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Abstract. In this paper we propose two new clisses of asymptotically distribution-free Renyi-type tests for
testing the equality of two risks in a competing risk model with possible censoring. This work extends the work of
Aly, Kochar and Mekeague [ 1994, Jdowrnal of Amervican Swatisticeld Avsociation, 89, 994 —999] and many of the
existing tests for this pmblem belong to these newly proposed classes. The asymptotic properties of the pmposed
tests are investigated. Simulation studies are done to compare the performance with existing tests. A competing
risks data set is analyzed to demonstrate the wsefulness of the procedure.
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1. Introduction

Consider a competing risks model with two causes of failure. Let T denote the lifetime of a
subject, assumed to be contmuous, with distribution function £ and survivor function S,
and let & denote the cause of falure, that 1s, {6 = 7} 15 the event that the falure 5 due ©
risk 7, f = 1, 2. In many practical situations it is important to know whether the various
risks under consideration are equally senous or whether some nsks are more serions than
others, within the environment m which the risks are acting simultaneously. To quantify
this, the concept of (ordinary) hazard rate has been generalized in the competing nisks
model W the notion of cause specific hazard rates (CSHR), which 15 defined by

; ;
M) =lim —P(<T <t+At, =T >1, j=1,2 (1)
: A Af

The overall hazard rate for time to fatlure satisfies the relation A1) = A (1) + Az (r). Cause
specific harard rates provide detailed mformation on the extent of each type of risk at each
time point £ In models where the varous canses of failure are independent, A(f) reduces o
the (ordinary) hazard rate corresponding to the marginal distribution of failure from the /*
cause. Prentice et al. (1978) emphasize that only those quantities which are expressible in
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terms of cause specific hazard rates are estimable and can be estimated from the competing
risks data even if the nsks are dependent. Censormg s possible ansing from removal of
subjects before failure from either canse 1 or cause 2 and it may be due to combination of
other competing risks. Denote the censoring tme by C and 1 survivor function by 5S¢ We
assume that §.4¢) = 0 for all r and C 1s independent of 7 We now identify three causes of
farlure, & =0, 1, 2, where & = 0} 15 the event that the subject was censored. Under right
censoring, we observe n independent, identically distributed copies (X, &), i=1,...,nof
(X, &), where X = muin(T, C). More specifically, on the basis of these data, we formulate the
problem of testing the null hypothesis,

Hy - M) = Aa(f) for all 1, (2]
against the altemative
Ho: M0 < Aa(r) for all r, with strict inequality for some ¢ (3]

In the literature such comparisons have also been made in tenms of the cumulative
incidence functions F| and F, (see Gray, 1988 and Luo & Tumbull, 1999), where

I
F=PFT< =)= [ S h{w)du, j=1, 2.
Ju
Note that the null hypothesis H, in (2) is equivalent o
Hy : F||::F:| =.F3|::.F:|, =0
and f; in (3) implics

Hy t Fi(f) = Fa(r), t = 0 with strict inequality for some t.

Several tests have been proposed i the iterature for testing Ay against various alternanves
{see Kochar, 1995 and Carriere & Kochar, 2000). Most of the tests discussed in the hterature
can be expressed as functionals of weighted log-rank type statistics of the form

La(f) = [ﬂ win)d(Aa — Ay )(u), (4)

where A;(f) = fﬂ. Aslu)du 15 the cumulative cause specific hazard rate function for risk j,
J=1,2 and the Nelson-Aalen estimator (see, ¢.g., Fleming and Harrington, 1991) of A is

-'ia'{f:l = Z 18 =)/ R;
FE

where R; = #{k: X; = X} is the size of the nsk set at time X;—. The weight function wii)
reflects the importance attached to the difference between the CSHRs at tme w. The tests
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proposed by Yip and Lam (1992) are based on studentized L, ) statistics for various
chowes of w. Although these tests may be able w detect certain kinds of departure from Ay
with high power, they may not be consistent against general altematives.

