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Abstract

According to the Jacobi identity, if A is an invertible matrix then any minor of A~! equals,
up to a sign, the determinant of A~ " times the complementary minor in the transpose of A.
The identity is extended to any outer inverse, thereby generalizing several results in the liter-
ature for special generalized inverses. A permanental analog of the Jacobi identity is proved.
Bounds are obtained for the difference between the nullity of a submatrix of A and that of
the complementary submatrix in any generalized inverse or an outer inverse of A. The result
extends earlier work of Fiedler, Markham and Gustafson for the inverse and of Robinson for
the Moore—Penrose inverse.

AMSE classificarion:  15A09; 15A15

Kevwwords: Jacobi identity ; Outer inverse; Generalized inverse; Permanent; Nullity of a submatrix

1. Introduction

We deal with complex matrices. The conjugate transpose of A is denoted by A*,
For anm = n matnx A consider the usual Penrose equations

(1) AGA = A4,
(2) GAG =6,
(3) (AG)* = AG,
() (GAY =GA.
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Recall that the n = m o matrix & 15 called a generalized inverse or a g-inverse of 4l
it satisfies (1) and an outer mverse of A if it satisfies (2). If & satsties (1) and (2),
then it is called a reflexive g-mverse of A. The Moore—Penmse inverse of A 15 the
matrix (F satsfying (1)-(4). Any matrix A admits a unique Moore—Penrose inverse,
denoted AT I A 1s r x n, then 7 s called the group inverse of A if it satsfies (1),
(2)and AG = G A, The matnx A has group inverse, which is unique, if and only if
ranki{A) = runl-;lri:}l. For a square matrix A, if k15 the least nonnegative integer such
that mnk{r’i"}l = ranki Al b, then k 1% the index of A. There is a unigue G, called
the Drazin inverse of A, which satisfies GAG = G, AG = GA and AM!G = A%,
Thus if A has index 1 then its Drazin inverse s the group inverse. We mefer wo [5,8]
for basic resulls on g-inverses.

The Jacobi identity extends the well-known adjoint formula for the inverse of
a nonsingular matnix. According o the Jacobi ddentity, if A 15 a nonsingular ma-
trix then any minor of A~ equals, up to a sign, the determinant of A~! times the
complementary minor in the transpose of A,

Determinantal formulae for the Moore-Penrose inverse have been obtained by
varous authors [2.3.6,7.10.11]. The formulae have been extended to the group in-
verse, a reflexive g-inverse and for minors of such g-inverses [1,15-17]. These for-
mulae can mdeed be viewed as generalizations of the Jacobi identity.

Stanimirovié and Djordjevié [19] gave a determinantal identity for the Dmzin
mverse and obtained some partial resuls for an arbitrary outer inverse. Ther work
wis the motivation for the next section of the present paper, in which we obtain
a Jacobi identity for any outer inverse, captunng several results in the literature as
special cases. The proof wechnique is new, yet simple, based only on the Laplace
expansion and the Cavchy-Binet formula for the determinant. Both these wols are
available for the permanent as well and this observation permits us to obtain a Jacobi
type identity for permanents presented in Section 3,

Section 4 deals with a different problem, motivated though as an application of
the Jacobi wentity. It presents bounds on the difference between the nullity of any
submatrnx of A and that of the complementary submatrix of a g-inverse or an outer
inverse of A. The work extends results in [9,12,18].

2. Jacobi identity for an outer inverse

Il =k = n,then Qg will denote the set of strictly increasing sequences of &
integers chosen from 1,2, .., n. Clearly the cardinality of Oy , is {f}l

LetAbeanm x nmatnxandletl Sk <m, l £r < nleta € Oppandf £ Q.
The submatrix of A formed by the rows in o and columns in f will be denoted by A%

Leta C 8 wherea € Qpy. 8 € Quu.p = g Suppose a has elements o) =< ---
< @p, f has elements #) < --- < f#; and that oy =f8,,. i =1...., p- Then we
denote by s{a[f) the sum u) + --- +up. The relevance of this definiion will be
clear from the following observation: Let A be an m % n matrix and let o € @y 0.
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BEQuunv¥eEQpmdbde @pu, whee y Ca, d§ C A Then the coelficient of
|A} ||A% ] in the expansion of |A%| is (—1)* (= +s@18,

