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Abstract

In Bavesian model selection, or hypothesis testing, difficulties arise when improper noninfor-
mative priors are used to calculate the Baves factors. Several methods have been proposed to
remove these difficulties. In this paper we discuss a unified derivation of some of these methods
which shows that in some qualitative or conceptual sense, these methods are no more than a fixed
number of observations away from a Bayes factor based on noninformative priors, and are close
to each other and to certain Baves factors based on low information nroper priors which include
priors recommended by Jeffrevs (1961).
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1. Introduection

Bayesian testing of sharp hypotheses, or model selection, requires specification of
prior distibutions for the parameters of the proposed models. 1f a nonsubjective (auto-
matic) viewpoint is adopted, one is motivated to use standard {improper) noninforma-
tive priors for the parameters. For a discussion on the need for Bayesian methods in
hypothesis testing and the desicability of an automatic method see, for example, Berger
and Penechi (19964, b) and the references therein. However, there are diffic ulties with
noninformative priors that are improper, and are hence defined only upto arbitrary con-
stant multipliers. The usual Bayes factor, on which a test is based, 15 thus indeterminate
if improper priors are used. A number of methods have been proposed to remove this
indeterminacy. In the present paper we discuss a unified derivation of some of these
methods. The different nonsubjective methods are found to be close to each other at
least in the examples considered in this paper. We try to show in some sense that
the nonsubjective Bayes factors may be thought of as an adjustment to a Bayes fac-
tor based on noninformative priors, and in some qualitative or conceptual sense, they
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are close to cach other and to Bayes factors based on low mformation proper priors
which include priors recommended for these problems by Jeffreys (1961). Berger and
Pericchi (1996a) feel these automatic methods are one way of generating the kind of
proper priors that Jeffreys (1961) recommends as appropriate {or testing sharp scientific
hypotheses. Several Bayesians do not consider testing a sharp hypothesis a well posed
problem. On the other hand Jeffreys (1961) and Edwards et al. (1963) regard 1t as
legitimate object of study. In a concluding section we discuss whether replacement of
an improper prior by a proper prior or eplacement of a sharp hypothesis by a suitable
interval would solve satisfactorly the problem of indeterminacy of the Bayes factor
based on improper priors. We also discuss there briefly an altemative nonsubjective
method due to Bemardo (1999),

Our mam concem 15 to throw some light on new controversial methods, some of
which have been used in our work of automatic geological mapping (Ghosh et al,

1997).

2, Nonsubjective methods of hypothesis testing
2.1, Bayes factor based on noninformative prior

We consider two models My and Ma for data X' with density  #{x]#8;) under model
M, #; being an unknown parameter of dimension pp, i = 1, 2. Given prior specifications
m 0;) for parameter #; and prior probabilitics F{M;) for model M, Bayesian hypothesis
testing, or model selection is achieved by companng the posterior probabilities P(AM | x ),

and hence may be based on the mtio

P(Mi|x)  P(M:)
POMyx) POy 2 ) 1)

where B2 = 8y(x), known as the Bayes factor (BF) of M to M), s defined by

ma(x) [ fa(x|fs)m(B:)dB,
e i
il mi(x) [ filx|@m(8)de,

(2)

here my(x) is the marginal density of X' under Af;. When the models are a prior judged
cqually hkely, P{M)=P(M2), and the ratio i (1) s equal w the Bayes factor Ba.

In order to compute the Bayes factor 8y, the prior distributions m(#;) need to be
specificd. Here we look for an automatic (nonsubjective) method of model selection
that uses standard {default) noninformative priors.

There s, however, a difficulty with (2) for improper nonmformative priors 7; since
these are defined only upto arbitrary multiplicative constants ¢; and hence 8+ 15 de-
termined only upto an arbitrary multiplicative constant ¢a /oy ; o has same properties
as m implying (ca/c) )82 has as much validity as 85, This indeterminacy, noted by
Jeffreys (1961), has been the main motivation of new nonsubjective methods. Be-
low, we shall confine mainly to the nested case where §) and /5 are of the same
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functional form and /i(x|8) 15 the same as f5(x|8:) with some of the co-ordinates of
6 specified.

It may be mentioned here that the truncation of noninformative priors leads to a
large penalty for the more complex model M. In Example 1 of Section 2.2 if one
uses a uniform prior over —K = p = K, then for large &, the new BF is approxmmately
1/2K tmes the BF for the nominformative prior with ¢; = 1. This is remimscent of the
phenomenon observed by Lindley (1957). A similar conclusion s obtained if one uses
a% priovs N{'[},r’}. vide Bernardo ( 1999).

De Finetti's justification of Bayesian analysis and subjective priors through coherence
depends on finitely additive proper priovs (sce, for example, a treatment in Schervish,
1995). One might hope a solution to our problem lies in twrning to finitely additive
priors. Heath and Sudderth (1978) have shown that in some cases the posterior for
an improper countably additve prior can be shown to be the posteror for a proper
finitely additive prior. For example, this is the case if in Example 1 (Section 2.2) we
consider the postenor for My comresponding to the Lebesgue measure as prior. So it is
natural to ask if the posterior for M can be defined m the sitwation when the improper
prior under Mh is replaced by a proper finitely additive prior with the same posterior
as that corresponding to the Lebesgue prior. It may be pointed out that m general
posteriors do not exist for fimtely additive priors and there are no standard defininons.
Heath and Sudderth (1978) define it in the same way as for countably addinve priors
and Regazzini (1987) defines it m a different way. It wrns out that in Example 1,
the posterior for M and hence the BF camnot be defined in the sense of Heath and
Sudderth (1978), and they have no unigue value in the sense of Regazzni (1987)
{ Ghosh and Ramamoorthi, 2000).

