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Abstract

Let {�;F; P} be a probability space and {Xn; n¿ 1} be a sequence of random variables de+ned on it. A
+nite sequence {X1; : : : ; Xn} is said to be associated if for any two component wise non-decreasing functions
f and g on Rn; Cov(f(X1; : : : ; Xn); g(X1; : : : ; Xn))¿ 0. A Hajek–Renyi-type inequality for associated sequences
is proved. Some applications are given. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let {�;F; P} be a probability space and {Xn; n¿ 1} be a sequence of random variables
de+ned on it. A +nite sequence {X1; : : : ; Xn} is said to be associated if for any two component
wise non-decreasing functions f and g on Rn,

Cov(f(X1; : : : ; Xn); g(X1; : : : ; Xn))¿ 0

assuming of course that the covariance exists. The in+nite sequence {Xn; n¿ 1} is said to be
associated if every +nite sub-family is associated. The concept of association was introduced by
Esary et al. (1967). Comprehensive reviews of probabilistic properties of associated sequences and
statistical inference for such sequences are given in Roussas (1999) and Prakasa Rao and Dewan
(2001).

We now develop a Hajek–Renyi-type inequality (Hajek and Renyi, 1955) for associated sequences
and give some applications.
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2. Hajek–Renyi-type inequality

Theorem 2.1. Let {Xn; n¿ 1} be an associated sequence of random variables with Var(Xj) = �2
j

and {bn; n¿ 1} be a positive non-decreasing sequence of real numbers. Then; for any ¿ 0;

P

(
max

16k6n

∣∣∣∣∣ 1
bn

k∑
i=1

(Xi − EXi)
∣∣∣∣∣¿ 

)
6 4−2




n∑
j=1

Var(Xj)
b2
j

+
∑

16j �=k6n

Cov(Xj; Xk)
bjbk


 :

Proof. Let Yj = b−1
j (Xj −EXj). It is clear from Esary et al. (1967) that {Yn; n¿ 1} is a zero mean

associated sequence.
Let Sn =

∑n
j=i (Xj − EXj); n¿ 1. Let b0 = 0. Note that

Sk =
k∑
j=1

bjYj =
k∑
j=1

(
j∑
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)
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=
k∑
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(
k∑
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)
:

Since b−1
k

∑k
i=1 (bi − bi−1) = 1, it follows that[∣∣∣∣Skbk
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]
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2


 :

Therefore,

P
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)
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Applying the Chebyschev’s inequality, we get that

P
(

max
16k6n

∣∣∣∣Skbk
∣∣∣∣¿ 
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We now apply the Kolmogorov-type inequality, for the expression on the right-hand side of the
above inequality, valid for partial sums of associated random variables {Yj; 16 j6 n} with mean
zero (cf. Theorem 2, Newman and Wright, 1981).

Hence, we have

P
(

max
16k6n

∣∣∣∣Skbk
∣∣∣∣¿ 

)
6 4−2E


 n∑
j=1

Yj




2

= 4−2 Var


 n∑
j=1

Yj




= 4−2




n∑
j=1

Var(Yj) +
∑

16j �=k6n
Cov(Yj; Yk)




= 4−2




n∑
j=1

Var(Xj)
b2
j

+
∑

16j �=k6n

Cov(Xj; Xk)
bjbk


 : (2.1)

From the non-decreasing positive property of the sequence {bn; n¿ 1}, it follows that

P

(
max

16k6n

∣∣∣∣∣ 1
bn
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(Xi − EXi)
∣∣∣∣∣¿ 

)
6 4−2
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Var(Xj)
b2
j

+
∑

16j �=k6n

Cov(Xj; Xk)
bjbk


 (2.2)

proving the Hajek–Renyi-type inequality.