Let A be an m x p matnx and let 1 £ r < min{m,n). The nh compound ma-
trix. of A, denoted by C,(A), is an () x (}) matnx whose elements are A% a €
Q. f € Oy arranged lexicographically m o and 8. It follows from the Cavchy -
Binet formula that Co0AB) = Co{AMC (B il A and B are matnices such that AB 1s
defined.

The main result of this section which gives a Jacobi identity for any outer inverse
1% stated next.

Theorem 1. Let A be an m = n matrix of tank rand let G be an n = m matrix of
rank k(£ r) such that GAG = G Let 1 £ p =g < k. Then foranye € Qg f €

Q,n.n.h
| - ; .
|Gf.§| — — Z Z {_1}.~ta|y1—.-.tﬁ|o]|ﬂi'||Aiﬁi|_ (1)
(_{_ _;’) yEQ, 4 aCy 30, m TS

Proof. Let G = UV be arank factonzation sothat is n = £, Vis & » m and mank
' =runk V = k.
By the Cauchy-Binet formula, forany y € Oy 4. 8 € Oy .

G31= 2 1urlIvsl @
PEQ, )

WWa & Qp g o C y, then by the Laplace expansion,

— slee|pI+sir]o) ¥
UFl = 3. (C)remHeRiug|unE. 3
TEQpy TCp
Similarly, if § € (O p . f C 4, then by the Laplace expansion,
A _ SO | 0SB 13| ¥ | e o
|Va | = Z (AT |Vf$ ||V,5u? | (4)
weQp Wie
It follows from (2)~(4) that
S|y 145 (818 | ¥ || 4508
2. L. CoEmEeRela
VEQg pa Y S0, p FTE

cquals

Z Z {_1}-“[&'?]"‘-“'[.3'5]

YeEQan oC ¥y ey m BT
¥ & Y (1)l gy )+ B
peEQ, fTEQp TCpWel, o

x|uz (o [1vg [l vy gl 5
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Note thatif y € @y _p » and if @ My 15 nonemply, then
Y. CPuy||up. | =o0. (6)
TEQn ) TCH
Similarly, if § € Qy_p e and if #7415 nonempty, then
Z {_1}.,-I@5'Iﬁ]|v;”v;*.@f| — 0. (7)
WEQDp )y W0
Using (6) and (7) we may express (3) as
il i IS
YEQuopndEQy pm Py TEQp TCo WEQ W Cp
ANty 5
x| UF || ORIV 1V |45 - (8)

Simwe GAG =G, then UVALUV=UV and hence VAU = 1. Therefore
Cy_plVAU) = I Hence

P ) 48 iy =1,
M I |71 T b e )
?F@q' PR 55@.\1 e
Using (97, the expression (8) equals
k—
lpre T — P Hyrl
> X lelgl=(25) T e 10
PEQauTEQp ), TCR Tedoy
Finally, by the Cauchy—Binet formula, the expression in (10) equals {i:::”ﬂg{ and
(1yis proved. O

Example. Consider the 3 x 3 matnx A of rank 3 and G, the inverse of A:

1 =1 0O 2 3 -l
A=12 1 1 G=A"1=]1 i -
7 1 3 -5 -8 3

A list of the 2 x 2 submatrices of G and the corresponding determinants is given in
Table 1.
Take p= 1. g = 2. Since k = 3, then (- "} = 2. Suppose @ = f# = 1. Then the
right-hand side of (1) can be computed as
] 1,2 2 12 2 1.3 k 1,3 3
s(|G1al[az] + |Gyl Az| + |Gy 2| Az] + |Gy 3| 43])
= L@ + (=D + (=D + (D) =2= |G| = eu.

thereby confirming (1)
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e 1
|

Tuble 1

¥ i Gy G|
2- 3

" S

2 l ¢ 3 ;
pl o,

12 13 (' ) -1
] =D
3 -

» )

2 2 G ) :
2 3

13 12 (_5 _5) -1

3 3 2 -1

1 1 (_5 3) 1
3 -1

13 23 (_E 3) 1
1 3

p p

, 2 (L, %) ;
GRS |

23 13 (_,, 3) -2

|
o
L

Now if @ = 1, # =2, then the right-hand side of (1) equals
3(—[Guall Azl + G311 43] — |GrallA3| + G231 43])
= L=G)=1) + ) — (=10 + (1)) =3 =|G}| = g12,

again confirming (1).