The new nonsubjective methods try to adjust for the arbitrariness in By that arises
due to the arbitrariness of the muluplicative constants ¢; of ;. Several solutons have
been proposed in Smith and Spiegelhalter (1980), Spiegelhalter and Smith (1982),
Berger and Periechi (1996a), ('Hagan ( 1995) and others, e.g., Pérez (1998) and Dwaki
{1997), including Jeffreys ( 1961). Different alternative nonsubjective methods have been
proposed by Bernardo { 1999) and Goutis and Robert (1998 ); see also Bernardo ( 1980)
and Bemardo and Bayarri (1985).

2.2, Imagingry minimald sample device and related methods

We assume swtable noninformative priors have been chosen and the only problem
is with the constants ¢y and ¢, One way to resolve the indeterminacy of the Bayes
factor 82y described above 15 to properdy assign a particular value to the (arbitrary)
constant multiplier ¢ = ¢ /ey, This is achieved if we can imagine a minimal data set
xg and assign a particular value o By xg).

Definition 1. A minimal training sample 15 a sample with the smallest sample size for
which the marginals my(x) and ms(x) are finite for all x.
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Spiegelhalter and Smith { 1982) propose the following solution for nested models,
Imagme a minimal raining sample that provides maximum possible support for M. In
the context of Example 1 below, introspect in an informal way about an imaginary min-
imal sample of size one with xy=10 where one would not like to reject M. The idea
seems to be that given such a small sample, namely of size one, and the data xy =10
being as consistent as possible with A, one should not have a preference for either A,
or Ma. This is ensured by setting 84 (xg) = 1, which in tum resolves the indeterminacy
of By for any sample size and any data. Spiegelhalter and Smith (1982) consider com-
parison of two nested linear models, generating an imaginary minimal training sample,
which leads to an F-statistic value F = 0. Here we propose the following solution. Find
a mmimal sample size and then xy for which my (g ) = sup, my(x) providing maximal
support for the simpler model M. Then set the adjusted Bayes factor equal to one, 1.c.,
malxy)
my(xg)
from which the constant ¢ can be found. The resulting Bayes factor, which we call
SSBFa; 1s then obtained as

1 =('3_:||{_.I“::I=(' {_:’H

S55BFa =cBa. (4
An alternative formal way 1s to detemmine ¢ = ¢2/cy by solving

cpsupmy(x) =casupmaix) (5)
X X

where supremum on both sides are over all minimal samples x for which the marginals
m;(x) are finite. This 15 similar but not identical to (3) since the supremum for my and
ma may not be obtained at the same xy. This choice of assigning ¢ amounts to saying
that maximum support for both the models are same for this sample size. Since ma
or both m; and ms may not integrate to one, (3) 1s trying to bring my and me o the
same scale through a comparison of their suprema.

Example 1 ( Testing normal mean). Let X ={X, X, .. X)), Under M, X; are nd
MN(0,1) and under M5, X are ud N{p1); pe B s the unknown mean. Consider the
uniform noninformative prior m(p) = 1 for g Here myix) and ma(x) are finite for all
x for a sample of size one or more and therefore, by definition, an imaginary mimnimal
training sample x 1s of size 1 with Jl.i'a.{Jr]’l={1|.-'1.--"ﬂ}1:_"'J 2 and ma(x)=1 Thus x3 =10
maximizes my(x), and {3) gves e =o/e) = lu"rzrz The alternative way of determining
¢ desenbed in (5) above also gives the same answer.

There are, however, examples where both the above options of detemmining the
constant ¢ fail.
Example 2 ( Testing normal mean with variance wmbnown). Let X =X, ... X))
M2 X1,.... X, are iid N(0.07),

My Xy,.... X, are iid N(je a3).
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Consider the nonmformative priors 7y(ey )= /oy and ma(jeo2) = 1/g2. Here, an mmag-
mnary mimmal sample s of size 2 and for such a sample (x, y),
1 1

milx, _\‘::I -— m and H’!z{__T, _l‘::| =

. &
2x— ¥ )

Thus supm(x, v) =20 and the above methods do not apply.

We present below a version of the above method that works more generally. Consider
first the particular case of Example 1. Let ¥ be the observed mean. The observed Fisher
information (per unit observation) here is /= 1. Consider a (data dependent) uniform
prior for g over TF &/, Le, over (T— k&, T+ k) for a suitable constant k. Such data
dependent priors are in the spirit of pammetric empincal Bayesian inference where
some hyperparameters in the last layer of a hierarchical prior are estimated from data,
see, for example, Morns (1983). It is known that the estimates obtained in this way
are close to the proper Bayes estimates but the posterior uncertainty in these estimates
15 neglected o the empincal Bayes analysis. It appears that i many cases the new
data dependent priors can be thought of as approximations to proper priors. See in
this connection the discussion of intrinsic priors i Secton 2.5 and also the concluding
section.

