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Abstract. Let Hi. 1 =i = nbecomplex finite-dimensional Hilbert spaces of dimension
dp, 1 =i = norespectively with &) = 2 for every i. By using the method of quantum
circuits in the theory of quantum computing as outlined in Nielsen and Chuang [2] and
using a key lemma of Jaikumar | 1] we show that every unitary operator on the tensor
product H = H, ® H: & .. .& H, can be expressed as a composition of a finite number
of unitary operators living on pair products H & H,. 1 = i, j = n. An estimate of the
number of operators appearing in such a composition is obtained.
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1. Introduction

From the theory of guantum computing and quantum circuits {as outlined, for example, in
[2]1it is now well-known that every unitary operator on the r-fold tensor product {CI}-‘&”
of copies of the two-dimensional Hilbert space C* can be expressed as a composition of
4 finite number of unitary operators living on pair products H; @ H; where H; and H;
denote the ith and jth copies of C*. The proof outlined in [2] also yields an upperbound
on the number of such ‘pair product” operators as a function of n. Following more or
less their lines of proof and using a key lemma suggested to me by Jaikumar we present
a generalization when copies of C* are replaced by arbitrary finite-dimensional complex
Hilbert spaces. Thus the present note is of a pedagogical and expositary nature.

2. The main theorem

Let H;, 1 =i = n be complex finite-dimensional Hilbert spaces with dim H; = d; = 2
for every i. Let

H=H e -8 H,. (2.1)

We shall identify H; with Lll[z‘,a} where Zy is the additive Abelian group {0, 1,2, ...,
d; — 1} with addition modulo d;, denoted by &, For any x € Z,;, we denote

lx} = 1y
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where the right-hand side is the indicator function of the singleton set {x} in Zy . Thus
[x} is a ket vector in H; and {|x}, x € Zg | is an orthonommal basis for H;. For x =
(x1,x2, o0, xw), x5 € gy we wnite |3} = |xdx) o) =[x} @ a2} @ --- @ |} for
the product vector in Dirac notation. Then {|x}, x € Ly, 1 =i = n} is an orthonormal
basis for & as defined in (2.1).

A unitary operator I on H is called an (7, j)-gate forsome 1 = i < j < nif il satisfies

Uls,x2..ozmd= 3 wlxi, xj, y. D5, 2200 xic1)y)
y;:Z.,..a.;;:Z,.ul
lxig1xiga.. Xl HE}ILI_,I'+I-1'_,I'+2 R %
for some scalars w(x;, x;, v, 7) depending on 2. x5, v, 2.
Theorem 1. Thew exists an integer D = Did) ., da, .. ., dy ) such that every unitary oper-
ator U on H is a composition of the form
U=UjlUsjp---Upj. k=D
where U;_; is an (i, j)-gate for each r = 1, Dok

We divide the proof into several elementary lemmas and finally obtain an upper bound
for 0. Our first lemma and its proof are taken from [2] and presented for the reader’s
convenience. To state it we need a definition.

Let H be an N-dimensional complex Hilbert space with a fixed orthonormal basis
ler,ea, .. en ) A unitary operator I in'H is said 1o be elementary with respect 1o this
basis and rooted in the pair {e;, e;} forsome 1 =7 < § = N if there exist scalars o, f
satisfying |e)> + |f)> = 1 and

Ue; = ae; + fej,
IJrL'J = —Efj + Efj-.
Uepy = e forevery k € i, j}.
Lemma 1. Let U be any unitary operator in a complex Hilbert space M with an orthonor-
mal basis {ey, ez, ... ey} Then U can be expressed as
# NN -1
- 2

U=z U, k

where L iv a scalar of modulus unity and each U; is elementary with respect to the basis
{er.e2, ... . en}

Proof. Let the matnix of IV in the basis {ey, ez, .. . , ey |, denoted by U again, be given by

M)l M2 ... HIN
U M3l M2 ... W3y
H—

Myl MNZ ... HNW

If z) =0, do nothing. If way = 0, left multiply both sides by
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where
Iy Hz)
0= - —

y fE
i r J r
6|+ fuz | |+ e

Then the matrix U7 U7 assumes the form

uy Mg .. My

0w, ... wuy,
Uhill'=1 w3y maz ... may |.
LH.VL uN2 ... um«J

We now repeat the same procedure with left multiplication by a L' which is elementary
and rooted in {e), £} and make the 31 entry in L5000 vanish. Continuing this & — 1
Limes we get

vl Mz ... ULy
0 w2 ... vy
Un_iUn—z...lbthty =] 0 m2 ... vy
0 wyr ... vwy

The orthonormality of the column vectors on the right-hand side implies jv) = 1, v =
1y =---=1uy = . Thus

i N o SRS |

0w ... uay
v Uy Uz, .U U =

0 wyr ... wyy

Now an induction on the size of the matrix and pooling of the scalars shows the existence
of a scalar & and elementary unitary matrices U7, U5, . .., U such that

IU; Uy .0hr = 1.