Aly, Kochar and McKeague (1994) proposed two Renyi-type tests for this problem, The
{irst one, which is suitable for comparing cumulative incidence functions, s based on the
statistic

Dy, = SHp (.rb.lll::'r:l‘

LU Bt

where

6, (1) = [ Sr(u—)8cu—)""2d(As — Ay (),

i

and S, and S, are the product-limit estimators of Spand S, respectively. Their second test
which is suitable for testing against H, is based on the statistic

Dy, = sup  {¢,(f) —¢,(s)}-

[

The rationale behind these tests is that ¢, s an estimator of
¥ Il
it =f Sr(u—)8c(u—=)""2(Xa(u) — A1) )du
(1

and A, holds if and only 1f ¢b is mereasing. Thus large posinve values of Dy, give evidence
of a departure from Hy in the direction of H,. This property will continue to hold if mstead
of Sp{u—)Sp{u-)"% we use some other suitable nonnegative weight function. It was
shown in Aly, Kochar and McKeague (1994) that the choice of the weight function Sp(u—)
Se(u—)"* leads to asymptotically distribution-free tests when the data are censored and
these tests are exactly distribution-free otherwise. An unpleasant property of these tests is
that they are very conservative. This is probably due to the fact that the finite sample
distributions of the statistics n' 2D, and n'?D,,, cannot be approximated closely by their
respective asymptotic distributions when » 1s not extremely large.

In Section 2, we propose two new classes of asymptotically distribution-free tests which
are similar to the studentized versions of the Dy, and Dy, statistics, but with arbitrary
nonnegative weight functions chosen from a flexible class of weight functions. In
Section 3, we carry out an intensive simulation study to compare the performance of
the vanous tests. It seems from this study that the studentized statistics using the estimated
covariance functions appear to converge to the asympiotic null distribution much faster,
which improves the small sample approximations significantly. Moreover, the proposed
tests are highly flexible and this approach unifies the existing procedures. The proposed
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methods are illustrated by application to data from Hoel (1972) m Section 4. Section 5
contains some closing remarks and discussion.

2. The Proposed Classes of Tests

In this section, we generalize the tests of Aly, Kochar and McKeague (1994) by taking
different weight funcuons w. With suitable studentization, this yields a vemsatile family of
tests. It is well known that under Hy, n'?L(f) is a martingale with predictable variation
process (1) which, under some mild conditions, can be estimated consistently by

p)

DY 2 O
$3(1) = £ T AN, (5)

where ¥(u) = S°0_, [{.X; = u) is the total number of items at risk at u—, and Nu) is the
total number of deaths up o time w. Using L, () as in (4), we propose the followmng three
classes of test statistics for testing Hy:

; Ll o)
AJI ¥ B e 5
(w) 5, (o0)
B, (w) = supy,_ ;“IE':EI:I )
G L, (r) — L,(:
Culw) = SUPprars H

Large values of the satistic indicate statistcal significance for tests of . It follows
from the results given in the Appendix that under Hy and under some regularity conditions,
(' L0/ 8, )} converges weakly to {W(r), t = 0}, a standard Brownian motion. As a
consequence, under Hy,

n'?A4,(w) — Z, a standard normal variahle, (6]
Pln'?B,(w) > b] — Plsupg.,. W(t) > b] = 2(1 — ®(b)), b =0, (7]
"I"jfn{“':' — 8Py« | () |, (8)

where @ 15 the standard nomal distnbution function.
Consequently, for ¢ = 0

exp { — 7 (2k + 1]3..-"8.('2}. (9]

Pt <02 3= LU
it s =0 2k 4+ 1



GEMERALIZED SUPREMUM TESTS FOR CAUSE SPECIFIC HAZARD RATES 281

Using (9) the asymptotic 0.90, 0,95 and 0.99 quantiles of n'°C,, are found to be 1.96,
2.241 and 2.807, respectively.

When an ordered alternative 1s unsuitable, it can be of interest to test H,, agamnst the
general alternative: Filr) # Faif) for some ¢, which 1s equivalent to A (1) # A0 for
some £ In that case it s natural to ose the Kolmogorov-Smimoy type test statistic
BY = suppg |La(0)] /Sy ). Using the same kind of arguments as in Aly, Kochar
and McKeague (1994), it follows that under H,, n'“B¥ converges in distribution to
SMPgegop (6] This gives an omnibus test—consistent against arbitrary depar-
tures from Hy The coresponding two-sided analog of O, is OF = supye,o o
|L,(t) = L,(s}/8,(~) and its asymptotic null distribution is given in the Appendix.