The Bayes factor corresponding to the data dependent uniform prior over (¥ —
k. ¥+ k) mn Example 1 tums out to be { /25 @(kyn) — @ —k0)]B2 where Bay
15 the Bayes factor with the uniform noninformative poor for p and & s the cdf of
N(0,1). Thus using such a data dependent proper uniform prior corresponds o having
cafey =12 k) — @(—k/n)). In other words, the Spicgelhalter-Smith method
of choosing ca/cy s equivalent to considering a uniform prior over an interval of the
form ¥ F & for suitable k.

Consider now the general case. Let #; be the MLE of #; and §, =(— log fi(x|6,)/
E'H,-,.;:"H,-,u}ia be the observed Fisher information matrix under M;. Based on the reeiprocal
of this, choose an ellipsoid around the MLE f); that contains #; with { approximate)
probability (1 — ) for some suitably chosen small o, 0 < 2 < 1 (eg., a=0.05). If the
noninformative prior m; 15 (improper) umform, choose a data dependent prior =f(#;)
that is uniform over \,ﬁ times the region enclosed by this ellipsoid around @, where
m 15 the size of a minimal sample. Under regularity conditions filnz{[i‘,-— ;) is AN(o.1,,,)
where [, is the identity matrix of order p. So, the ellipsoid around #; that contains
with approximate probability (1 — 2) is

100, — ) (8 —6) < 1550
)

where . is the upper z-point of y* distribution with p; degrees of freedom. Thus

we take m(#;) to be uniform over the region
{HJ': {_ﬂj = ﬂj’}rfin{_ﬂi - ﬂJj = Exi 2} .
mor

If the nonmformative prior m; is not uniform, =7 15 taken to be 7; truncated on the
above region. We now use these data dependent priors =7(f#) and z3(#:) for models
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M and My to calculate the Bayes factor which we call DUBF (BF based on data

L)

dependent uniform prior). Note that each =7 1s diffuse but “not in conflict with data

sIince T

priors for other adjustments of the Bayes factors proposed by Berger and Pericchi

is centered around £, In Section 2.5 we shall exhibit similar data dependent

{1996a) and O"'Hagan (1995). They can be thought of as some sort of approximations
to proper priors (sce Scction 2.5).

In the nested case when it is reasonable to consider the same noninformative prior
for the “shared” part of the parameter (such as in the case with location-scale family
like Example 2), we propose another way to choose the data dependent prior. Sup-
pose that we can write 2 = (8,) where g 15 the extra parameter that 1s specified
under M, the shared parameter #; has the same interpretation under both the mod-
els, and the same noninformative prior 15 considered for & under these models. Let
mal B ) =m0 )yl @). We propose the following. Use m(#) ) itself for #, in both
the models. For g (conditioned on #) choose a data dependent prior concentrated on
the region enclosed by the ellipsoid centered at the MLE of y given # as deseribed
in the preceding paragraph.

Example 2 (continued ). Formodel My, pi =1, &= /(1/n) 3 x5, f.,, =2n..-'r:T’:I and )
15 taken as the prior mi(e ) = 1/oy truncated on the interval {max{g; — }':2 ad 00 &+
§Z,001 ) where z, 5 is the upper a/2-point of N(0.1).
- = & T = e ks,
For My, pa=2, fi=x, da=+/(1/n)} (x; =X, _:;.={n_-rr_:}(' ‘:) and m% is
o2
mal oo )= 1/ truncated on the region
b

27

1.

Py
(R

{(ro2)e R x s (p— i)’ + 2oa — 62)° < Iy

| —

The other option suggests choosing 7i(a )= /oy, mi{w o2 )= (172 )23 1|a: ) where
m3(pe2) is uniform over the interval ¥ F z,002/v2; here fi=%. [, =n/o3 and m=2.
The resulting DUBF (BF with priors #} and m3) is given by

! togevi) - o—kvany 2 (14 -2
— [P kvn) — B —km) ]y — S ;
2k Vr n—1
where t=\/nijs is the r-statistic and s> =% (x; —£)*/(n — 1). Thus, DUBF is a
function of ¢ only and goes to oo as [f| goes W oo

Calculations, with several data sets, of 585BF or DUBF and other nonsubjective
Baves factors descnbed m o the following sections for Examples 1 and 2 indicate that
these BFs are close to each other and they tend to cluster away from the likelihood
ratio or the BF based on noninformative priors. All these Bayes factors depend on data
dependent priors but they seem to depend on data in apparently different ways. So it
is somewhat surprising that they should be close. We do not have any proof of this,
nor do we know 1f this phenomenon holds for non-normal examples also.
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2.3, The intrinsic Bayes factor

Another solution to the problem with improper priors is to use part of the data as
a fraining sample. The idea is to use the taining sample to obtain proper posterior
distributions for the parameters which can then be used as priors to compute a Bayes
factor with the remainder of the data.