Transferring the scalar and the U;'s to the right-hand side gives the required composition
withk < (N =1 +(N—=2)4+---+2+1=N(N-1)/2. L

Following the methods of gquanium computing we draw a *circuit diagram’ by indicating
H; by g ‘wire’ and a unitary operator Uon H = Hy @ H: ® --- @ H, by

® bd o=
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and call U a gate. I u; € H; and | }|uz) .. Jugd € H we say that the gate I produces
the output Uiy} |uz) .- |y ) for the input | dea) - . |uy) and express it as

I“jl:'
R —
b ey} --- b}
input ..
by} ———

If we have unitary operators I, V on H then

. L .

" *

L

L Hlaap} o oo Jutgd
output

wie have

. K -

Here an input goes through the first gate U and then through the second gate V. Thus
gates must be enumerated from left o right whereas operator multiplication is in the
reverse order. If U7 15 a gate on H) @ Hy @ --- @ H; then U7 @ I, where T is the identity
on Hiy) @ --- @ Hy s represented as

1 1
- .
. - = .
o L] U .
u - .
i — —
N | '
-
n -

This notation can be adapted to any block of wires. We now introduce the most important

and central notion of a quantum gate depicted by

fit)— =
—{a)

This gate denotes the unique unitary operator U in H satisfying for any v € Hi.a; &

Zy. j#i
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Ulayaz .. caj_ Y aiaaisz .. oay)

= |maz...ai WL |Whlaisiaisa . ay),
Ulxixa .o oxpo i xigz oo o xa)

= |xpxz.oxi i Hxioxigs oo xe)

if

Xy, x2, o0 41, Xl .- LX) F AL, G2, o0 LG, 8i41, ... ),

L being a unitary operatorin H;. [tis called a quantum gate controlled at ay, az, . .. aj_y,
isls .. sagonthewires1 2 .. i—1,i+1, ..., nandrargeted by the unitary operator
L on the ith wire. Denote the set of all such gates by Gy

For any of the groups Zg we write for any x € Zy,

bl !1 if x=0,

0 otherwise.

Then we have, for example,

where [J is the unique unitary operator in Hy @ Ha @ Hi satisfying
Ulxi} W) s} = | p(Lo oo b=l 1y vg)

forallxy € Zy . xa € Ly W € Ha, g € Ly, a2 € Ly, and L a unitary operator in Hs.
We denote by Oy the set of all gates which are controlled on k wires and targeted by
some unitary operator on g wire different from these & wires. For example

i

see (sew |aes

R
is a ) gate satislying

ELx —ey)
Ulxixz .coxy) = o o coxj g LT T Y i I jeixjez .o )
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forallx, eZy,. 1l =r =n.
Whenever the controls are at the null elements of the groups Zy, we indicate them by
dots on the appropriate wines. For example

-

is a gate in Hy @ Hp @ -+ - @ Hy satisfying

J ezl (s Jerig )y

Sxixz o x6) = |xpxzi( lxahhlrgxsxg)

forall ;; € Zy.1 = i = 6. This is an example of a C3 gate which is controlled at () on
wires 2, 5,6 and targeted by L on wire 3.

We denote by € C Ci the subset of those gates where all the controls are at 0. Cy
denotes the set of all gates in My, ® H» @ --- ® H, which are targeted on one wire but
without any control on other wires. For example

1

2

R

is a Cp gate satisfying

SNxxz cooxg) =l ccoxicg ML g x4 oo xn)

forallx; ey, 1 =i =n.
When the targeted operator L on the ith wire is the cyclic permutation of the basis in
Ly, ie, Lix) = |x & 1) we indicate it on the ith wire by &. For example,



Finite-dimensional Hilbert spaces 9

means the gale satisfying

Ulxixzxs) = Ixnixzdlas @ wlx —ai)})
With these conventions adapted o our situation from the theory of gquanium computing
{as outlined for example in [2,3]) we are ready to formulate and prove a lemma due to

Jaitkumar [1].

