A NOTE ON DETERMINATION OF SAMPLE SIZE
By M. N. MURTHY

Indian Statistical Institufe

SUMMARY. In this note a procedure of dotormining tho samplo size is proposed, where
the ides ia to fix the samplo 8izo in such @ way that the probability () of the length (L) of the confAdenco
interval (associntod with a specifiod s fcient) for the p (#) being losa than a given
value (k4) ie 8 pre-apecified quantity.

Let y be normally distributed with mean ;. and standard deviation &. Suppose
a sample of N units is drawn with oqual probability. Then tho moean 7 based on the
N obsorvations is normally distributed with mean x and standard error of/V'N. Let
4% be an unbinsed estimator of o2 based on & sub-samplo of # units (or on 7 random

sub-groups of g: unita),
R =
n—lim '

It is well known that the statistic

1<

=

£
8|V N
ig distributed as Student's ¢ with (n—1) degrees of freedom.

Using the tabulated values of the t-distribution, we can set up confidence
interval for z at any spocified level of confidence (1—a). That is, if ¢, is the a9%

point of ¢, then
Ly_ﬁ"l
P /\/1 <, =1—a. .. (1)

The length L of the confidence interval is given by
L = 2t,8/VN. e (2
Suppose the sample gize is to be so fixed that
PL < ky) = 1—8, . ®

where k is a pre-specified quantity and (1—p) may be taken as the second level of
confidence, the first lovel of confidence being (1—a) in (1). It may be noted that
P(L < ky) i8 a function of the sample size and increases with increase in sample size.

For finding the sample size which could satisfy both the levels of confidence
given in (1) and (3), we may proceed as follows.

PL < kp) =1-4,
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that is, P(2t,6/VN < kp) = 1-8,
. —1)a _ K N(n—1
that is, P I:(l' }l,), <% (:‘2_) :l =1-4, @

where ¢ is the population coefficient of variation (o/ux) and (n—1)s¥/o? is a x® with (n—1)
degrees of freedom. Reducing (4) to an incomplote I-function which is alroady tabu-
lated, we get

P(L < kp) = I(u, p) . (B)
1 u JipF1)
where I(u, p) = Mp+1) g‘ e~* zvdr,
B Ny@=1)

p=(n—1)/2 and x = @ dyat

For given values of (1—a), (1—A), ¢, n, and k& we can first get the value of u
such that
u,p) =14

and then get the required sample size

N=o® 432

RVEESTE

The veual procedure of determining the sample size consisted in finding the

value of N such that E(L) is equal to & spocified valuo ku. The proposed procedure

given in this note is a generalization of the usual procedure in the s:nse that it
ensures a pre-specified value for the probability that L is less than kp.

(8

Paper received : February, 1962.
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ON SPECTRAL ANALYSIS WITH MISSING OBSERVATIONS
AND AMPLITUDE MODULATION*

By EMANUEL PARZEN
Stanford University

SUMMARY. The notion of an nsymptotically stationary time sorice and ijts upentml nnnlym
was considered by the author (Parzen, 1861b). An imp. ple of an v
time serica is an amplitude modulated ststionary Lime sorics. In this note, tho problom of speotrol analysis
of stationary normal time eerice with missing obsorvations, recently treated by Jonea (1062), is treatod as
& apaoial onse of the problsm of epectral analysis of an amplitude modulated stationary normal time serics.

1. IRTRODUOTION

Let {X(¢), t=1,2,...} be a diacrete parameter time series with zero means
and finite second moments. It is eaid to be weakly (see Doob, 1963) or covariance
(see Parzen, 1962) slationary if there exists a function, denoted R(v) and calied the
covariance funotion of the time series, such that for v = 0, 1,2, ...,

Riv) = E[X(t) X{t-+v)] o (L)
independently of ¢ =1,2,.... It is said to be asymptotically (weakly) atationary
if instead of (1.1) it holds that

Ry) = %z ELX(t) X(t4-v)). o (12)

If either (1.1) or (1.2) hold, the time series i said to be ergodic if the sample covariance
funotion
Ryp(v) = E X(2) X(t4v) . (1.3)
is, for v =0, 1, ..., & consistent in quadratic mean estimate of R(v). In order for this
to be the case it is necessary and sufficient that for each v
lim var[Ry(v)] = 0. o (L4)
To®
One important way in which asymptotically stationary time series arise is
by amplitude modulaling a (covariance) stationary process.

Let{¥(t), t = 1, 2, ...} be a stationary time series with zero means and covari-
ance function

Ry(v) = E[Y(t) ¥(t+v)). .. (LB)

*Propared under Contraot Nonr-225 (21), (NR-042-993), for Office of Naval Research; reproduction
in whole or in part is pormitted for any purpose of the United Statos Government,
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Let {g(t), t = 1, 2, ...} be & non-random bounded funotion possessing a genera-
lized harmonio nnalysis in the senso that for » =0, 1, ...