Let xy.xa,...,x, constitute the whole sample. For a subsample XXX, (1 =
< fi<--- < fy = n), the posterior density of #; given x;.....x; under M; is
given by
_IFJ{TH weeen Xy Iﬂ: }RI{ HJ }

mlxp o X,)

wi(Bilxy ... ) =

_ _ﬁ{-r_.l] ae s :-T_.l'n.iﬂi'inj{ﬂi }
"r _llrjl"[-t.l] Fi 7-T_,l'n.| ﬂi}'ﬁi{ ﬂj} d ﬂj 1

Berger and Pericchi (1996a) use training sample of minimal size, leaving most part

i=12 (7}

of the data for model companson. Let m be the minimum sample size such that
rz,-{ﬂ,-l.t_,-,, coonXi, ) 1= 1,2, are proper or equivalently, m{x; ... x ) =12, are fimte.
Let x;.....x;, be such a minimal traming sample. The Bayes factor with the remain-
der of the data using the above w08 |x; . ... x; ) in (7) as prors (conditional BF) is
given by

B oy i JUalrr, a8 ) o051, 2| 82) Jma( B - .. 2z, ) By

o JUAG x| Y Filxg s X 0 )R s . xp, ) By

=B_:|MIU".””'TT"‘“'}. (8)
malx;,....x;,)

It is to be noted that the arbitrary constant multiplier ¢a /ey of By is cancelled by that
(eifea of my(x;.....x; )/malx;.....x; ) so that the indeterminacy of the Bayes factor
is removed in (8). However, this conditional BF in (8) depends on the choice of the
training sample x;,.....x;,. Berger and Perechi (1996a) suggest considernng all possible
training samples and taking average of the () ) conditional BFs Byy(f.....j.)"s to
obtain what is called the mirinsic Bayes factor (1BF). For example, taking an arithmetic
average leads to

1 my(X.0x;)

AlIBF:| =821 — 9
21 _”(;IljlZfﬂ!{-t,u],---,-t,(‘.} (9)
while the geometric average gives
|{“_}
mix; .. ..x ) -
GIBF:; = B4, (]‘[ '{"—’) . (10)
ma(xj .. ... X}

the sum and product in (9) and (10) being taken over the { | ) possible trainng samples
XjsewesXj, With 1 £ /) < --- < ju S 0.

Berger and Pericchi (1996a) also suggest using trimmed averages or the median
{ complete trimming) of the conditional BFs when taking an average of all the condi-
tional BFs does not seem reasonable (e.g., when the conditional BFs vary much). AIBF
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and GIBF have good properties but are affected by outhiers, If the sample swe 15 very
small, using a part of the sample as a training sample may be impractical and Berger
and Pericchi (1996a) recommend using expected mirimsic Bayes factors that replace
the averages in (9) and (10) by their expectations, evaluated at the MLE under M.
The AIBF is justified by the possibility of its correspondence to actual Bayes factors
with respect W intansic”™ proper priors at least asymptotically.

The idea of a traming sample has also been used by many others including Lempers
{1971, Atkinson (1978), Geisser and Eddy (1979), Spiegelhalier and Smuth (1982),
San Martini and Spezeaferi (1984) and Gelfand et al. (1992).

2.4, The fractional Bayes factor

O’Hagan (1995) proposes a solution using a fractional part of the full hikelihood in
place of using training samples and averaging over them. The resulting “partial™ Bayes
factor, called the fractional Bayes factor (FBF) s given by

_ malxb)
FBF1 _f—ﬂl{-l',hf (11}

where b 15 a fraction and
o ..r IFJ{IH}J]RJ{[}J}dﬂJ
J L] 0)) m0,) do;

mix.b) (12}
To make the FBF comparable with the 1BF we take b=m/n where m 15 the size of a
minimal traiming sample as defined in the case of IBF or SSBF. ('Hagan recommends
other choices of b also (viz. b=/ or logn/n) but we ignore these in the present
paper.

2.5 Data dependent priors

We now introduce a data dependent prior =7 which is casy to “calibrate™ with
respect o the nonimformatnve prior m;. Similar but more general priors have also been
introduced by Pérez (1998) and studied i detail for lincar models and mixtures.

Let w8 Feret il | be the posterior given the training sample Ap iy &
< --- <= fy = n under model M; as given in (7). We start with m(®x;.....x;.) as
prior that differs from the noninformative prior m(#;) by m observations (in the same
sense we calibmte conjugate priors). Consider the arithmetic average of these priors

i 1 .
Y {'ﬂ,}l — T Z HJ’{HJ'l-T_,I'p ses 7-T_,l'n.::| (=12} (13}

|:.l|:| ) 5
drd AL

which is more diffuse than each m(#x; ... ..x; ) and so presumably differs from the

noninformative priors by “no more than m observations™. If we construet a Bayes factor
using 77 in place of m, we get a new “calibrated™ BF.
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We now define another data dependent prior by taking the geometnie mean
o)
g 05) = 11 Bl ox,) , I=12% (14)

(5 PR o B

By the same analogy as before this new nf, 15 also calibrated and is “no more than m

observations away from ;7. Unfortunately, =7 1s not a probability but let us ignore

E_ap.u
this for the time being.