We now desenbe some results in the literature which can be seen as special cases
of Theorem 1. It may be remarked that all these results have g = &

(i) G =A% =(a;), p=1and g = k = r, then (1) reduces to
- s 14+500 &g
i i Z Z o) il Ulﬂlﬂg H"irE'I- (n
vyeQrnicy deQim, jeEb
It is well-known [1] that the r x v minors of AT are proportional o the corre-
sponding minors of A*. More specifically, if y € 0, . 4 € Oy . then
A
|45
B[ 4P*"
ZPFQJ’.MITFQF.# |A.r | |A'r |

where the denominator in (12) is the square of the volume of A [4]. Thus (12)
reduces 1o the following determinantal formula for A7,

671 = 12
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1
' i—
g ZPFQ(_M.TFQr_.-, |A¢||A¢|*

ST T I G Vil C LV LA TR WA (13)

YEQ p ey SEQ, m JES

Formula (13) has been independently obtained by a number of authors and has
mspired much research (see, for example, [2.6.7,10,11]).

{11) The special case of Theorem | when p =1, G s any reflexive g-inverse of
A and g = k£ = r has been proved in [15]. In the same context the case p >
| has been dealt with in [16,17]. These two papers provide formulas for the
minors of the Moore-Penrose inverse, the group inverse and of any reflexive
F-Inverse.

(iii) In Theorem 1 ifm = n,if G is the Drzin inveseofA andif p= 1. g =k = r,
then we obtlain a recent result in [19]. This paper also gives a statement o the
effectthatwhenp = landg = & <= r. Theomem 1 s valid fora *subelass™ of outer
imverses (see [ 19, Theorem 3.3]) However, as shown in Theorem 1 the result is
true for any outer inverse, even in the general case when 1 < p < g = k.

Let £ be an mtegral domain, 1.e., a commutative ring with multiplicative identity
and with no zero divisors. An element @ £ R s called a unit if it has a multiplicative
inverse. The rank of & matrix over R 1s defined as the maximal order of o nonvanish-
ing minor. Let F be the gquotient field of B IF A is a matrix over R, then its rank over
R obviously coincides with its rank as a matrix over F.

Let € and H be matrices over B with rank i = & We say that & and H have
proportional minors il there exists a unit 8 of R such that IG;‘EI = HIH}&'I for all &
Gin. e Op . Note that if & and H have proportional minors and if ok H = &,
then Cpl{(F) =@ Cp(H) . Since Cp((7) has rank 1, it follows that Cp((7) has rank 1
and therefore €7 has rank &

A an application of Theorem 1 the following result can be proved, extending the
work m [1]. The proof is omitted since it closely follows thatin [1].

Theorem 2. Let R be an integral domain and let F be the guatient field of R. Ler A
and H be matrices over R of order m = n and n = m, respectively. Let ank A = r,
rank H = k(= r)and let H = EF be a rank factovization over F. Then the follow -
ing conditions are eguivalent:

(1) A admits an outer inverse G over R such that the column (wow) space of G
equals the column (row) space of H (regarding G and H ax matrices over F).
(ii) rmank FAE =Fk.
(1) rank AH = rank HA = k.
(iv) trace Cpl AH) is a unit.
vy A admits an outer inverse G over R swch that G and H have proportional
minaors.



RE. Bapar/ Linear Algebra and ivs Applications 360 (2003} 1071 20 13

3. A permanental Jacobi identity

The permanent of anr = n matnx A 1s defined as [13]

F"-T{A}' = Zﬂla[l] A T
[+
where the summation i over all permutations o of 1, ..., n.