Remarks. Under the conditions of Theorem 2.1; it is easy to see that for any positive integer m6 n
and for any ¿ 0;

P

(
max
m6k6n

∣∣∣∣∣ 1
bn

k∑
i=1

(Xi − EXi)
∣∣∣∣∣¿ 

)
6 4−2




m∑
j=1

Var(Xj)
b2
m

+
∑

16j �=k6m

Cov(Xj; Xk)
b2
m

+
n∑

j=m+1

Var(Xj)
b2
j

+
∑

m+16j �=k6n

Cov(Xj; Xk)
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 : (2.3)

3. Applications

Theorem 3.1. Let {Xn; n¿ 1} be an associated sequence of random variables with
∞∑
j=1

Var(Xj) +
∞∑

16j �=k
Cov(Xj; Xk)¡∞:

Then
∑∞

j=1 (Xj − EXj) converges almost surely.

Proof. Without loss of generality; assume that EXj = 0 for all j¿ 1. Let ¿ 0.
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Note that,

P
{

sup
k;m¿n

|Sk − Sm|¿ 
}
6P

{
sup
k¿n

|Sk − Sn|¿ 1
2

}

+ P
{

sup
m¿n

|Sm − Sn|¿ 1
2

}

6 2 lim
N→∞P

{
sup

n6k6N
|Sk − Sn|¿ 1

2

}

6 8−2 lim
N→∞E

{
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|Sk − Sn|2

}

6 8−2




∞∑
j=n

Var(Xj) +
∞∑

n6j �=k
Cov(Xj; Xk)




and the last term tends to zero by the hypothesis. The last inequality follows either from the result
of Newman and Wright (1981) or from the Hajek–Renyi-type inequality proved above. Hence, the
sequence of random variables {Sn; n¿ 1} is Cauchy almost surely which implies that Sn converges
almost surely proving the theorem.

For any random variable X and for any constant c¿ 0, de+ne X c = X if |X |6 c; X c = −c if
X ¡−c, and X c=c if X ¿−c. Note that xc is an increasing function of x. Hence, if {Xn; n¿ 1} is
an associated sequence of random variables, then {X cn ; n¿ 1} is an associated sequence of random
variables for any constant c¿ 0. As a consequence of Theorem 3.1 and the standard techniques, we
obtain the following analogue of the three series theorem for associated random variables.

Theorem 3.2. Let {Xn; n¿ 1} be an associated sequence of random variables with
∞∑
n=1

EX cn ¡∞; (3.1)

∞∑
j=1

Var(X cj ) +
∞∑

16j �=k
Cov(X cj ; X

c
k )¡∞; (3.2)

∞∑
n=1

P[|Xn|¿ c]¡∞ (3.3)

for some constant c¿ 0. Then
∑∞

n=1 Xn converges almost surely.

As a consequence of Theorem 3.1. and the Kronecker Lemma (Loeve, 1963), one can obtain the
following theorem.

Theorem 3.3. Let {Xn; n¿ 1} be an associated sequence of random variables with
∞∑
j=1

Var(Xj)
b2
j

+
∞∑

16j �=k

Cov(Xj; Xk)
bjbk

¡∞:

Then b−1
n

∑n
j=1 (Xj − EXj) converges to zero almost surely as n→ ∞.
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It is easy to see that this result extends the Strong law of large numbers for associated sequences
proved in Birkel (1988) for general norming.

Theorem 3.4. Let {Xn; n¿ 1} be an associated sequence of random variables with
∞∑
j=1

Var(Xj)
b2
j

+
∞∑

16j �=k

Cov(Xj; Xk)
bjbk

¡∞:

Then; for any 0¡r¡ 2;

E
[
sup
n

( |Sn|
bn

)r]
¡∞:

Proof. Note that

E
[
sup
n

( |Sn|
bn

)r]
¡∞

if and only if∫ ∞

1
P
(

sup
n

|Sn|
bn
¿ t1=r

)
dt ¡∞:

By the Hajek–Renyi-type inequality proved above; it follows that∫ ∞

1
P
(

sup
n

|Sn|
bn
¿ t1=r

)
dt6 4

∫ ∞

1
t−2=r




∞∑
j=1

Var(Xj)
b2
j

+
∞∑

16j �=k

Cov(Xj; Xk)
bjbk


 dt

= 4




∞∑
j=1

Var(Xj)
b2
j

+
∞∑

16j �=k

Cov(Xj; Xk)
bjbk



∫ ∞

1
t−2=r dt ¡∞:
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