If we calculate the BF using this data dependent prior we will be using the same
data more than once. An adjustment 15 called for. Let us consider iid observations.
Since number of training samples {x;.....x; } that include a particular observation x;
15 {:I:'I ), noting that { ) )y=m/n, an adjusted likelihood is

a—1
m— |

| —ajn
i=l

Let Bay yp be the adjusted Bayes factor based on this adjusted likelihood and the data

dependent priors 77, It tums out that

Result 1. The adjusted BF B2y, and GIBFz; are identical.
To see this note that

U;{_—TI R 7-TJ|I'91'}_rlr = RJ{HJ'}

R;:a m{ﬂ;} RE-+ S
’ {H_.l] < S m:‘{x_.ﬁ SRR . ) }II{ ﬂ'}
Therefore
JLAGxa)l ™" R, (82) 6,
21 gm =

.Ir [Ailxrs..xa)] A nT_ﬂm'[ﬂl ) dé

M

milx X ) (=)
| e o P

=8 . —

21 (.II.|{H{_|I.“- ]}!3{_1'}-”_ ,TM})

=0lBF4,.

Thus the GIBF, and by analogy the other 1BFs also “do not differ from the Bayes
factor based on noninformative priors by more than m observations™.
One way of adjusting for the fact that =7, is not a probability is to first take a
geometne mean
112)
_ H _ i 0 WX .. -7-’(;'.1-![}1'}
e
and then normalize to onc. Let us denote this adjusted data dependent prior by w7, .
MNote that

2t (0= LN 2(8)
4, "r- Lf;{-l'w;]lrl JIRJ{.[}J_ ::I dﬂj
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Suppose we use 7, and the same adjusted likelihood as before to calculate the

Bayes factor which we call By y. Then we have the following,
Result 2. FBF,; and the adjusted BF B, are identical

If we want to use the arthmetic mean data dependent prior =7 defined in (13) to

calculate the BF, an adjustment of the likelihood is to be made. An adjusted likelihood
in this case 15

Z _ﬁ'{_—rls---v-r.ugﬂi} . (]
R _,I"',-[.t'_..-l,. "!'T_.l:‘.iﬂj'} Lt
where

o TG x) Ol
sl (.-:: :I m; (0;) Zn e R,{{},-i.‘f_..-l ss e Xfy)

Let By g be the adjusted BF based on this adjusted hkelihood and the data depen-
dent priors mf(#;). Then we have

I: ; :I_ I Z.u‘. f:----r:_.u',l.l."lmz'[-‘f_,.'l, censXp )

T
(”'J Z,‘, e LX)
=By B (say). s

It 15 to be noted that unlike AIBF, this adjusted BF based on data dependent prior
= 1s “multiple model coherent™ (see Berger and Pericchi, 1996a, Section 5) and thus
directly vields “pyeudo™ posterior probabilities of the considered models. This 1s also
true for the other adjusted or unadjusted BFs based on data dependent priors.

Example 1 (continued ). Here B2 =/ 2a/nexp((n/2 i) and the conditional BFs are
given by B2 (x;)=Ba(1/v2n)exp(—x7/2). The adjusted BF with data dependent prior
(13} 15

H
S V2mexp(x?/2)

which 1 the harmonic mean of the condittonal BFs while the AIBF and GIBF arc
given by the anthmetic and geometric means respectively.

E_’I.um =B_3‘I

Berger and Pericchi (1996a) justify their Bayes factors by the possibility of the
existence of “intrinsic” priors. Their arguments may work with 84 ., replacing their
correction factor ( the multiplier of B2y 1 (9)) by By> of (15} above. As suggested by
Berger and Pericchi, a solution to the intrinsic prior determming equations correspond-
ing to Bay . would be given by

T8 =m(f). m(0)=m(f)B*(8).
!

where @) are the intrinsic priors and B (#) is the limit of B2 under Ma as n — oo
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Example 2 (continwed ). Here m=2, my(x).x2) and ma(x,,x2 ) are as given o (6). Thus
Elxy — xaf 72
nE(x; +x3) B mmla3 + )
and thus the ntnnsic priors corresponding to By g,y are
1

1 1. .1 . .
zﬂ{r:,}:n—I, i ug}:;ﬁj{plﬂg}:ﬂ—zﬁ, auchy (0, @2 ) prior for g
(16)

Note that mi(p|e:) here is a constant multiple of Jeffreys’s Cauchy (0,52 ) choice of

mal g ).

B (o) =

The intnnsic priors suggested by Berger and Pericchi corresponding to the AIBF (9)
turns out to be
1

o8|

1
(o ) = T o2) = —m(p|az)
a2

. . 1 3, 3, B3 (iffa Y
ath il = pexpl—ut fas) v Lkl —
with m(ple2) T/ T a }r'ﬂz};-':"_-:p fir+13r+1/2)

(17)

It is to be noted that [~ mh(plea)dp= 1.
Berger and Pericchi (1996a) consider the noninformative priors 7= 1/m; and
Tl 2 )=1/a3 for computational simplicity and obtain
1 1 —exp(—id/a3)

WL - e
nﬂuwﬂ—gjr@ue.aﬂ—w N T I (18)

where mhinlez) 18 a proper prior close to the Cauchy (0,5 ) prior for p. If we
use these nominformative priors, the mtrinsic pnors corresponding to By, are obtained
as
I::’:{m = l, r-:’_-l,{_u, 7 )= iﬂi{p|ﬂg}= i ﬁ, Cauchy (0, ) prior for g
7 T3 Ty 2
(19)

3. Examples

In this section we present a few examples illustrating points on various aspects of
the nonsubjective BFs described in Section 2.