For positive integers £ andn, Fi , will denote the set of nondecreasing sequences
of k integers chosen from 1, ..., n. Note that the cardinality of Fg, s {”*i_l } If
a € Fpypand 1 =t £ n, then mo{a) will denote the multiplicity of ¢ in @, Cleary
myloa) = 00f ¢ does not feature in @0, Observe that ZLH“: (o) = k. We set

L
o) = l_[ my(a ).
=1

WaeFpy e Fyn p=gq,then we whnle a < # if me(a) < m(f) for t =
Ly n. WWa < A, then we define § —a 10 be the sequence in F,_, , obtamed
by taking t with multiphicity m,(#) —m () forr =1, ..., n. Furthermore, we set

(&) = ==

IfAisan m = n matrix and if & 15 a positive integer then the &th induced matnx
of A, designated by Pr(A), is the

m+k—1 x n+k—1
k k

matnx whose entnes are
per( A%)
Vila)p(f)
fora € Fp o and f £ Fi , armanged lexicographically.

LetA beanm xn matnx and letw £ Fy . f € Fi o We continoe 1o use the no-
Lation Af'g for the matrix formed by choosing the rows of A corresponding o indices
in @ and the columns of A corresponding to indices in 8. Thuos A;‘;{- may have a row
or column appearing several times. For example if @ s the sequence 1,2, 2 and £ 15
the sequence 3, 3.4, then

apy a1z die
Af=|m3 an an
@3 ar axn
We will use the Cauchy-Binet formula and the Laplace expansion for permanents,
The important multiplicative property of the induced matrix, Pr(AB) = F (AP (B)
whenever AB is defined, will also be needed, see [13].
The following result will be used in the sequel.
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Lemma 3. Let p, g and k be positive integers with p < g. Then for any ¢ € Fp .

2 ((;)) =(q:i;l)' (14)

pEFy i dp
Proof. Note that the coefficient of x99 in

k
l_[{ - _r}—m.- (g1—1

=l
equals the lefi-hand side of (14). Since

k

[T — o @=t = — =t

i=l
=§:(p+k:1+r)x&

r=il
the same cocllicient equals
(p+.{'—1+q—p) _(q+.{'—1)
q-p q-p )
which is the dght-hand side of (14). O
The next result provides a permanental analog of the Jacobi dentity.
Theorem 4. Let A be an m x n matric of rank v and let G be an n x m matrix

of ank k (= r) such that GAG =G. Let 1 < p <q. Then foranya € Fp . f €
F,n..lm

I or(GY )per(A2E
pcr{Ga}z— Z Z P‘-’{’é}pﬂr{ yoa) (15)
A g+k—1 Ly — a)pld — f)

("r ) YEFg o=y dcFym, =3 HAY !

q—p

Proof. Let 7 = UV be a rank factonzation so that U7 s no= k. V is & = m and
rank [l =rank V =&
By the Cauchy-Binet formula, for any y € Fon 8 € Fgm.

i o
W{G§}= Z w_ (16)
i)
pEF, )

o e Fp o =< p, then by the Laplace expansion,

pr@) = Y ((2)) pertwipertwyd) an

T Fp ) T<p
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Similarly, if f € Fp . f < &, then by the Laplace expansion,

prv) = 3 ((5) e pervi): as)

WEFp =
It follows from (163 18) that
> ¥ per(G}) per(45 %

ply —ajpld — g)

veEFgn @<y 8 Fy m 48
equals

Z Z H'[?—ﬂ}w[é—ﬂ}ZF: I[ﬂ}

YEF g p o<y AR, & B

< 22 O)E)

TEfpk, T=prefpy dr=p
x per( U per (U Y= Jper(V§ Jper (V7" Jper(4575 (19)
The expression in (19) uquuls

Z Z piol

YEFg pBEF_pm pEF, )
I P
e o (9)](69)
TEFp L T=peFy  d=p z
xp:r{U?}pcr{V;}p:r{V; Ih'1"}[3«:1'{;-’1 }pu{ ) (200

SiceGAG =G then UV AUY = UV andhence V AU = 1. Therefore Fy_p(VAU)
= I. Henee

Z 1

;u[y};n[.’i}

E E per( "":Sﬂ ¥ }F”-'T{AE }P‘I{ 1)

pa i iy

e —z) o =r,
—]o otherwise.