The class 4, was proposed and studied by Yip and Lam {1992). In this class the choice
of the weight function win) = Flu) leads to the sign test whereas the choice win) = Fiu)
Niu—) gives a test which is equivalent to the one proposed by Bagai, Deshpandé and
Kochar (1989a) for wsting the equahty of two hazard rates. On the other hand, the weight
function wix) = ¥ (u) results in the statistic proposed by Bagai, Deshpandé and Kochar
{ 1989b) for testing agamst a stochastic ordering alternative. Previous studies show that the

tests belonging to the class A4, have good power for testing against some specific
aliematives, but they cannot be expected o be consistent agamst all altematives to My,
As will be seen later, the tests belonging to the classes 8, and O, are sensitive to a wider
range of altematives and at the same tme they mamtam the full efficiency of the
comresponding statstics belonging to the class 4, In the uncensored case, the tests of
Aly, Kochar and McKeague (1994) are extensions of the sign test to Renyi-type statistics
and they are seen to be quite powerful for testing against altematives where the cause
spectfic hazard rates are proportional o each other and for this altemative the sign test is
the UMP test. Similar observations were made by Gill (1980) and Fleming et al. (1987) n
the case of classical two-sample problem when they extend the linear rank statistics to
Renyi-type statistics using the same score function.

3. Simulations and Power Comparisons

To illustrate the flexibility of the proposed classes of tests, a large scale simulation study
was conducted. The mull hypothesis Hy was tested agamst the alternatives

(0 Mz Ay = (3 4+ 1) A
(ii) Ha: Aa(t) = M) §1 + 3 Ay(n)}; and
(iii) Hs: Ax(f) = {A ()P,

The altematives &) and > belong to the class of order restricted altematives A, and one-
sided tests were caried out for these. The alternative Ay was considered by Lam (1998)
where the two CSHRs cross and, hence, a 2-sided test was carnied out. For simplicity, we let
Ay = 1, the level of sipnificance o = 0.05, and 3 s set to be 0 and 1 at which 3 =0
corresponds o the null hypothesis. For A, the falure times T = min( ¥, ¥,) were
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generated from the absolutely continuous bivariate exponential distribution of Block and
Basu (1974) with density

(ot 500 Datda) —[datdelm i
. TSR e TR iy <
Flyipa) =
[hgtdy+ha ) A [Ag+4y ) g tan—ldathin i ¥

A+ A

where Ay 15 the dependence parameter and Ay = 0 corresponds to the independence of the
two risks, In this case, the canse specific hazard rates are proportional to cach other and are
given by

. Mg+ M+ A
.}!ﬂ:_fj e .'I: ﬂ;l'i_-i_l)'j' _’II _,fl= ]_

I

We set Ay = 0 and 1 in the study under . For H, and H;, we simply assumed the two
risks to be mdependent of each other. In all the three cases, the censonng vanable C was
taken to be mdependently exponentially distributed. Three levels of censoring, namely no
censoring, moderate and heavy censoring were considered o study the effect due o
censoring. For each combination of the alternative hypothesis and the set of pammeters
assumed, 10000 data sets, each with a sample size of 7 = 100 were generated.

The weight functions used are

(a) wilu) = F{u}:

(b) w(u) = Flu) Mu-);

(c) wilu) = Fl{ 1);

(dy wyln) = Flu) M-

() ws(u) = S{u—) Sc{u—)'"

where the weight functions w and w are the optimal weight functions for the class of tests
Ay, which give nise o asymptotically locally most powerful tests for A and H,
respectively (Yip and Lam, 1993). The tests generated by these five weight functions
are compared with the tests n'*Dy, and n'?Dy,, of Aly, Kochar and McKeague (1994),
denoted by () under the classes B, and O, respectively. The empircal type [ error rates
and the empincal powers of the tests with 7 = 1 are given m Tables 1, 2, and 3.