Example 3 ( Nonregular case). Berger (1997) gave the following example of nonreg-
ular case where FBF does not perform well. Let the observations xy,....x, be id with
a common density f{x. N)=¢ %" x = ). Consider the problem of comparing the
models Mi: 0=0 and Ma: 0 = 0 with the prior 7(i")=1 on ! = 0. Then FBF (with
fraction b) is given by

[0 d)  premo — 1
L0 SR b{L it _.:.’
FBF_ lr':.;rlhi_‘,‘“'fﬂd”_ c"”‘"xllj_]_ 2 {zﬂ}
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where xy,=min{x....,x,). Cleady, FBF = 1 for any 0 < b = 1 and any data. The
AIBF, on the other hand, performs well for this nonregular example.

We now reexamine this nonregular example. As mentioned above we take b= 1/n,
size of a minimal training sample being 1. Noting that x;q,, being a sufficient statistic,
contains too much information about (0, we use a fractional part (with b= 1/{n — 1))
of the joint likelihood based on the observations other than xy, in stead of using a
fractional part (with b =1/n) of the joint likelihood based on all the n observations to
find an FBF. Thus a modified version of the FBF is obined as

L.-'l-i'lljl =, ]

Xy 15 the ith order statistic in (xy,...,x,). Probability of FBF® being less than 1 and
2 under M) 15 then approximately equal to 0.60 and 0.83, respectively for moderate n
such as n = 10. Also under Ma, both FBF and FBF® tend to oo as n — oo

If one 15 motvated to use as hittle of the data as necessary for a traiming sample
leaving the rest for model selection, one would use a conditional Bayes factor (CBF)
conditioned on xy,,, the maximum of the observations, This CBF is given by

CBF*= ——. (22)

It can be shown that as n — oo, CBF® tends to 0 under M, and to oo under M.

If x,, 15 an outlier one can use a few of the extreme observations such as ¥, Y,—1)
and x;,—2y and vse (a fractional part of) the joint likelihood of these observations to
obtain a “partial” Bayes factor.

Example 4. While the above nonregular example of Berger (1997) illustrates that FBF
in its original form behaves badly but IBF performs well, O'Hagan {1995) uses “Dar-
win's Data”, a set of data with outliers (see, e.g, Box and Tiao, 1962) m order to
show that FBF performs better than the AIBF with respect o sensitivity to outhiers.
We refer to O Hagan (1995, p. 114} for dewmils. However, as mentioned earlier in
Section 2.3, 0 such cases one could wse the median 1BF which would chminate the
sensitivity to outliers. For a suitable ransformation of the Darwin data, our problem is
the same as that given in Example 1. O"Hagan (1995) obtains the conditional Bayes
factors (CBFs) of M) to Ma using the reciprocal of the expression in (8) and caleulates
AIBF {of My to M) as anthmetic average of these CBFs which is not the same as the
reciprocal of the AIBF {of ML to M) recommended by Berger and Periechi (1996a).
The largest and smallest CBFs are reported as 48968 and 3.85 and the values of the
AIBF and FBF are 3364 and 3814, respectively, With the definitions of this paper,
the AIBF, Median 1BF and FBF (of M5 to M) are, respectively, 0.1511, 0.2054 and
0.2622; the SSBF or DUBF proposed in Section 2.2 is 0.2625.

We now examine (through examples) the effect of using traming samples that are
not minmmal.
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Example 1 (continwed ). Size of a minmmal traming sample here 1s 1; the corresponding
intrinsic prior for g is given by a M(0,2) density. If we use training samples of size 2
then the corresponding “intrinsic”™ prior would be a N(0, 1) distribution. This s more
peaked than the wvsual intrnsic prior.

Example 2 (continued ). Here minimal training samples consist of 2 observations and
the mtrinsie prnors are as g@ven m (17).
If we use training samples of size 3, the “intnnsic™ priors would be given by

i
mila )= —.
il 7

1 1 3 : < (3p*/2a35)
i el il e — e el M B
i 02) = mllulon) = o exp(-372) 3

e Tk )

where mh{g/e2) in (23) is a proper prior.

The only difference is in mh(p|e2) and one can check (simply by plotting) that
mh{ glaa) of {23) is more peaked than the nomalized mi( /e ) of (17).

If we use the noninformative prior ma( g, o2) = 1 /g3 as in Berger and Pericchi ( 1996a),
the mtrmsic priors for taining samples of size 2 are as given in (18) and the only
change with waimmg samples of size 3 15 in

V3 o= y 2 (32282 Y T(r + 3)I(r/2)
i plas) = —= expl—3p203) e 2 '
2(ple) = o= Z‘.‘} p(=34/20)— i)

which 1s a proper prior that i found (through plotting) to be more peaked than the

(24)

usual intrinsic proper prior T igla2) of (18).

