GENERALIZED INVERSES OF BORDERED MATRICES®
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investigated the properties of submatrices of A~!. Under specific conditions on the bordering, one
can recover any g-inverse of & as a submatrix of A, Borderings A of B are considered, where
A might be singular, or even rectangular. If A is m = » and if 5 is an v % 2 submatrix of A, the
cansequences of the equality m 4+ n — rank(A) = r + 8 — rank(B) with reference to the g-inverses
af A are studied. It is shown that under this condition many properties enjoved by nonsingular
borderings have analogs for singular (or rectangular) borderings as well. We also consider g-inverses
of the bordered matrix when certain rank sdditivity conditions ave satisfied. It is shown that any
gimverse of & can be realized as a submatrixz of & suitable g-inverse of A, under certain conditions.

Abstract. Several authors have considered nonsingular borderings A = ( ) aof B and
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1. Introduction. Let 4 be an m x n matrix over the complex field and let A*
denote the conjugate transpose of A. We recall that a generalized inverse (7 of A is
an 7 x 1 matrix which satisfies the first of the four Penrose equations:

(JAXA=A @) XAX=X (3)(AX)"=AX (1 (XA)*=XA

For a subset {4, j,...} of the set {1,2, 3,4}, the set of » x m matrices satistying the
equations indexed by {7 j....} is denoted by A{,7,...}. A matrix in A{i,7,...} is
called an {i,j,.. }-inverse of A and is denoted by A'*3~)_ In particular, the matrix
G is called a {1}-inverse or a g-inverse of A if it satisfies (1). As usunal, a g-inverse of
A is denoted by A~ If 7 satisfies (1) and (2) then it is called a reflexive inverse or a
{1, 2}-inverse of A. Similarly, (7 is called a {1,2,3}-inverse of A if it satisfies (1),(2)
and (3). The Moore-Penrose inverse of A is the matrix ¢ satisfying (1)-(4). Any
matrix A admits a unique Moore-Penrose inverse, denoted Af. If Aisn xn then G is
called the proup inverse of A if it satisfies (1), (2) and A7 = G A. The matrix A has
group inverse, which is unique and denoted by A%, if and only if rank(A) = rank( A%).
We refer to [4], [6] for basic results on g-inverses.

Suppose
M g2
_mf{B C
(L.1) A= i (D X)
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Generalized Inverses i

is a partitioned matric. We say that A & obtained by bordering B. We will generally
partition a g-inverse A~ of A as

m P2
__{h E F
2@

which is in conformity with A*.
We say that the g-inverses of 4 have the “block independence property” if for

ALY g-inverses
A‘=(£ F:),1=1,2

of A, (g‘; 5; ) : (g; i‘ ) ete. are also g-inverses of A.

If Ais an m » n matrix, then the following function will play an important role
in this paper:
Pld) =m+n—rank{d).

An elementary result is given next. For completeness, we include a proof.
Lemma 1.1, If B is a submatrix of A, then 10 B) < 0 A).

Proaf. Let
g1 g2
_m{(B C
A—M(D x)‘
Then

rank{A) < rank (B Cl4+rank (D X))
=< rank{ B) + rank({C) + pa
=< rank{B) + g + pa.
From this inequality, we get 10({B) < »(A4). O

Note that a matrix B with rank(B) =+ can be completed to a nonsingular matrix

A of order n if and only if v»(B) < n [10, Theorem 5]. As another example of a result
concerning 1, if

1 gz
_m(B C
A_M(D 9)

is a nonsingular matrix of order n, n = p; + p2 = g + g2, then A~ is of the form

m Pz

—1_*?1 E F
5 _w(G 9)
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if and only if "{B) = ¥{A4). This will follow from Theorem 3.1.