Under H,, (7 = 0), the tests of Aly, Kochar and McKeague (1994) are more conservative
in the sense that their empincal type | error probabilities are much smaller than the
nominal level of significance 0.05, particulardy when the censoring proportion is large.
However, the tests proposed i this paper perform much better as their empirical type |
error rates are quite close to the nominal level, and are not much affected by the magnitude
of the censonng proportion. This indicates that the studentized technique has improved the
rate of convergence of the proposed statistics to their asymptotic values which gives dse to
more accurate inferential procedures.
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Tahle {. Empincal type | emor rates and powers of the tests under H,.

Mo censoning I8 — 35% censoring 45 — 6% cemsoring

Empirical type | ermor rates (3 = ()

Jo =010 4, B, c, A, B, 0, 4, &, e,
{a) (458 00460 [IRIEL Y 00515 00447 00245 00517 0418 0.0332
[1:3] 0.0532 00276 00314 005805 0.0317 00269 0.0537 0.0302 00216
{c) (L0530 0470 0267 00515 0465 00316 04495 013 00284
(d) a7 0016 Q0372 00510 04419 00351 00548 0423 0.0332
{e) 0.0525 00439 LRI 0.0509 00420 00268 0.0533 0410 00347
{f) - 00359 Qa7 - 0.0271 00216 - 00138 00086

da= 10 4, B, il A, &, ik 4, &, o,
{a) (L0441 00480 [IRIETE) 0.0520 00442 00344 0491 00408 0.0321
(b1 LIISEE) (.03 30 Q0292 00500 0.0323 00268 {0511 00319 0.0230
{c) (L4778 LIRS (0245 0.0531 0.0498 00325 04492 0.0409 00284
() 00477 00295 003e0 00506 DLz 00357 (.05 26 0.0398 00334
{e) 0.0501 00456 0.0395 00510 00448 0022 00500 0.0349% 00344
{f) - 00378 (L0286 - 00205 00219 - 00188 00126

Empirical powers (3 = 1L0)

do =00 4, 8, c, 4, B, Fa 4, B, Fad
{a) (L9850 0.9490 (L9266 09034 0.8737 08330 07714 0.7204 06607
(b} 0. 7862 0.75%4 LGRGD 06755 0.6587 05343 0.5290 0.4805 02604
{c) 0.4030 08478 08184 08203 07462 0.7024 0.668T 0.5718 05108
{d) 09072 (1.8951 (LE3R0 0.8165 0. 7963 0. 7089 06742 06341 0.5429
{c .90 .94 28 09210 (LR%] (.8732 08299 (L7618 01.7240 L6537
{f) - 0.9292 09000 - 01.8348 0.7755 - 0.6053 0.5076

o= 10 A, B, c, A, B, " A, B, it
{a) (19536 09453 09224 0.9219 0.8920 [LE5RE 0LELGT 0.7740 0.TIES
(b} 07771 0.7850 1LGEDE 0.6979 06870 01 5606 0.5716 0.5318 04088
{c) 0.9034 08477 0.E19% (LR415 0. 7665 072139 0.7163 0.6264 (0.5606
{d) 09020 (.88AR (L8280 08415 0.8203 07417 0.7228 0.6851 0.5909
{2 (19571 0.9377 09175 09163 08907 BS54 (L BOER 0.7709 07110
{f) - 0.9219 {18946 - 0.8599 08136 - 0.6872 (.5986

The simulation study also demonstrates the importance of the weight function used.
When testing against order reswicted alternatives H, and Ay, all tests with weight
functions considered above perform quite well. The powers of the tests highly depend
on the choice of the weight function. The three classes of tests, with optimal weight
function generated from A, give good power for all values of 7, and not just for
local altematives. In particular, under the usual order restrcted alternatives, the test
based on A, is, in general, more powerful than the tests based on B, and C, for any
arbitrary nonnegative weight function w(w). In the cases with crossing CSHRs, the
Renyi-type of tests based on B} and € are generally more sensitive and more
powerful than that of A} It is observed that the proposed two classes of tests are
more versatile mo the sense that they are power robust. The Remyi-type tests are
generally more sensitive o departure from null hypothesis as is illustrated by the
followmg example.
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Tahle 2 Empincal type | emor rates and powers of the tests under H;.