. 1 T=*
Rfoy= lim o Z g0 glt+v) . (18)
exists. The time series
X())=g(t) Y1) e (LT)

may be called the original time series Y(e) amplitude modulated by the function g(s).

Since
E[X(t) X{t+v)] = g(t) g(¢-+v) By(v) o (L8)

it is clear that while X(¢) is not covariance stationary, it is asymptotically stationary
with covariance function Ry(v) given by

Ry(v) = Ry(v) Ryp(v). N K:))

It is shown by the author (Parzon, 1961b) that if Y(s) is an ergodic normal

process, then X( ) is ergodio.  Consoquently, given observations {X(!), t=1,2,..., T}a

consistent (in quadratic mean) estimate of Rg(v) is given by the sample covariance

function
T
Relv) = L £ Xty X(t-+v). e (L10)
T =1
A consistent estimate of Ry(v) is then available at all lags » for which R(v) # 0, namely
Ry(v) = Ry(v)/R0). o (LID)
From these facts we obtain immediately the following theorem.
Theorem 1A : Let (Y(i), t=1,2, ...} be stationary and normal with zero

means and covariance function Ry(v) satisfying

. 1 Z
lim —. 3 Riv) = e (@
TR TR (v) = 0, 1.12)
80 that Y(s) ts ergodic.

Suppose that the time series Y( o) is not directly observed. Rather ome observes
a time series X( o) which is an amplitude modulated version of Y(+) :

X(t)y=g(t) Y(t), ¢t=1,2,..., o (1L13)
where g(s) is @ non-random function p ing a covariance function R(v) defined
by (1.6). If

Rv) £0, v=0,1,..., v (L14)

a consistont in quadratic mean estimate of the covariance function Ry(v) of the
unobserved lime series Y(e) 49 given by (1.11).
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Assume next that the series Y(s) possesses a speotral density funotion fy{w)
80 that

Ry(v) =__|: 008 ve fy(w) do. ... (L.15)

Given consistent estimates ff,.(v) of Ry(v), one may cobnstruct consistent estimates
fy(u) of fy(w) in & multitude of ways by suitably choosing the weights k{v) in the
formula

Fle) = 2L” Ry(0) +11T i/:l 008 ve kp(v) Ry(o); . (118)

proofs of this assertion are essentially given in Parzen (1961a) and Parthasarathy (1960).
We do not discuss this assertion further here since we will actually obtain a formula
for the asymptotio variance of the estimate fy(w).

2. MiSSING OBSERVATIONS

There exist time series {¥(t), £ = 1, 2, ...}, defined at equally spaced intervals
of time, which are systematically unobservable. For example, in radar studies of
the surface of the moon, one observes a time series Y() which represents the echo
(reflection from the moon) of a radar signal transmitted to the moon. In order to
receive the echo, one must systematicelly cease transmission during the intervals in
which one is receiving the echo. Another example of missing observations is the case
of a time series which can be observed only during certain hours of the day.

A time series with missing observations seems to be beet regarded as an
amplitude modulated version of the original time series :

X(t) =gt) Y1), t=1,2,.., e (2.1)

where (i) Y(e ) is the time series under study, assumed to be defined at successive equally
spaced points of time, (ii) g(¢) is defined by
g(t) = 0 if Y(¢) is missing at time ¢,
=1 if ¥(¢) is observed at time ¢, o (2.2)
aod (jii) X(e) represents the actually observed values of ¥(s), with 0 inserted in the
series whenever the value of Y(¢) is missing.

A case of partioular interest is the oase of systematioally missing observations.
Suppose that the time series Y(¢) is periodically observed for « time points, then not
observed for 4 time points; then g{« ) is & periodio function with period «+f, and

=1 if t=1,2 ..,
=0 if t=atl, .., ath v (29)
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It may be shown that a periodic function g{ «) possesses a goneralized harmonic
analysis. Ifthe period of g(s) is O {for g(«) dofined by (2.3), ¢=a+ f), thon its covariance
function Ry} has period 6 and is given by

Bv) = }7 & o gtt+0). o (24)

tm)

Thus for g(«) defined by (2.3), the covariance function Rys) has period a+f.
To determino its valuey for 0 < v  a-+f—1, we distinguish two onses : (i) a < #
and (ii) @ > f.

TABLE 1. VALUES OF Ry (v)

caso (i) :a C B ruso (ii):a > B

a—v a—v
m.v-o,---.ﬂ. ‘ﬁ.v-o.--uﬂ
Obv=a, ..., B :—;:-"=p,...,a
:%: yoe=B, ..., atf :—:_:. vea, ., b

Only in the case « > £ (one observes more values than one misses) does R,(v)
nover vanish. Therefure in order to be able to eatimate Ry(v) we must assume that
a>p.

