random search with 60000 subsets for each data sets and for
dimensiond = 2 and sample sizen = 50, we have performed a complete search. The
parameters of the EGA are: the population sizeM = 300, probability of crossover,
pc = 0.7, probability of mutation,pm = 0.4, and number of generations,g = 500. In the
following Table 1, we report the percentage of times EGA returns a subset which is as
good as the best one obtained in completely random search in 1000 simulations.

Table 1: Percentage of times EGA returned a subset which is as good as the best subset
obtained from the complete random search

Dimension,d
n 2 3 4 5 10
50 88.4 87.6 90.5 91.8 94.9
100 89.6 90.3 93.2 94.8 97.4
500 89.4 89.4 95.3 96.1 99.1
1000 88.4 92.7 96.7 97.8 99.3

We note that, for a small data set (n = 50, d = 2), when a complete search is possible,
the EGA returns the best value more than 88% of the times, which is quite encouraging.
For higher dimensions, when a complete search is practically impossible, we see that
EGA is performing much better compared to a complete random search.

To illustrate the effect of different values of the parameters, we consider a synthetic
data set about physical characteristics of pollens used for the 1986 ASA data exposition
and available in Statlib (http://lib.stat.cmu.edu/datasets/pollen.data). There are 5 physical
measurements, ‘ridge’, ‘nub’, ‘crack’, weight and density of 3848 pollens. We com-
pute Tukey’s halfspace depth (Tukey, 1975) for this data at the coordinatewise median
(−0.1639,−0.2317,−0.0562,−0.1493,−0.0304). We have found that the probability of
crossover,pc does not have a significant effect on the rates of convergence and we fix it at
0.6 for this problem and vary the population size and the probability of mutation,pm.

In the case of halfspace depth, we see that when the probability of mutation is large
(pm = 0.1) and the population size is not so large(M = 100 or 200), the EGA gets
trapped in a local optimum and does not come out of it for a long time (Figure 1). Whereas
for a smaller mutation probabilitypm = 0.005 and a large population sizeM = 500, it
achieves better objective function values quite early and does no seem to get trapped in
a local optimum. For a still smaller mutation probability,pm = 0.001 and not so large
population sizeM = 100, the EGA starts from a relatively high objective function value
but gradually decreases to the stable value and never gets trapped in a local optimum.
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Figure 1: The plot of the objective function corresponding to the best subset in populations
of successive generations.

By a complete enumeration, we have found that the true halfspace depth of this point is
0.426715 and this value is attained be the last case. It suggests that, if we have a larger
population size, the EGA converges faster, however, that requires a larger computation
time in each generation and if we have a smaller mutation probability, it is less likely to
get trapped in a local optimum.

In our next example, we consider computing MCD estimates using the proposed EGA
algorithm and we compare our method with FAST-MCD algorithm for some simulated
data sets. We have simulated data sets from standard multivariate normal distribution with
means equal to zero and covariance matrix equal to the identity matrix for dimensions
d = 2, 3, 4, 5 and 10 and for sample sizesn = 50, 100, 500 and 1000. Table 2 summarizes
the percentage of the times EGA got a better (smaller) value of the objective function
compared to the FAST-MCD algorithm in 1000 simulations of the each case. For the
FAST-MCD, we have used the default choice of 500 initial guesses and for the EGA,
the parameters taken are: size of a population,M = 200, the probability of crossover
pc = 0.7, the probability of mutation,pm = 0.001 and number of generations,g = 100.

We note that, in all cases EGA performed better than FAST-MCD in at least 70% of
the times. In high dimensions, with a large sample size, the performance of EGA is almost
always better. However, we note that, this simulation study has been carried out with some
specific values of the EGA parameters. The performance of EGA can be improved in real
data set by trying out several combinations of parameters.

It might be of interest to see that when EGA returns a smaller value compared to
FAST-MCD, do we really gain a lot or the improvement is only marginal. For that pur-
pose, we use the pollen data with 5 variables and 3848 observations as discussed be-
fore. In Figure 2, we plot the value of the objective function corresponding to the best
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Table 2: Percentage of times EGA returned a smaller covariance determinant compared
to FAST-MCD

Dimension,d
n 2 3 4 5 10
50 99.8 98.5 96.3 85.6 71.2
100 99.8 100.0 99.9 99.5 98.2
500 97.2 98.5 99.2 99.6 99.7
1000 82.0 87.0 91.3 92.1 95.6

string in a population in successive generations of EGA with parameters, population size,
M = 100, probability of crossover,pc = 0.8 and probability of mutation,pm = 0.0001.
For comparison, we have also plotted a dotted line indicating the best value obtained by
the FAST-MCD algorithm with 5000 trial subsamples and we note that the EGA gets a
better value after about 1500 generations and if we continue for a large number of gener-
ations, the improvement is substantial. However, still the final results are not satisfactory
for this data set. One needs to investigate further with different choices of the parameters
to achieve a faster convergence and stability in EGA.
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Figure 2: The plot of objective function corresponding to the best subset of the popula-
tions in successive generations of the EGA

In this example, the FAST-MCD algorithm evaluates the objective function about
18200 times and EGA with population sizeM = 100 and generationg = 200 eval-
uates the objective function 20000 times. However, with such a large number of trial
subsamples, FAST-MCD is no longer very fast compared to EGA.
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5 Concluding Remarks

We have noticed that the choice of the population size effects the convergence, but there
is no strict guidelines to chooseM , however it is convenient to chooseM to be an even
integer, since in the crossover operation, we need pairs of strings. The algorithm does not
depend much on the choice of the probability of crossover and hence it can be chosen to be
any reasonable number in[0, 1], but it heavily depends on the selection of the probability
of mutation,pm. We must choosepm ∈ (0, 0.5] for the algorithm to converge, the rate
of convergence depends on its choice and we suggested that for a particular problem the
user should try a few values ofpm to understand the behaviour of the problem regarding
the choice. We assumed thatpc andpm remain fixed during the process, however, it is
possible to change these parameters during the process and then the underlying Markov
chain becomes nonhomogeneous.