Several anthors ([4], (5], [8], [10], [11], [12]) have considered nonsingular border-
ings A of B and investigated the properties of submatrices of A7!. Under specific
conditions on the bordering, one can recover a special p-inverse of B as a subma-
trix of A=, It turns out that in all such cases the condition 1 B) = 49 A) holds.
The main theme of the present paper is to investipate borderings A of B, where A
might be singular, or even rectangular. We show that if ¥{A) = (B) is satisfied
then many properties enjoyed by nonsingular horderings have analogs for singular (or
rectangular) borderings as well. For example, any g-inverse of B can be obtained
as a submatrix of A~ where A is a bordering of B with (4] = o/ B). This will be
shown in Section 4. In Section 5 we show how to obtain the Moore-Penrcse inverse
and the proup inverse by a general, not necessarily nonsingular, bordering. In the
next two sections we consider general borderings A of B and obtain some results
concerning A~

We say that rank additivity holds in the matrix equation 4 = 4, +--- + A, if
rank{A) = rank({A 1+ - - +rank{4y). Let B{A) and N{A4) denote the range space of
A and the null space of A respectively. We will need the following well-known result.

Lemma 1.2, (2] Let A B be m x n matrices. Then the following conditions are
equivalent:

(1) rank{ B) = rank(A) + rank{ B — A).

(i1) Every 87 is a g-inverse of A.

(ii) AT (B-A)=0, (B-AB~"A=0 for any B~.

{iv) There erists a B~ that is a g-inverse of both A and B — A,

It follows from the proof of Lemma 1.1 that if 10 B) = (A} then rank additivity
holds in

(1.3) (§§)=(§S)+(35)+(33)
and in
co  (35)-(89)+(39)+(3%)

In Section 2 we discuss necessary and sufficient conditions for the block matrix

P to be a g-inverse of (g {;) under the assumption of rank additivity

G VY
in {1.3) and (1.4). In section 3, pecessary and sufficient conditions for the block
. (E F ot B £\ ; ; i
matrix oy to be a g-inverse of (D X) are considered under the assumption

P A) = 12(B). Certain related results are also proved. Some additional references on
g-inverses of bordered matrices as well as generalizations of Cramer’s rule are [1], [14],
[16], [17).
: ; b :
2. G-inverses of a bordered matrix . Let 4 = DX be a block matrix

which is a bordering of B. In this section we will study some necessary and sufficient
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conditions for a partitioned matrix ( oy ) , conformal with A%, to be a g-inverse
of A

THEOREM 2.1. Let A = (
E F
G Y

B C

D X ) Then rank additivity holds in (1.3) and

(14) and H = (

hold.
(i) BEE=B.CGC=CDFD=D.XGC =DFX =-DEC X =XYX - DEC.
(i) CYD . BFX.CYX . XGB XYD BEC,DEB, CGB,BFD are null matrices.
Furthermore, if EBE = E, then X = XY X.

Proaf. “Only if” part: Assume rank additivity in (1.3) and (1.4) and that H is
a g-inverse of A. Then by (ii) of Lemma 1.2, H is also a g-inverse of each summand
matrix in (13) and (14). Using the definition of g-inverse, we easily get BEB =
B, CGC=C, DFD=D, X¥YD=0, CYX =0, and

(2.1) DPX L XY X =X, XQC A XYY =X,

)is a g-inverse of A if and only if the following conditions

On the other hand, by (iii) of Lemma 1.2, we have
b O E F o Cy SO0 0 —_—
(o o) (G 1’) (r:a r:a) = (r:a r:a) e BEE =

O C\(E F\{B O 0 0
(o r::) (G "r)(r:a o)=(r} r::);"mf":”'-

(g 2)(;5 f)(g {3)=(g g):-BFD=O__ BFX =0,
(S S) (f« f)(g {3)=(g 2);\-(?1’D=O. CYX =0,
(3 D(E £)(8 9)=(8 §)=evp=0, xvpa0.
(o 0)(3 F)(B r:a)=(o r::)‘
f;f ;E E i *}f; g g g v = XGB=0, DEB =0,
(r:a ."{)(G 1’)(0 o)=(o ())
(r:: o)(}_:: F) (r:a c)_(o o)