We have seen through Examples 1 and 2 above that use of larger training samples
corresponds o Bayes factors with more peaked (mtrinsic) priors. We now give an
argument as to why it is expected to be so in the general nested case. Consider iid
observations and suppose that we are using raining samples of size v, Consider only
the case with AIBF. Intrinsic priors suggested by Berger and Pericchi (1996a) are

IE';{9|}=I{|{{}|1.I and Hi{ﬂ_:':l=ng{ﬂ_:}.ﬂ'[ﬂ_:]l, {25)
where

B(62) = Ey Ba(x1s....x;)

— pM: [’”.'.{.'f'?.“'?.'r’i.].'] ; (26)

o M Xp o)

Then, for any measurable fa-set A, one can show that

frz"z{ﬂg}dﬂ'_:= [rz_:{:!l.t.,. e Xp (X X ) dxy - - da (27)

4
Here ma(Alx).....x.) denotes the probability of 4 under the posterior distribution
wal ... 0%, ). Since the posterior mal-|x),....x.) s expected to be more peaked for
larger r, the comesponding mtrinsic prior satisfying (27) 1s also expected to be so.
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4. Remarks

This section contains some remarks summanzing major features of nonsubjective
Bayes factors. This is followed m the next section by a discussion of some controversial
issues relating to them.

1. The nonsubjective Bayes factors are obtained by relatvely small adjustments to
the Bayes factors based on data dependent priors. They tend to attach more penalty
to My than Bayes factors based on nonmfonmative priors but less than the Bayes
factors based on proper priors obtained by truncating a noninformative prior. The data
dependent priors try to reconcile being diffuse and not in conflict with data.

2. GIBF and FBF {and in a sense the other IBFs) are “no more than m observations
away” from the Bayes factors based on nomnformative priors,

3. In most examples these nonsubjective Bayes factors are close to each other. So
it 1 temptng to conclude that they mean something.

4. There are examples where these Bayes factors may differ a lot. But scrutiny shows
which are “nght”. Usually, there are obvious natural adjustments to the “wrong”™ ones
that bring them close to the “nght™ ones.

Above we have compared the different nonsubjective methods with respect to fixed
noninformative priors for the two models. Conclusions remain more or less the same
for other noninformative priors.

5. Discussion

The use of improper or data dependent priors as well as putting a posiive prior
probability on a sharp hypothesis has come in for crticism from several Bayesians.,
Moreover, there have been other nonsubjective Bayesian approaches to these problems
which are different from the methods discussed ecarlier in the paper. These aspects
are briefly discussed in this section. To fix ideas and for smmplicity we will consider
Example 1 only.

S0 Improper priors

Various people, e.g., O Hagan (1995) and Bernardo (1999) have pointed out that
even if one has a proper prior given Ms, the Bayes factor is highly non-robust with
respect o the choice of prior. Non-robustness plays the same role as indeterminacy. For
cxample, let BFY, and BFYY™ denote the Bayes factors comesponding to the Lebesgue

measure cdy and the normal prior N(0,7%), respectively. Then

— 1
BFY = v2men='Pexp [Enj—’] .

1 2
BFS™ =(2 + L)™' 07! 2 exp [E _r:: ”‘fz]
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which clearly indicates smmilar behaviour of these Bayes factors and the similar roles of
v2me and (T2 + 1/n)~"2. The situation is very different from the posterior mobustness
that one observes for estimation problems.

Both Bemardo (1999) and Lindley, in his discussion of Bemardo (1999), have noted
the effect of ©° on the Bayes factor. Bernardo argues that this makes the Bayes Factor
an inappropriate tool. Lindley feels this has to do with many different contexts, but
remains positive about using a Bayes Factor. His ideas about choosing ° are different
from the ideas in the next section but we sce some similarities.

5.2, Data dependent priors and scaling problem

We only illustrate with our version of the Spiegelhalter—Smith choice and compare
with uniform or normal priors.

Suppose a client brings to us the testing problem of Example 1 along with the
data £+ 0 and the mformation that the sample see 15 7. It may be argued that the
client has an intuitive feeling that there 1s some evidence against M but does not know
if the evidence 15 strong enough. If we think m terms of the client’s subconscious prior,
this would correspond to  being in the support of the prior given M. If this were not
so, the client wouldn't feel there 15 some evidence.

If we further assume that the client’s prior is, at least approximately, unifonn, then

m iy =4k I some nterval J,

=0

£l

outside,

where & 15 a constant. Typically, ./ would contan both zero and © and would not
be a big interval. For example, there would be little prior expectation for data that
deviates a lot from zero, like £ =10, The prior we have in mind 15 stmular to Jeffreys’s
recommendation of N(0,7°) where ©° and the population variance (of X) o° =1 are
of the same order of magnitude.

A data dependent prior (mss) Is an approximation to this prior in the sense that
BFs; with client’s prior and BFs; with mge will not differ much for the kind of dara
considered above. The approximation would be very poor if ¥ 15 actually 10 but then
a client will not come to a statistician. This 1s a tentative beliel based on our own
experience; we have never seen such large deviations in the g-scale.

The scale of the prior i1s very important. According to classical ({requentist) statisti-
cians, whether ¥ is large or not should be measured in the &/ /0 seale, e, by looking
at y/ni/e. For a Bayesian this would amount to taking a prior of a comparable scale
and with support containing ©. Of course the mftrence based on Bayes factors with
such priors would be very different from Bayes factors with priors having scales of the
same order of magnitude as o

15 there a preferred scale for the prior under M5 The answer would seem to depend
on how the sample size is chosen. If the sample size 1s merely a reflection of the
available resources, it contams no information about the client’s prior beliel In this
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case a scale of the order of @ secems appropriate to us. This paper 1 based on such a
tacit assumpbon.