Lemma 2. [1] Let L be any unitary operator in Hy. Then

I 2 di
—— —— —r—
1 CEL] -
2 L] : +
3 was | I —
4 - sew 1 -I
n=3___ 1 4 . e
n=1— B N N S—— res -,

O {5 - — e

where B = C~',C = LY jx g fived dy_th root of L. The right-hand side is a
compasition of 2{d,_ | + 1) gates from Cf:_z-

Proaf. Consider an input |xyxz2 .. x,— )|} The lefi-hand side produces the output
lexz i i l}Lf.!'[_f]y_l'[.l.'z]_..r.'l’[.t’N ]]hﬁ_}_ {2_2}

We now examine the output produced by the ‘quantum circuit” on the right-hand side.
e « fi 1 . R
After passage through the first 'E:r—z zale we gel

Ix1x2. . Ky} LHE2- =)y
When this passes through the next j pairs of gates with j = d,_ | we get the output

132 Xna) e @ jer(x1)...a(ng)) BTl Lol Sa-t 1y

where

;
rp= almo1 @salx)...aln-2)).

s=I1
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Since dy—y and () are to be identified in the group Z; | we see that the passage through
the dy,_ th pair and then the last gate yvields the final output

lxix2 .. g I}Lvu[.l;j]...a‘[.t‘ﬁ. 2l Bra (X2).. (X E]La‘u‘z]...a (X, ]]Itw} fz_}}
where
iy =1
r= ) aluo1 ®sal(x)eln) ... o(x-2). (24)
=il

Suppose x; # 0 for some 2< j = n — 2. Then the expression (2.3) reduces o |xxz. ..
xp—1 1} and coincides with (2.2). Thus it suffices to examine the case when x; = 0 for
2=j=n—2 Then(23)and(24) reduce respectively Lo

|x,0,0...0x,_} ¥ B Len-1) |4} (2.5)
and
dai—=1
r= ) alx, ®salx)). (2.6)
s=ll

Now we examine four cases.

Case 1. xp #£0, 1, £0.
We have a{x)) = a{x,—1) = r = Oand (2.5) reduces to [x 00 . Ox, g 3.

Case2. xp #£0, v, =0.
We have a(xy) = 0, wi{x,—1) = 1. r = dy— and (2.5) reduces o

[x100.. .0} B LIy} = |x0... 0} ).
owing o the definition of B and C in the lemma.

Cased. xp =01, £0.

Now alx)) = l,alx,—) =0and r = Z:fr“':n’_la{.r”_l & 5). As 5 varies from 0 o
dy—) — | exactly one of the elements x, ) & 5 15 0 and hence r = 1. Thus (2.5) reduces
o [00...0x,_}CB|¥) = [00...0x,_ ).

Cased. x1 =0, 1,1 =1
Now afx)) = lLafx,1) = land r = ¥ 'a(s) = 1. Thus (2.5) reduces to
00 ...0)CBLI) = [00...0)L|i).

In other words, in all the cases, the two circuits on both sides of the lemma produce the
same output. The last part of the lemma is obvious. [l

COROLLARY 1

Let d = max; d;. Then any gate in Cfr]—l is @ compasition of at most [2(d + 1"~ gates
- i

in ).

Proof. By the last partof Lemma 3 and a shuffle of the wires it follows that any C"_I mle

L3
is a composition of at most 2(d + 1) gates from Cfr]_,,. Rest follows from induction. [
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Lemma 3. In H; = LI{Zm} denote by T, a € L, the unitary operator satisfving T,|x} =
lx + a} for every x € Ly, Then for anyva; € Ly, i = 1,2, ... ,n — 1 and any wnitary
operator L in Hy, the following holds:

ol

P

; - S
k|
=

}:If:h | T_,,.\ T .*r:.-,.

S 'y | 2
T |
- = -

o

I\'ﬂ.\-—_;’j T_ B | - r: ty_ |
L L

Progf. Apply bothsides w theinput |xpxa .o ) forany g e g i = 1,2, 000 on—
1 and ¥ £ H,. A straightforward check by inspection completes the proof. [l

Lemma 4. Any Cy_| gate can be expressed as a composition of at most 2(n — 1) gates
from Cy and [2(d + D))" ? gates from C!l].

Proof. By Lemma 3 any C,,— | gate is a composition of 2(n — 1) gates from Cg and aC?_,
zate. The required result follows from Corollary 1.