(2.2) g; E; g :3 gg b = XGC = DFX = —DEC.
(55 v)(6 £)-(28)
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Also, (2.1) and (2.2) imply X = XYX — DEC.
“If" part: If the conditions (i) and (ii) hold, then it is easy to verify that H is
a g-inverse of each summand matrix in (1.3) and {1.4). By (iv) in Lemma 1.2, rank
additivity holds in (1.3) and (1.4}, It is also easily verified that H is a g-inverse of A.
If EBE = E, then DEC =0 and s0 X = XY X. 0O

We note certain consequences of Theorem 2.1,

CoroLLary 2.2, Let A = ( g .C ) Then rank additivity holds in (1.3) and

D X
E F . . . . .
is a g-inverse of A if and only if the following

(1.4) and the matriz H = ( G O

conditions hold,
(i) BEB=8B,0CGC =C,DFD=D, DEC=-X.
(i) BEC. DEB. CGEB, BFD are null matrices.
Furthermore if EBE = E, then X = ().
B C
n o

) is a g-inverse of A if and only if the following

CoroLLARY 2.3, Let 4 = (

E F
G Y

). Then R(B) N R{C) = {0}, R(B*) N

R(D*) = {0} and H = (

conditions hold.
(i) BEB=B,CGC=C,DFD=D.
(if) CY D, DEC, BEC, DEB,CGE, BFD are null matrices.
In this case, the g-inverses of A have the block independence property.

REMARK 2.4. As the conditions R{B)n R(C) = {0}, R(B*) n R(D*) = {0}
together with X' = O imply rank additivity in {1.3) and (1.4), Corollary 2.3 is a
direct consequence of Theorem 2.1, In particular, conditions (i) and (i) indicate that

the block matrices in ( E F

G v ) can be independently chosen if it is a g-inverse of

B C
A In other words, the g-inverses of 4 = ( D O ) have the block independence
property. Thus Corollary 2.3 complements the known result (see Theorem 3.1 in
[15] and Lemma 5({1.2¢) in [7]) that the g-inverses of A hawe the block independence
property if and only if

rank{ A) = rank (g) + rank{ ("

=vank{B O+ rank(D).

The next result can also be viewed as a generalization of Corollary 2.3, This type
of rank additivity has been considered, for example, in [13].

THEOREM 2.5. Let A = ( g {,; ) and suppose

rank{A) = rank{ B) + rank{C) + rank{D) + rank(X).
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Then H = ( {F:‘ 1{ ) is a g-inverse of A if and only if the following conditions hold.
(i) BEB=8B, CGC=C, DFD=D, X¥YX = X.
(i) BFX,CYD CYX,DFX, XGB, XGC, XYD BEC BFD,OGEB, DEB,
DEC are null matrices.
Proaf. Note that the condition rank{Ad) = rank(B) + rank(C) + rank(D) +

rank({X ) mmplies rank additivity in

B G o ¢ 0 0 o oo
1-(66)+(6 6)+(5 6)+(5 %)
Now the proof is similar to that of Theorem 2.1. O

A peneralization of Theorem 2.5 is stated next; the proof is omitted.
THEOREM 2.6. Let A =(4;), i=12,---,m, j=12,---nbeanmxn

block matriz. If rank(A) = 3 3" rank(A:;), then € =(Gu.), I=1,2---,m, 5=

=1 j=1

1,2, m is a g-inverse of A if and only if the following equations hold.

Ay (i.5)=(1s)
Aj:jG_j_IAI.H = { i {ij ?é I”.I S:| 3

3. G-inverses of a block matrix A with »{A4) = (B).  Let A and H be

matrices of order m x n and n x m respectively, partitioned as follows:

1 g2 M P2
_m(8 C _m{E F
(3.1 A_P? (D X) and H_qg (G v |

where p; + p2 = m and q; + gz = n. By 5(A) we denote the row nullity of A, which
by definition iz the number of rows minus the rank of 4. If m = n, A is nonsingular,
H = A" and if A and H are partitioned as in (3.1) then it was proved by Fiedler
and Markham [10], and independently by Gustafson [9], that

(3.2) WB) =n(¥).

The following result, proved in [3], will be used in the sequel. We include an alternative
simple proof for completeness.