There are many other variations of the genetic algorithms. One important modification
is that instead of considering populations of binary strings, one can consider populations
of strings over a finite alphabetA = {a1, . . . , al}. Our main theorem on convergence is
still valid for this situation. Other modifications could be on the method by which the
mating pools are generated or on the method we perform the crossover operation. These
changes in the algorithm will change the transition probabilities of the algorithm but the
convergence of EGA is still valid. We would also like to note that the GAs without
elitism can also be modelled as a Markov chain and Davis and Principe (1991) proved
their convergence to the limiting distributions under some conditions on the mutation
probabilities. However, it does not guarantee the convergence to the global optimum.
With the introduction of elitism or by keeping the best string in the population allows
us to show the convergence of the EGA to the global optimal solution starting from any
arbitrary initial population.

Todorov (1992) suggested a simulated annealing based approach for computing MCD
estimates and Woodruff and Rocke (1993) proposed some heuristic search algorithms for
computing minimum volume ellipsoid estimators, which includes a brief discussion on
genetic algorithm too. Neither of these works proved any convergence results of their
algorithms and they did not report any detailed study for the general combinatorial opti-
mization problem considered here.

Boček and Lachout (1995) proposed a probabilistic algorithm based on simplex method
for computing LMS regression estimates and Tichavský (1991) suggested some optimal
shift of the randomly chosen hyperplanes. There is another approximation algorithm sug-
gested by Olson (1997) too. However, none of them can be used as a general purpose
algorithm to solve other combinatorial optimization problems and a detailed study is nec-
essary to compare their performances in solving large regression problems.

In this paper, our objective is to provide a general algorithm which works for a large
class of combinatorial optimization problems in statistics. While it is still possible to have
an algorithm which works much better than EGA for a particular problem, we conclude
this note by pointing out that EGA is a general purpose algorithm and one can safely use
it without doing a great deal of research on computing every time a new combinatorial
optimization problem appears.
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A Appendix: Proofs

Proof of Proposition 3.1: let P = {Sm : m = 1, . . . , M} be a population generated
using the genetic operators on the populationPij. Note that, the best stringSbest ∈ Pij

(fit(Sbest) = Fi) is copied in the generated populationP if the fitness of all the generated
strings are less thanFi and hence

max
m

fit(Sm) ≥ Fi.

This impliesu(ij)(kl) = 0 for all l = 1, . . . , pk, if k > i and consequently

u(ij)k =
pk∑

l=1

u(ij)(kl) = 0, for k > i.

Now for k ≤ i, consider a population , sayPkl, which containsM copies of a stringS ′

such thatfit(S ′) = Fk. Sincek ≤ i, fit(S) ≤ fit(S ′) for all S ∈ Pij. If all the strings
S ∈ Pij are changed toS ′ by the genetic operators then we need not copySbest, the best
string inPij, in the new population. Now we show that the probability of such a transition
is greater than 0.

It is obvious that the probability of generating any stringS1, from a given stringS2 is
pν

m(1 − pm)L−ν , whereν(0 ≤ ν ≤ L) is the number of places where the stringsS1 and
S2 have distinct characters. Sincepm < 0.5, the probability of generatingS ′ ∈ Pkl from
any stringS ∈ Pij is not less thanpL

m. Hence the minimum probability to obtainPkl from
Pij is pML

m , that is,u(ij)(kl) ≥ pML
m . Hence,

u(ij)k =
pk∑

l1=1

u(ij)(kl1) ≥ pk(pm)ML > 0 for all k ≤ i. (2)

2

Proof of Theorem 3.2: From Proposition 3.1, we haveu(n)
(ij)k ≥ 0 andu(ij)1 > 0 for all

j = 1, . . . , pi andi = 1, . . . , s. Let mini,j u(ij)1 = δ. Now,

∑

k 6=1

u
(1)
(ij)k =

s∑

k=2

u(ij)k = 1− u(ij)1 (3)

∑

k 6=1

u
(2)
(ij)k =

s∑

k=2

s∑

i1=2

pi1∑

j1=1

u(ij)(i1j1)u(i1j1)k (since,u(1j1)k = 0 for k > 1)

=
s∑

i1=2

pi1∑

j1=1

u(ij)(i1j1)

s∑

k=2

u(i1j1)k =
s∑

i1=2

pi1∑

j1=1

u(ij)(i1j1)(1− u(i1j1)1)

≤ (1− δ)
s∑

i1=2

pi1∑

j1=1

u(ij)(i1j1)

= (1− δ)
s∑

i1=2

u(ij)i1 = (1− δ)(1− u(ij)1) (4)

By using mathematical induction,

s∑

k=2

u
(n+1)
(ij)k =

s∑

k=2

s∑

i1=2

pi1∑

j1=1

u
(n)
(ij)(i1j1)u(i1j1)k ≤ (1− δ)n(1− u(ij)1) (5)
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Note that(1− δ)n(1− u(ij)1) → 0 asn →∞ since0 < δ ≤ 1. Hence we have

lim
n→∞u

(n)
(ij)k = 0

for k = 2, . . . , s, i = 1, . . . , s andj = 1, . . . , pi. Thus,

lim
n→∞u

(n)
(ij)1 = lim

n→∞

(
1−

s∑

k=2

u
(n)
(ij)k

)
= 1. (6)

2
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