To state our next lemma we introdoce a definition.
Forany a # b, a, b € £y, we define the swap operator S{a, b) in LZ{Z(L} as the unigue
unitary operator satisfying

Sia, b)jx} = |xyif x & {a, b},
= |b}ifx =a,
= |a}ifx = b.

Lemma 5. Leta;. by € Zg.i = 1.2, ...k, a; & b; for every i. Consider the unitary
operator U in Hy @ Hy & --- @ Hy determined by

Ulaaz ..o} = almar .. oap) + Blnba o by ),
Ulbibz .. by} = —Blajaz...ap) +@|biba .. . by),

Ulxixz ooz} = Iz cooxed Bflx, x2,.00 xe) € {2, ..., agl,

5 e 2 . . W
where a, i are scalars satisfving la|” 4+ |J|‘:F|2 = 1. Define the unitary operator L in Hy by
the eguations

Llagy) = alag) + Alb),
Liby) = —Blag) + @by,
Lix} =|x} ifx ¢ {ax, be).
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Then U can be expressed as

S I_z"'_"'\_l I_a-‘_'*\ T a"_‘\_l -
e )L (o)
Sl w v s — ay —— wee —(h: o
'\_J:. ‘\._],./' K],,f' \._\_ﬂ'
: ¢ ; \ Vi
Hﬂ}.h_ﬂ ! j, \ jl ( aee { TJ:I
L, o
R 4 p oY : _ T
2k — L \' by — wwe S By ) ; ) wes {-h"";}
., h TR
: L

T
o~

HI:.-" -._1_..
ARy, - i % ' \ Vi o i ™
| "IiJ.-/_ "\T-; E-’:'_ am —| _‘_h_*__,-j_ L 1 -hJ. ———Ll —'\.IIJJ.-F:I_

where the circuit has 2k — | gates from Cy_ and the fast (k — 1) gates are alvo the first
(k — 1) gates in reverse order.

Proof. By the definition of L, the kth gate in the circuit is an elementary opera-
tor with respect to the basis {|xjx . .xghxy € £y.1 = i = k} rooted in the pair
Vlapaz . oagh, lay,az o oag—y, b} and all other gates are unitary operators whose squares
are equal to identity. Since the compositon of the last (k — 1) gates is the inverse of the
composition of the first (&£ — 1) gates it follows that the circuit in the lemma yields a pate
which is conjugate 1o an elementary operator. Now consider the two inputls Jajaz ... ag)
and BBy .. by} for the circuit in the lemma. By the definition of L it follows that the
respective outputs are, indeed, UMayaz o oag) and Ul B o B} Thus U 1s mepresented
by the circuit in the lemma. [

Proafof Theorem 1. Let N = dydb .. d, denote thedimensionof H = Hi@H®. . @ H,
and let d = max; dy. Now let I be an arbitrary unitary operator in /. By Lemma 1, IJ
can be expressed as a product of g scalar L of modulus unity and at most N{N — 1)/2
unitary operators, each of which is elementary with respectto the basis {|xjx .. xgboxg €
Zy.1=i=n}

Now consider a pair of product vectors of the form

lxixa .. xphi Iniy2. 30} wWhem il =yif=r.

After an appropriate permutation of {1, 2, .. | n} (orequivalently, a shuffling of the wires)
we may assume, without loss of generality, that

(xr.x2, ..., ;)= (c1, 02,000 Cpy Ay, 82,00, OE),

(vi.¥a oo o) =leron, oo b b, ol )

where k +r = n and a; # b; forevery 1 =i = k. By adding r more wires to the circuil in
Lemma 3 and putting controls at oy, c2, ... . ¢, on these wires above each of the gates we
observe that a gate which is elementary with respect o our fixed coordinate system and
rooted in the pair {joyez o ooeanar o), ooz . cooplba oo b)) can be expressed as a
composition of {2k — 1) gates from Oy, . Now an application of Lemma 4 shows that this
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same elementary operator can be expressed as a composition of at most (26— 1){2(n— 1)+
[2(d + 1)["~?} gates from Cp U C':I] .Thus U7 can be expressed as a composition of at most

N-'[N?_ N 1){2(n — 1) + 2(d + D) (2.7)

zates from Cp U C"]. Any gate inCp U C"], is, indeed, an (i, j) gate. Choosing D equal to
the expression in (2.7) the proof becomes complete. [l

Remark 1. When d; = d for every i and n increases 1o oo the number I in Theorem 1 is
O(n[2d*(d + D)I").
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