Lemma 3.1, Let A and H be matrices of order m % n and n = m respectively,
partitioned as in (3.1). Assume rank{Ad) = v and rank{H) = k. Then the following

A8SETHONS are e,

(i) If AHA = A, then

—fm—r)=<n¥Y)—pB)<n—r.

(i) If HAH = H, then
—m—E =B —ug¥Y)<m -k
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Proaf. (i) According to a result on bordered matrices and g-inverses [11, Theorem
1], there exist matrices P, Q and Z of order mx (m—v), (n—7)xn and (n—r)x (m—7)

respectively, such that the matrix
A P
i~ ¥)

i nonsingular and the submatrix formed by the first » rows and the first m columns
of T'= 87! is W. Thus we may write

fi g m—rT mop2 m—T
j'.']_ B C P]_ {h E .F‘ E_-;r]_
5= D X Py and T = @ & Y . |.
n—r \y Z m—r A\ V7 Vs 5%
Since 8 is nonsingular, we have, using (3.2),

Yy Yy U
e 1}{( V H-‘i: ):I =qs +m—r—rank (Vg H?) :

Now by Lemma 1.1

rank(Y) < rank ( Y I

< . =
v H") < rank(Y ) +m+n — 2r,

and hence
—(m—r) =¥ ) —n(B)<n —r

The result (ii) follows from (i). O
The following result, proved using Lemma 3.1, will be used in the sequel.
TueorEm 3.2, Let 4 = (B ¢ ) with (A} = (B). Then for any g-inverse

D X
E F ’
A‘=(G Y) of A, Y = 0.

Progf. Assume the sizes of the block matrices in 4 to be as in (3.1). By Lemma
3.1 we have

—(m—r)<y(Y)—n(B)<n —r.
It follows that
—m+ 7= ge — rank(Y) — py + rank( B).
Using 10{ A) = 12(53) and the inequality above, rank({¥) = 0 and hence ¥ = 0. O

s ; _ B U ; - _{E F}Y .
I'neoremM 3.3. Let A = D ox) Then (A) = ([ B) and H = (G 1,) is

a g-inverse of A if and only of the following equations hold.
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() Y=0, BEB=E8, GC =1 DF=1.
(i) DEC = -X.
(i) BEC =0, DEB =0, BF =0, GB= 0.
Furthermore, if EBE = E, then X = 0.

Proaf. If H is a g-inverse of A with ([ A) = (5], then by Theorem 3.2, we know
Y = 0. From the proof of Lemma 1.1, the condition 1:(A) = 44 B) also indicates
rank additivity in (1.3) and (1.4). Note that ' and D are also of full column rank
and of full row rank respectively under the condition (A} = ¥ B). Then the proof
of the theorem is similar to that of Theorem 2.1. 0

The proof of the following result is also similar and is omitted.

THEOREM 3.4, Let A = (g i ) JH = ({E 5) and consider the statements:

i)Y =0,  BEB=B, GC =1 DF=1I BF=0,GB=0.
i) EB 4+ FD is hermitian.
i) BE + O is hermitian.
) EBE+ FDE =FE (v EBE+ ECG = E.
Then
{a) ¥(A) = @¥(B) and H € A{1,2,3} if and only if (i), (ii), (iv) hold, DEC =
X, EC=FDEC md DEB = 0.
{b) ¥{A) =(B) and H € A{1,2,4} if and only if (i), (iii), (v) hold, DEC = —X,
DE = DECG and BEC = (.
() ¥(A) = ¥(B) and H = A" if and only if (i)-(v) hold, DE + XG = O and
EC+FX =0.

The two previous results will be used in the proof of the next result.

(
(
(
(v

TueoreMm 3.5. let A = (g i) . Then the following conditions are equivalent:
f
. . B C Bt Dt
(1) ¥(A) = ¢(B) and (D _]{) =(c1 XT)-

I
o is a g-inverse of A

1
2) ¥ A) = ¢(B) and ((EET i

(

(3% =0, &10=1 DDt =, BBt =0, &1H=0.
()X =0, Ctg=1, DDt <1, BD* =0, "B =0.
(5)

1
W A) = (B and ({ET 51) is a g-inverse of A for some E € BU1-2),

f
(6] w(A) = (B and ({ET 51) is a g-inverse of A for some E.
f t

(7) $(A4) = $(B) and (D E;) s (? 5) o somemahaces B
(8] (A) = (B and ({Ef 5 isa {1,2 3}-inverse of A for some F. Y.