KOCHAR, LAM AND YIP

Mo censonng 25 — 35% censoring

55 — 6% cemsonng

Empirical type | ermor rates (3 = i)

4, B, 0, A, B, O, 4, . e,
(a) 422 0.0435 00274 0.0506 00424 00322 (0.0472 00396 00295
(hi 0494 0,032 0.0277 071 0.0295 00239 00507 00282 00196
(3] (.04 76 0.0447 0.0331 00510 00454 00210 (.0402 004401 00262
(d 0477 00398 0.0358 00473 00264 0.0301 (0459 00367 00287
(e LRIEEA} 00425 (.03 86 (.05 00422 00332 .0457 00380 00287
(£ - 0.0352 00254 - 0.0271 00181 - 00120 00066
Empirical powers (3 = 10}
A, B, O, 4, g, C, A, B, falt
(a) (14508 0.3914 0.4038 0.2731 0.2019 0.2025 01322 00958 00896
(b 0.5931 0.5285 (.46 78 0.35%49 02829 02322 0.1721 0.1155 0.0861
{c) 0.2162 0. 1485 0.1395 01258 00876 0.0720 00816 00593 00425
(d) (.62 0.5190 (.49649 0.3578 02879 02422 0. 164 01235 01106
{e] 04311 0. 1460 0.3665 02710 0.2050 02102 0. 1446 01084 01004
(f) - 0.3047 02141 - 0. 1600 0.1472 - 00512 00366
Tahle 3. Empincal type | emor rates and powers of the tests under A,
Mo censoning 30 — 45% censoring 45 — W% censoning
Empirical type 1 errmor rates { 3 = 0)
A¥ 54 -1 Ax &5 r4 A¥ 4 ct
{a] 0.0553 00410 0.0424 0.0540 00460 00350 0.0471 00376 0.0276
(i (L0480 0.0332 0.0275 0.0491 00298 002315 (.04 560 00217 00140
3] (L4 R0 00434 (.0205 00541 00465 00285 (1.0490 00423 00239
(d) (.04 6 (.0401 0.0244 0.0482 00396 00331 00472 00337 0.0271
() 4 E2 (0432 (0264 00515 0.0453 00344 0.0472 00234 00268
() - 0032 00274 - 00242 00175 - 00081 LIRINE Sl
Empirical powers (3 = L)
A3 ay Cx Ay &y Ca A3 & 454
[EN] 01108 0.3204 02363 0.2559 04389 02917 0.4157 04894 0.3582
(b 0.2228 0.16349 0. 2092 00687 [IRIES 00538 0.04494 00313 00174
{c) 0.5132 0.6619 04554 L6491 0.6956 05398 QL6702 06485 04978
{d 0.1333 0.(057 0.1774 00516 0.0575 00607 01156 01280 0073
3] 0.1317 0.3752 0.2190 0.2110 0.3677 02353 0. 2000 03547 023449
(f) - 03169 0.1750 - 0.2657 01485 - 0.1507 0.0755

4. An Example

The three classes of tests were applied w a set of morality data given in Hoel (1972)
which has been studied by many researchers in the field of competing risks analysis. The
data were obtained from a laboratory experiment on RFM strain male mice which had
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Figure [ Nelson-Aalen estimates of the CSHRs for the two types of cancer.

received a radiation dose of 300 roentgens at ages of 5 to 6 weeks and were kept in a
conventional laboratory environment. Causes of death were classified into three distinet
groups, namely thymic lymphoma, reticulum cell sarcoma, and other causes. In this
application, the deaths due to other causes are reated as censored observations and are
assumed to be independent of the two types of cancer. The estimates of the cumulative
hazard of dying from thymic lymphoma and reticulum eell sarcoma are given in Figure 1.
Aly, Kochar and McKeague (1994), based on the plots of the smoothed estimates of the
CSHRs, suggested that the CSHRs of the two types of cancer cross at about 500 days.
Henee, we only considered a 2-sided alternative using the complete data set. The weight
functions (a) to {e) of Section 3 were used, and were compared with the twests of Aly,
Kochar and McKeague (1994). The test statistics and the corresponding p-values