3. VARIANUE OF SPEOTRAL ESTIMATES

In this section we find the variance of the estimated spectral donsity function
fy(w) when it is formed from observations of an amplitude modulated time series
X(t) satisfying the assumptions of Theorem 1A. We first note that fy(m). defined by
(1.18), oan be written

Jrto) = 5 £ ato) o) Yeo) Y0
cos w(s—t) kp(a—t) {Ry(s—1)}~ . (8.1)

In words, fy(w) is & quadratio form in the time series Y(s).

Let a(s, ) be a symmetric funotion of two variables, and let
T
Jrlals, )] = :21 as, t) Y(s) Y(t) e (3.2)
Bl
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denote a quadratic form in the stationary normally distributed random variables
Y(+) with covariance function Ry(«) and speotral density function fy(s). It may be
verified that

var Uzlale, 01 =, £ ale, 9 ofu, v) (Ry(e—u) Rylt—v)+Ry(a—v) Rylt—u)}

&, =]
=2] T andfh f500)] 40y, 29[ .03
defining A(/\,./\,):éla(a,t) oxp [i(oA,+AQ)]. . (34)

The usual case considered in the theory of spectral analysis of stationary time
series is the case where

ale, t) = 2—"—17,00& w(a—t) kpla—1) . (35)
and kp(v) = k(Bgw) . (3.8)

for a suitable weighting function k{(v) and constants By satisfying
B;—0, TB;—o0 as T—wo; . (37)
for the exact conditions to be satisfied by the covariance averaging kernel k{v) (see

Parzen, 1957, p. 336). Define

Eefon o) = gop 3 oxp [ilawy +og)erlo—1). . (38)

By the argument employed in Parzen (1957, p. 342), one may show that for suitable
functions f(A;, A;) which are symmetrio in the sense that

f(=24, =2y = Sy, Ag)
it holds that

Jm 7By [T S0 Relhkon, At y(=di—on, —Ay—oJdhddy

floy, o) _I: ludu if o = o 0= 0,

= .. (3.9)
0 otherwise.
In partioulsr, (3.8) holds for & function f(ewy, &) of the form
Sloy, wy) = L £ exp [§(2,00,+v30)] Rvy, v3) .. (3.10)
P2 vy, U= — 0
where b | Ry, v5)| < co. e (8.11)
%1, vama — 0O
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A careful derivation of (3.8) would unduly lengthen the present paper. However,
let us sketch o proof. It suffices to show that (3.9) holds for
Sy, Ay) = exp [i(A,v,+A59,)] - (3.12)
for arbitrary integers vy and v;. Under (3.12), the double integral in (3.9) can be
written

T8y B Epla—t) ku—o) Jlo—u o) J(t—v-+0) oxBlilb0 -y —v0y)],

(3.13)
defining J(@) = I’ efad da = 2 %, . (3.14)
In (3.13) make the ohange of variables
z=8—u4 yYy=Ii—v, z=u—0v
so that 8 =z+u, t=y—2+u, v=u—2z
Then (3.13) becomes
(4n*)1By T J(z+49) J(y+vekr(2)r(z+2—y)
&HY. 2
T
axp [i{zm,-i—ym,-}—z(m‘——m,)}]x% 3 oxp liso,—agtar—a)l . (316)
o

As T tends to oo, (3.16) has the following limiting values : if w; = wg and w, = w,,
then it has the value

(4ﬂ‘)“ny2_mJ(=+v1) Jly+vs) oxp [i(zoy +ye,)] | Kuidu . (8.18)
and 0 otherwise. To conclude the proof of (3.9) we need only note that
(2myt Ew J(z+,) exp [ize;] = exp [—ivy,). o (317)
L

We next show how using (3.9) one may derive an expression for the variance
of the spectral density function of an amplitude modulated normal time series. We
are then considering quadratic forms corresponding to

afe, t) = ﬁ, 008 w(a—1) kgle—1) s, 1), o (3.18)
defining ks, 1) = g(a) g(t) {R,(s—)} . . (3.19)

We oonsider only the important special case that g(¢) is a periodio function.
If g(t) has period 6, then it possesses the harmonic representation

) = i‘.'ﬂe, oxp (it A Ga . (3.20)
where A, = 2mn/8, N = 6/2 or (§—1)/2 according as 6 is even or odd, and
G, = ;_ § oxpl—ish]gls) for n=0, 1., £[0/2, .. (8.21)
#m]
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while e, = 1 for all n except that if 6 is even e«y = 1/2. It may be verified that R(v)

ia an even function of period 8 given by

R,v) = £~e,0,0_, exp[—ivA,].
Now P a0 = T eutnorpioAutid)) GG,
(Rie— = Eents oxp oA tA,)] W,

where, defining Wo= o f:l exp [—is A,)(R (o)),
(L)