Bt Dt
(0 A) = () and ( a v ) is a {1,2,4}-inverse of A for some G. Y.

(2

Proaf. Clearly, (1) = (2).
(2 = (3): This follows from Theorem 3.3.
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(3) & (4): Since BD' = O and C'B = O are equivalent to BD* = O and
* B = (O respectively, we have this implication.

(3) = (1): Note that BD! = O and C'B = O imply DB! = O and B'C = O.

1 1

Then it is easy to verify that (gT _51 ) is At thus (1) holds.

Clearly, (1) = (5) = (6).

(6) = (3): By Theorem 3.3, if (EE}
E, then we have X' = O, ¢t =1, DDt =1, BD' = O and €1 B = 0. Note that
X' =0 X = 0, thus (3) holds.

(6) = (1): This follows from (6) = (3) and (3) = (1).

Obviously, (1) = (7), (1) = (8) and (1) = (9).

(T)=1{1): By Theorem 3.3, wehave X =0, Y =0.GC =1, DF =1 BF =0
and GB = 0. Clearly, ¢ € '{1,2,4} and ¥ € D{1,2,3}. Using the hermitian

1 1
property of the matrices (g {;‘,) \ (?., iF,), (? f,) (g {;), BEB' and
BB, it is easy to conclude that € and FD are also hermitian. Thus F = D and
G =C1. Note that Y = Xt =0 and (1) &s proved.
Similarly, using Theorem 3.4 we can show (8) = (1) and (9) = (1) and the proof
s complete. O

vt ) is a g-inverse of A for some matrix

4. Obtaining any g-inverse by bordering. By Theorem 3.3if A = (g [;'-é )
with 1/(A) = (5 and if H = {,E.: g is & g-inverse of A, then E is a g-inverse of B

which also satisfies DEC = — X, BEC =0 and DEEB = (0. Suchan E, hereafter, will
be denoted by Eic p x). Note that - p vy is not uniquely determined by C, D, X,
since A~ is not unique. In this section we will investigate the converse problem, that

t: for a given g-inverse E of B, how to construct ', D and X sothat H = (E o )

G O
B C
D X
We first state some well-known lemmas to be used later; see, for example, [4], [6].

Lemma 4.1, The following three statements are equivalent: (1) E is a g-inverse
of B, (ii) BE is an idempotent matriz and rank{BE) = rank{ B), and (iii) £B is an
idempotent matriz and rank{EB) = rank(B).

Lemma 4.2. E is a {1, 2}-inverse of B if and only if E is a g-inverse of B and
rank(E) = rank{B).

Lemma 4.3, Let H = UV be a mank factorization of a square matriz. Then the
following three statements are equivalent: (1) H is an idempotent matriz, (i) I — H
is an idempotent matriz, and (i) VU = 1.

TueoreM 4.4. (i) Let E be a g-inverse of the py x gy matriz B with rank(B) =
r. Then there exist C, D, and X such that £ = Eie p xy, where rank({C') < p, —
roand rank({D) < g — .

i a g-inverse of 4 = with 1¥»(A) = »(B) for some matrices of proper sizes.
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(i) If E = Ei¢ p x). then there exist matrices U, V, [l and V such that
I-BE=(C U) (Ej) and [ — EB = (F Uj(g)

are the rank factorizations of I — BE and I — EB respectively.
(iii) rank(En p xy) = rank(B) + rank(R), where

f [ -X DEU
(&1 e (vm TPEU)

for some matrices U and V as in (ii).
Proof. For a given g-inverse E of B, we use rank factorizations of I — BE and
I — ERB, by which there exist €, D, X, F, G, U, U, V, and V satisfying the following

identit ies

(12) I-BE=(C Uj($)1
(43) [—EB=(F ﬂj(g),
X = ~DEC.