(21)

Using (2173, we can express (200 as
1

—_— Z 'ﬂ))z_u{,ﬂ — r}pcr{U“}pcr{VT}
T Bl
prEF & H{.ﬂ} TEFp Lk, T=p ((I

which equals
per(U#)per(V)

Em L B @

TEFp ) pEF, L Tp
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Table 2

-
[
™
=

Bt
=
A
~

i

Bt
e

[

(S

o T—
]

2 o —H
1 12 (2 _?) 28
i R
i
1 22 B o 98

Lo
.I_'l".‘

L
|
bt
e M e e
irs

|
L
= |
3

[
[*]
|
|

I

I
I
=
|

P
(e
— — r— — e pr—

4
4) 4

e
(B
[
[
—
= =
+ =
R
i3

In view of Lemma 3 and the Cauchy-Binet formula, (22) simplifies 1o
g+k—1 3
( PO )PLT‘[G;:}
and thus (15) is proved. O

Example. Consider the 2 » 2 matrix A of rank 2 and @, the inverse of A:

{4 7 (2 =
sl 1) pea=(2 )

A listof the 2 x 2 submatrices of G, with repetitions of rows and columns allowed,
and the corresponding permanents 1s given in Table 2,
Take p=1,g = 2. Smee & = 2, then {q;f;l} = 3. Suppose o = f = 1. Then

the right-hand side of (15) can be computed as

1 N L, B L W Py L Y UTRPRROR., & UL

E{P‘-‘I i\ per A| + per G yper Ay + per G 'jper A; + per G Hper A3)

1
= (B + (28)(D) + (-H(T) + (15D)) =2 = per G,

thereby confirming (15).



RE. Bapar/ Linear Algebra and ivs Applications 360 (2003} 1071 20 117

Now if @ = 1, 8 = 2, then the right-hand side of (15) equals
| 1.1 ] I,] 2 1,2 ] 1,2 ¥
3(per G aper A} + perGypper Ay + per G 3per Ay + per Gy 3per 43)
= 1((=28)(4) + (98)(1) + (15)(7) + (—56)(2)) = — & = —7 = per G},

again confirming (15).

4. Nullities of submaltrices
The following simple consequence of Theorem 1 will be used in the sequel.

Lemma 5. Let A be an m = n matrix of rank r and let ¢ be an n = m matrix of

rank k (£ risuchthat GAG = G. Letw € Q4. A € Oy be such that G';‘.'; ix non-
singular. Then

; |1 mpg Y . g
r"ml'.‘(";l[l ..... e ) k-1

Proof. Since GJ‘E; is nonsingular, it follows from (1) of Theorem 1, with g = &, that

" " 8 A
there exist p € Qpy.d € Qpw such that e C . f C 4 and that A;.,Iﬁ

o 15 nonsmgu-

| AL . . . i
lar. Thus AEL... ::ﬁl'f has a nonsingular submatrix of order £ — ¢ and the result 15
proved.

In the remainder of this section we will assume that A and € are matnees of order
m % nand n x m, respectvely, partitioned as follows:

q1 gz m fild
_pfAn Ay _q1 {Gun G2 5
o= P2 (r’!y f‘-ﬂ) A = g2 (Gg. (G2 (23)

where pr+ pr=mand g, + g2 = n.