Won =W, if m= —n,

=0 otherwise.
Consequently Mo)= % enty oxPlil0AntA) s

where H,, =12k e e Wiy Gjy Gpopy = ;‘3 g W, 6 Gy,
It should be noted that
Hyy=2% W64,
1
=1 % R (B
[ =1

=1.
We next write

Ay, Ay =%T % 008 ala—0)kela—t) Ma, ) exp [i(2h, +12y)]

1 N
=T M,E_n em €q Hopn 3‘1 cos wle—*) kp(s—1)

oxp [i(s{A, + /‘m) + ‘{/\H‘)‘n))]

N
L g ep Hopp HE (A +HAnto, AgtAy—n)
pm—N

+ KA +2q—w, A+t o)}

We are now in a position to evaluate

TBy vor (fy(@)] = 2TBy | dh ks fo)fe(ha)l 400 A%
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By (3.28) and (3.9) one sees that. a3 T' tends to o,

TByvar [Fy(0)] 4 2 ent,| Hopo | /(M 05 R0 0) HyAn—0)yiMy+0) T B

= {3 eatal Bmal? Sitw+20) Syto+20)) | udu

={ Ha)+ E.. em o] Hoon| 2 fla+A,) f,((.>+/\,|} »j' Kaydu., ... (3.20)

The foregoing formula is valid for 0 < @ < #; it should be multiplied by 2 in the
case that @ = 0 or w = 7.

If the spoctral density function fi(w) had boon directly cstimated from ob-
servations of tho time series Y(.), the variance of the ostimato f,.(m) would satisfy
(for 0 < w < @)

lim 7B, var fy(m)] = filw) [ ku)du. ... (3.30)
THn --

Consequently one can infer from (3.29) the offect on the variance of the esti-
mate fy((u) due to the fact that it is formed from an amplitudo modulated version of
the time series Y(s). An upper bound to this varianco is

TB, var [ frle)] < H {mex f3(a)) J? k(u)du .. (3.31)
where H= T e,e,|H, |2 .. (3.32)
Thus H may be laken as a measure of the increase in variance due to amplitude modulation.

One may verify that

=L % men=L £ gogu R .. (333
4, tal 4, (a1

72

8-

An upper bound for H can be obtained as follows. Let p be a lower bound for Rfv):

|B)| > p, v=0,1,...,6. ... (3.34)
Th H :
en H<p {0 '):lg[t)} ... (3.35)

An exact evaluation of H can be obtained from the formula

{Ra(”)) é g%(t) gL+ v)- . (3.36)

2]
0°-Iﬂl| tml

il
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To illustrate the use of theso expressions we ider the modulating funoti
g(s), defined by (3.3), which ocorresponds to the case of periodically misamg observa-
tions. Thén 6 = a+48,

_ap
=3 f: 0= . (337)
By (3.35) Hg (ﬁ)':(l_l_r)' . (3.38)
defining r= é . (8.39)

to be the ratio of the number of observations missed to the number observed. An
exaot expreesion for H can be obtained from (3.36) : forv = 0, 1..., 8

1 ? 2 a—v
'l 92 g3(¢) ﬂ’“-{-ﬁ) = ——p , v<a,
=0, v3>a e (3.40)
Conaequent.ly,

B E 0 e =2, om0, p

(“_(:E‘?);ﬂ) , v=4 ., -
=0, v>a
Thus @tp B = "‘""’+z $ath , § l—deth)

wa—9  wpn (@—p)P
Finally, one obtains

§=_alv. G—ﬂ— +2{¢11 x— 2+ +a. ﬂ}

=1, 2 ¢—ﬂ+l
=5t 1.|.a‘__$.|. + o= ﬂ+1 ﬁ_ v (3.41)
laci d inator by z—p, one obtains the following upper bound for

m
ﬂ%
§

H—<:_t7€ l+r

*. (3.43)

One eadily verifies that (3.42) provides a lower upper bound than does (3.38). In
any evenf, both (3.38) and 3.42) provide some measure of how rapidly the variance
of the speotral estimates i aa the ratio r tends to 1.
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It may be of intereat to express the variance offy(u) in terms of the number

T, of observations aotually observed : approximately,

a
To=17 T e (3.48)
Combining (3.31) and (3.42) one sees that
ToByvar(fylw)]l o @ 5_ 1
a 1 »
{nmx fy(l.u)} Lﬂ k(u)dy
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