To prove (i), we only need to show that these O, D, X, F and G along with
Y = O satisfy the conditions (i),(ii) and (ii) in Theorem 3.3. In fact, from (4.2) and
{4.3), we have, in view of Lemma 4.3, that( 5) (€ U)=T1and (i?) (F O)=1,
implying
GC =1and DF = I.

Apain from (4.2) and (4.3), we have, by (I — BEVB = 0 and B(I — EB) = (O,

(44) (f)3=omd3u?n)=a
and by BE(I — BE)= O and (I - EB)EB =0,
(45) BEujtn=oam1($)EB=m_

Now by (4.4), GB =0 and BF = 0, and by (4.5), BEC =0 and DEB = 0.

(ii) Let E = Expx)- By Theorem 3.3, BEC = 0, which means R(C) C
N{(BE) = R({I — BE). Note that ' iz of full column rank under the condition
P(A) = ¥ B). Thus there exists a matrix [f s0 that R{{C 7)) = R — BE)
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and the matrix {C 7)) is of full column rank. Hence, there exists a matric of full
row rank which can be partitioned as (ﬁ) such that

I=BE<={((@ r,r)(f,).

On the other hand, DEB = O implies N(I — EB) = R{(ER) C N(D). S0 there

exists a matrix V' such that ( E) is of full row rank and

N(I — EB) = N (g‘)j_

From this we conclude that there exists a matrix of full column rank which can be
partitioned as ( F ) such that

~ D
I-EB=(F ) (F) :
Now we prove (iii). If £ = Eio px), then from the proof of (ii) there exist

matrices [/, V, [ and V' such that (4.2) and (4.3) hold. Hence BE(C [7) = and
(D) EL = 0. Therefore we have

Vv
B B o0 0
pDl|EB ¢ th=|0 DEC DEU
v 0 VEC VEU

(0 %)

whereR=(g E(C U).

On the other hand,

E

(E F U](g g) ($)=EBE+{F nm(‘fj)
_ EBE+ (I — EB)E(I — BE)
B

Thus we have rank(Ex p g)) = rank(B) + rank(R). O

Theorem 4.4(i) and its proof show that for a given matrix B and its g-inverse
E we can find matrices C of full column rank with R((C") C N(BE) and D of full
row rank with B{EB) C N (D), as well as X = —DEC', F and (7 such that matrix
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GO D o
the following,

CoroLLary 4.5. Let B and its g-inverse E be given. Then the matriz 4 =
(g fk‘j) satisfies {A) = (B and has a g-inverse of the form (g g) if and
only if C iz of full column rank with B(CY C N(BE) and D of full row rank with
R(EB)C N(D). In this case, X = —DEC, F € D{1,3}, G C{1,4}, BF =0 and
GhB=0.

Proof. Necessity: This follows from Theorem 3.3.

Sufficiency: The proof of sufficiency is similar to that of Theorem 4.4(1), (ii). O

As a special case we recover the following known result.

CoroLLary 4.6. [11, Theorem 1] Let E be a g-inverse of B. Then for any
matriz O of full column rank with R = N(BE) and any matriz D of full row rank
with N{D) = R(EB), the matriz

( ol F) is & g-imverse of A = (B C) with 17{A) = o B). Furthermore, we have

b o
4= (D —DEC)

is nonstngular and

L _(E F
=g o)

where F € D{1,3}, BF =0, G C{1,4} and GB = 0.

5. Moore-Penrose inverse and group inverse by bordering. For a given g-
inverse E of B, Corollary 4.5 shows that ¢ and D can be chosen with the conditions

R(C) © N(BE) and R(D*) € N((EB)*) so that 4 = (g —gﬁc) satisfies

P(A) = ¥(B) and has a g-inverse of the form (f.:‘ (F}) . Further, Corollary 4.6

provides an approach to border the matrix B into a nonsinpular matrix such that
in its inverse, the block matrix on the upper left corper s E. We now show how to
border the matrix if E is the Moore-Penrose inverse or the group inverse of B.