By n(A) we denote the row nullity of A, which by definiion s the number of
rows minus the rank of A,

If m =n, A is nonsingular, G = A" and if A and G are partitioned as in (23)
then it was proved by Fiedler and Markham [9] and independently by Gustafson
[12] that

A = n(Gan). (24)
It 15 not difficult to derive this result using the Jacobi identity. The motivaton for the

work presented in this section was to use the general Jacobn identity, presented in
Theorem 1, to get stronger results than (24,
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Robinson [18] generalized (24) to the Moore-Penrose inverse. Specifically, he
showed that if €7 s the Moore—=Penrose inverse of A and if A and (5 are as in (23),
then

—m-ryEnpGnl—aplAn)=n—r. (25)
In this section we show that (25) holds for any g-inverse GGof AL

The following result is well-known. We include a proof for comple teness.

Lemma 6. Ler A be anm x n matrix partitioned ax in (23). Then
P+ g —rmnkiA ) = m+n —rank(A).

Proof. We have

rank{ A) = rank[ A Ap2] + mank[ Az A
= rank({A ) +rankid;2) + p2
= mnk{A) +g2 + p2

and the result follows. O

Lemma 7. Let A and G be matrices of orderm = n and n = m, respectively, parti-
tioned asin (23). Suppose GAG = G, tankiA) =r 2 k = nmnk{(). Then

(i) rank(Ay) = rnk(G) +k — pr — g2

) plAn) —nlGn) = m—*F.

Proof. Letrank({(G ) = t. Then (G55 has a nonsingular ¢ = ¢ submatrix. By Lermma

Sthereexists o C {4+ 1,....mland S C{g1 4+ 1..... n}, wher |a| = pz — 1.
Al = g2 — t such that
ol y o o
ranl-;(ri[l _____ q:li'-lﬁ) =k—rt. (26)

It follows by Lemma 6 and (26) that

Pr4+g—mnkiAn) s pr+pr—t4q+g2—1 — r'dnk(d“f::;b';)

“m—t+n—t—i(k—1)

=m+n—1r—k.

Thus mnk{A) =2 k 4+t — p2 — g2 =rank{Z2) + & — p2 — g2 and the proof of (1)
is complete. Part (i) casily follows from (i), O

Lemma 8. Let A and G be matrices of orderm x n and n = m, respectively, parti-
tioned asin (23). Suppose AGA = A and rank(A) = r. Then

MGn)—nlAn )z —(m—r). {27)
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Proof. According to a result on bordered matrices and g-inverse (see, for exam-
ple. [14]) there exist matrices X, Y and Z of order m = {m —r). (n —r) % n and
(n —r) x (m —r), espectively, such that the matnx

[t ]

is nonsingular and the submatrix formed by the first 7 rows and the first m columns
of T = 5 is G. Thus we may write

gy g1 m-—r Pl P om—r
ol A A X gl Gn Gz U
5= p2 An An X2 |, T=aq Gy Gn U
n—r ¥ ¥ Z m—r ¥ Vs W

Since S 15 nonsingular, we have, using (24),

G U

nlAnl= il[ Va W]
Gxn Us
=gz+m—1 —mnk[vz W]

= g2+ m—r —rnki{Gxa)
=G+ m—r.

It follows that 5{Gx) — n{ A1) = —(m —r) and the proof is complete. O

We remark that 7 can be proved vsing the weehnigue of bordered matrices as in the
proof of Lemma 8, thereby avoiding the use of the Jacobi identity. We have retained
the present proof sinee it illustrates an interesting application of Lemma 5 and hence
of Theorem 1. Besides, Lemma 5 may be of independent interest.

We conclude with the main result of this section.

Theorem 9. Let A and G be matrices of order m = nand n s m, respectively, par-
titioned ax in (23). Let rank{ A) = r and rank((7) = k. Then the following assertions
are true.

(1) f AGA = A, then
—m—-ryEnpGnl—plAn)<n—r
(i) if GAG = G, then
—fn—k) £ (Al —g(Gn) <m — k.
Proof. The lower bound in (i) follows from Lemma 8 while the upper bound in (ii)

follows from Lemma 7. The remaining two bounds are obtained by interchanging
the roles of A and G and vsing the first two bounds. O
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As remarked earhier, (1) 15 contained in [18] for the case when @7 15 the Moome—
Penrose inverse of A. Similar results may of course be presented for the column
nullity of a matrix, which is the number of columns minus the rank.
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