However, the sample stee may be chosen more judiciously to reflect the client’s
belief about what kind of deviations of ¥ or p from M, cannot be neglected. His
sample size may then reflect his concem at the design stage that for this kind of
alternative there 15 a reasonably high probability of choosing MG, Indirectly, » now
gives a lot of nformation on utlity and prior. We feel priors with a scale of o/ /n 1s
more appropriate here than the mtnnsic or Jeffreys's proper priors or the data dependent
priors of Section 2.5, Which of the two scales is appropriate can only be detenmined
by the client.

Many other choices of scale may be appropnate, depending on the context and
available information.

3.3 Alternative approaches

Some people, eg., Kadane (in discussion of Berger and Sellke, 1987) have argued
in favour of an older procedure. One calculates a posteror credibility interval for p
under Ms which 15 known to be robust with respeet to choice of prior = gven M.
Then M is rejected if and only if the mterval does not contam the value stipulated by
My, namely, zero. If m s the Lebesgue measure, this reduces to the usual frequentist
test. We would refer to the reply of Berger and Sellke (1987) as to why this may not
always be appropriate.

Altemative approaches have been proposed by Goutis and Robert {1998 ) and Bemardo
{ 1999, The method of Goutis and Robert { 1998) 15, however, not fully automatic. We
discuss in detail Bemardo's (1999} paper. Somewhat m the spirit of the method de-
scibed 1o the previous paragraph, Bernardo (1999) assumes Mh 1s true and chooses
m as the reference prior, which happens to be the Lebesgue measure here. He then
considers a decision problem with two decisions—aceept My or accept M, and intro-
duces an mteresting utility function based on the Kullback—Leibler numbers. This is a
better utility or loss function than 0-1 loss but does not help determine the seale in the
sense of Section 5.2, for one can consider the Kullback—Leibler distance between dis-
tributions of a single observation or » observations. Bernardo (1999 ) makes the second
choice. It seems he s guided by “umversal consensus™ on Example 1 that a deviation
of © of more than 2a/yn or 35/yn should lead 1o rejection of M. No such consensus
exists even among classical (frequentist) statisticians, leading to an asymptotic theory
based on a 1/y/k scale due to Pitman, Le Cam and others and a different asymptotic
theory due to Bahadur and others, where the parameter space 15 kept fixed and one
studies such things as the exponential rate at which error of first kind tends to zero
{see Serflmg, 1980, for references ). Nor does such a consensus exist among Bayesians,
For example, Jeffreys (1961) takes a point of view that leads to tests that are mdically
different from what Bernardo (1999) calls a consensus. This was the motvation of
most of the work of Berger and Pencchi (1996a,b).
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5.4, Sharp hypothesis

What happens if one replaces a sharp hypothesis M by an interval J: — 8 < p = 4,
where 4 is a small number? There is some discussion in Berger and Sellke (1987).

If we agam take the view (as in Sections 5.1 and 5.2) that there is no mfonmmation in
n, and ¥ 15 in the support of @ and indicates some deviation from M, then ¥ 15 usually
outside J. The wsual asymptotics for the 1BFs and other related methods 1s now more
difficult to justify because for ¥ outside J, the likelihood under My integrated over J
is not well approximated by the likelihood at p=10. The asymptotics remain valid if
Jo1s very small and n s large but not very large so that 6 15 of I/n). To sce this let
mry (x) be the marginal density of X = (X, 4., . X, ) with respeet to the uniform prior
over J and my(x) be the marginal density under sharp M, (p=10). Then we have

i

g

mry(x) 1 H 4 = |
ol S A T ey d
mi(x) 23 j;iq_xp[ 2;1 +rur}:J it

r r
=— exp | —=— + xf| dr.
2an _<1I,,LHP [ 2n iz T]

For moderate values of £ this integral will be nearly one if dn s sufficientdy small,
e, if 4 is ofl/n).

A smmilar recommendation by Berger and Delampady (1987 that the replacement
{of the sharp hypothesis by an interval J) may be made when dn is sufficiently
small {say < 1/4) seems to be valid if /a% is moderate. Then the ratio above can be
writlen as

of Il ":II 5
m|{.1'} 1 /' W £ .

T 2dy/m Xp (= )| de.
mi(x)  2d/n, _{1'“_,;pr 3 + (+/nx )| df

3.5 A comment on methodology

Why not approach the problem of choosing a nonsubjective prior directly as Jeffreys
does in his book for Examples 1 and 27 It is not easy to analyze other examples m this
way. Morcover, even in Example 2 the Cauchy prior seems to be much more popular
than the arguments of Jeffreys can justify. We have suggested if in a problem of this
kind there 1s a prior which gives rise to a Bayes factor that is well approximated by
an appealing data analytic hewuristic procedure, then each of the two—the prior and the
method—lends support to the other. In particular, we have shown that the Cauchy prior
is obtainable in Example 2 in this way. These considerations are somewhat technical
but how else can one see that the nommal pror in Example 2, though so similar to the
Cauchy pror, s guite inappropriate? It follows from Jeffreys's argument or directly
that the Bayes factor with normal prior for g and say the noninformative prior for o
does not go to mnfinity even 1f ¥ tends to infinity.
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