Tahie 4. Test statistics { p-values) using different weight functions for the rats data,

J‘i'] l_;f: J‘?] 23: ﬂ].‘llﬁ::
{a) 2065600 0388671 2ASIH0.0283428) 4518500000249
i 4,66 12{0.0000031 ) 4 H61 200000063 SO000 0000021 )
ie) — 149940, 1337 626) 35470000778 154710001 5564)
idi 4740900000021 ) 4 740900000043 5530600000001 )
iel 264 33(0.0082097) 243300164195 4. 52430 .0000058)
if 2 2 AIB030061 5) 4438000 0000362 )
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{m parentheses) given in Table 4 suggest that the result is highly significant. By comparing
the p-values of the tests, it is noticed the tests based on the CF are more robust while the
tests based on A¥ and B8F may be more sensitive to the weight functions adopted. The
proposed classes of tests are highly flexible and when we do not have any 1dea of the order
of crossings of the two CSHRs, the tests based on CF are recommended as they tend to
give more robust results,

5. Discussion

The non-studentized tests of Aly et al (1994) are asymptotically distnbution-free only when
the weight function Sp{u—) S (u—)"? is used. Flexibility can be gained when different
weight functions are adopted, but studentization is necessary in order to retain the
asymptotic distribution-free properties. Smmulation studies show that the studentized test
statistics have better performance than the non-studentized statistics of Aly et al. (1994) n
the sense that the fmite sample distributions of the swdentzed statistics can be closely
approximated by their respective asymptotic distdbutions under the null hypothesis.
Empirically the studentized tests are almost unbiased even for moderate sample sizes,
irrespective of the choice of the weight functions and censoring proportion. Chosees of
weight function have been proposed and discussed widely in the literature. However, the
choice of weight function should be based on the mvestigator’s desire to emphasize either
carly or late departures between the CSHRs asthe data from different elinical tnials may have
different chameteristics. For example, unexpected eary or late occurrences of the event may
not be very mformative and hence a weight function with lighter weight at both ends would
be adopted by the investigator. The supremum version of the tests, namely 8, and C,, would
be more sensitive o the cases where two CSHRs differ substantially for some range of ¢ but
not necessarily elsewhere. Nevertheless, tests based on weight function w{u) = Fu) has
reasonable power in practice in most situations, Together with the classes of wsts C, or CF,
which are less sensitive to the choice of weight functions, would be good tests to start with in
general when we have no information about the charactenstics of the data.

Appendix
The proof of the following theorem follows from Aly, Kochar and MeKeague (1994).

THEOREM: Lei w be a focally bounded prediciable non-negative weight function such that
mw (uyFu) — K(u) in probability for each w and [,” K(1)d(A| + Az)(1) < co. Then
under Hy

3

n' 2L B wialn)

where | W), t = 0} is a standard Brownian motion and o(f) = Jo K(u)d(Ay + Az )(u)
which can be estimated consistently by S5(t) of (5).
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It follows from this and from Gill (pp. 80-81, 1980) that under the conditons of the
above theorem and under f,

VL) 1 .
Syl o)

The asymptotic null distributions as given by (6), (7) and { 8) now follow easily from this
and the details given in Aly, Kochar and McKeague (1994),

Now we consider the asymptotic null distribution of the statistic aCF =
VI SUPge el Ln (1) — La(s4/S4( 20 ). Since the statistic n'*C)} converges in distribution
to C** = supge, < |W(t) — W(s)| with W being a standard Brownian motion. It is easy
to see that C** has the same distribution as the range of the standard Brownian motion
(W + || [y where ||| = min{0, inf B{)), |W|| = maxi0, sup B{5). The range of
the standard Brownian motion was studied by Feller (1931) with density function given by
{Eq. (3.6) of Feller (1951) by setting ¢ = 1)

hix) = si{—lj‘“"ﬂ-f Plix)
k=1

where ¢ 15 the density funcion of a standard nonmal variable 2. The 95% and 99%
quantiles are found to be 2.497 and 3.023, respectively.
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