Tueorewm 5.1, Let B be given. Then the matniz A = (B “ ) satisfies 10 A) =

D X
Bt FY . )
ac o if and only if C' has full column

mank with R{C) C N{B*) and D has full row rank with B(D*) C N(B). In this case,
X =—-DB'C =0 and
t gt Dt
- (B D).

Proof. Note that N(BB') = N(B*) and N((EB)*) = N(B') = N(B), and the
necessity and sufficiency follow from Corollary 4.5.

(B and has a g-inverse of the form (



28 E.B. Bapat and Bing Zheng

Bt Dt
ct o

Bt pi
foze
2= 5)
where X = —DB'C =0.0

Combining Corollary 4.6 with Theorem 5.1, we have

CoOROLLARY 5.2, [6] Let B be a py x q1 matriz with rank(B) = v. Suppose the
columns of C € Cﬁ:ff.'” =) are a basis of N(B*) and the columns of D* € C;f:f,i.q'_"]
are a basis for N{B). Then the matriz

B C
+=(5 o)

It is easy to verify that (

we have

) is a g-inverse of 4. Thus by Corollary 3.5(2),

is nonsingular and its inverse is
Bt Dt
-1 _
e (B B,

If B & square and has proup inverse, we can get a bordering (B {;) of B
#*

) . Part (ii) of the following result

*

0

s known. We generalize it to any bordering, not necessarily nonsingular, in part (i).
TuEOREM 5.3. Let B be nox n oand with index 1. Then

(i) there exist matrices O of full column mank with B(C) C N(B) and D of full row

E

Sl R TR i R D s I s g (% g) e
B g ;

o () with v(a) =v(B)

(i) ([8], [14], [17]) for any matriz C of full column rank with R(C) = N(B) and any

matriz D of full row rank with R(B) = N{D), the matriz

B C
+=(5 o)

. . . b
such that it has a g-imverse in the form ( 5

is nonsingulor and

= (oo )

Proof. (i): Consider the rank factorization of I — BB* given by

I-BB'=(C Uj(‘?)_
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Note that BEF = B* B, and we have

V

Obvicusly B(€) C N({A) and RB{B) C N{D). As in the proof of Theorem 4.4(i),
By, ; B C R ; .
we conclude that ( D 0) is a g-inverse of (D (]) with ¥{A) = ¥({B), since
X =—DBY =0,

£
(ii): By Corollary 4.6, the nonsingularity of the matrix (% S) mnder the

conditions B(C) = N({A) and R(B) = N{D) can be easily seen. We now prove that
for any matric ' of full column rank with R{(') = N(B) and any matrix D of full
row rank with R(8) = N (D), D is nonsingular.

In fact, if DCx = O, then Cr € R{C) and Cz € N{D). Since R = N(B),
N(D) = R(B) and R{B) nN(B) = {0}, we have Cz = ( and therefore z = (. Thus
D is nonsingular.

By Lemma 4.3, C(DC)~'D is an idempotent matrix and

I-BB*=I-B'B=C(DC)™'D

I-B'B=(C Uj(D).

is a rank factorization. From Corollary 4.6, we know that

(g C{ng_l) 4nd ({DC?*D g)

are nonsingular and in fact

(3 9y~ (2 %)

Note that

(o %" )-(56) (0 wor)

The result follows immediately from the two equations preceding the one above. 0
ReEmark 5.4. Theorem 5.3(ii) can be used to compute the proup inverse of the
matrix ({ —T)¥ which plays an important role in the theory of Markov chains, where
T is the transition matrix of a finite Markov chain. For an n-state ergodic chain, it is
well-known that the transition matrix 7" is irreducible and that rank(l —T) =n —1
[6, Theorem 8.2.1]. Hence by Theorem 5.3(ii) we can compute the group inverse

(I — TV of I —T by a bordered matrix.

Let ¢ be a right eigenvector of T and d a left eigenvector, that & ¢ and d satisfy

Te = ¢ and d*T = d*, respectively. Then the bordered matrix (I;} :}) is

I-T ¢\ _{U-T &
0 h S o}’

nonsingular and
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Thus the proup inverse (I — TV can be obtained by computing the inverse of a
nonsingular matric.
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