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Pattern Classification Using Fuzzy
Relational Calculus

Kumar S. Ray and Tapan K. Dinda

Abstract—Our aim is to design a pattern classifier using fuzzy using the concept of fuzzy set/fuzzy logic [35]-[59], we have
relational calculus (FRC) which was initially proposed by Pedrycz  selected the concept proposed by W. Pedrycz [32] and suitably
. Inthe course of doing this, we first consider a particular interpre- modified it to incorporate our new concept of the computation
tation of the multidimensional fuzzy implication (MFI) to repre- fthe derivati fthe f f . d min-f ion. T
sent our knowledge about the training data set. Subsequently, we ofthe derivative of the fuzzy max- unCt!o_n and min-function. (_)
introduce the notion of a fuzzy pattern vector to represent a pop- fepresent the knowledge about the training data set, we consider
ulation of training patterns in the pattern space and to denote the a particular interpretation of multidimensional fuzzy implica-
antecedent part of the said particular interpretation of the MFIL.  tion (MFI) [26]. We consider a notion of fuzzy pattern vector,
We introduce a new approach to the computation of the deriva- yhich represents the antecedent part of the said particular inter-

tive of the fuzzy max-function and min-function using the concept . .
of a generalized function. During the construction of the classifier Pretation of the MFIto meaningfully carry outthe task of pattern

based on FRC, we use fuzzy |inguis’[ic statements (or fuzzy mem- CIaSSiﬁcation Using FRC. DUring the ConStrUCtion Of the CIaSSi'
bership function to represent the linguistic statement) to represent fier based on FRC, we use fuzzy linguistic statements (or fuzzy

the values of features (e.g., featurd? is small and F; is big) fora  membership functions to represent the linguistic statement) to
population of patterns. Note that the construction of the classifier represent the values of features (e.g., feafrés small and

essentially depends on the estimate of a fuzzy relatioR between L .
the input (fuzzy set) and output (fuzzy set) of the classifier. Once I is big) for a population of patterns represented by the above

the classifier is constructed, the nonfuzzy features of a pattern can fuzzy pattern vector. Note that the construction of the classifier
be classified. At the time of classification of the nonfuzzy features essentially depends on the estimation of a fuzzy relafidre-
of the testpattens, we use the concept of fuzzy masking to fuzzify tween the antecedent part and consequent part of the rules. Once
the nonfuzzy feaure values of the testpattens. The performance of yhe ciassifier is constructed, the nonfuzzy features of a pattern
the proposed scheme is tested on synthetic data. Finally, we use the be classified. At the i fel ificati fth f
proposed scheme for the vowel classification problem of an Indian Can be classihied. € ime of classitication of the non “ZZY
language. features of the testpattens, we use the concept of fuzzy masking
_ to fuzzify the nonfuzzy feature values of the testpattens. The
Index Terms—Fuzzy pattern vector, fuzzy relational calculus f fth dsch is tested thetic dat
(FRC), generalized function, multidimensional fuzzy implication pgr OfMANce Orthe proposedscneme IS tested on Syh 9_'(: .a G
(MFI), pattern classification. Finally, we use the proposed scheme for the vowel classification

problem of an Indian language.

. INTRODUCTION
Il. STATEMENT OF THE PROBLEM!

N real-world pattern classification problems, fuzziness is . . .
connected with diverse facets of cognitive activity within th For the present problem, let us consider the conventional in-
?erpretation of a MFI [see App. B, Eq. (56a)] as given in

human being. The sources of fuzziness are related to labels ex*
pressed in patte_n_q space, as well as, labels of classes tgkepllnto a) ifzisAandyis Bthenzis C
account in classification procedures. Although a lot of scientific or b)

developments have already been made in the area of pattern clas-

sification, existing techniques of pattern classification remagghq the notion of a fuzzy pattern vector (see App. B) which
inferior to the human classification processes which perform xgpresents the antecedent clauses of (a) of (1) and locates a
tremely_ complex tasks_. Hence, we attempt to developa'plausiB[gpmation of patterng” in the quantized pattern spateis-

tool using fuzzy relational calculus (FRC) for modeling andyme that the quantized pattern space consists of “c” universes
mimicking the cognitive process of human reasoning for pag, (7, ... . inthe formU = U; x Uy x --- x U., where

tern classification. The FRC approach to pattern classificatiQRchyy, represents the universe on tik feature axis;, i =

can take care of uncertainties in feature values of patterns ungles .

different conditions like measurement error, noise, etc. Thoughassume thai is a fuzzy relation [formed by the antecedent
there are several existing approaches to designing a classifigises of a) of (1)], which is a fuzzy set in quantized product

spacé U, namelyup : U — [0, 1]. Also, assume that there

if z is A theny is B thenz is C (1)
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fuzzy setC = Z;‘:l pe(cj)/cj, wherep.(C;) denotes the de- populations of the given data (patterns) spread over the
gree of belongingness of the population of patté?ris the class pattern space by using few fuzzy pattern vectors which are
¢, forj=1,2,...,n (see Example 2 of Appendix B). formed by the different combinations of the primary fuzzy

Therefore, by considering the conventional interpretation of terms defined over the universe of the individual feature
a MFI, the fuzzy sefD formed by the antecedent clauses of a)  axis (see the Appendix B) and which describe the overall

of (1) is associated with the fuzzy s€twhich represents the distribution of patterns in pattern space.
consequent clause of a) of (1). Hence, there exists a relatione We obtain multiple classification which is very natural in
betweenD and C. More precisely,D and C are related via the case of overlapped classes of patterns.

a certain relatiorit (i.e., DRC), which is presently unknown
and has to be estimated, based on the training data set, forltheExISTING METHOD TO SOLVE FuzzY RELATION EQUATION
design of the classifier. Now, for the testing of the classifier, . . . :

The numerical solution of fuzzy relational equation has been

e may consider th fuzey relational equaion,pamely,a dirdpPosed by severalresearchers [1}-{8}, 101, (13} (17 [21] I
Y y q ' Y Ris section, we briefly review the method proposed by Pedrycz

equation [2]. We focus our attention on maxeomposition operator of
C = DoR 2) fuzzy relational equations, which are defined on finite spaces
where0 = max —t composition operator, whetds aT-norm C = DoR (6)
operator. N
Equation (2) can be rewritten, in terms of the membershil€ré o = max—¢ composition operator/) and C are
function, in the following form: the fuzzy sets defined on the universe of discourses
U = {uj,ug,...;un}t and Coass = {c1,¢2,...,¢0}, re-
pe(Cy) = \/ [up(w)tpr(u,c;)] forj=1,2,...,n. (3) spectively, andtis the fuzzy relation ot/ x Ccjags. LET;; =
ueU (u“ Cj/ui6U7 cjeCclass)./i = 17 27 RN 7m./j = 17 27 ca, Ny,

This explicit form of (3) is needed for actual design study of thifl€n: the fuzzy setd) and ¢ and fuzzy relation®t are as
classifier. follows:
Let us asume that the training set consists of ordered pairs D = [up ()1 xmeF (U)

and the classifier relation is supposed to specify a systemhof[he universeU of the quantized pattern space consists of

equations ‘¢’ features, say;, i = 1,2,...,c, the D is a fuzzy set de-
Cy=DioR, 1=1,2,3,....,k (4) fined on the quantized product space$fUs, ..., U., thatis
U=U; xUyx---xU.,whereU; = {uj,us,...,u,, }isthe
then the fuzzy relation which satisfies (4) is given by universe of theth feature axig; with card(U;) = m;. Let D*
i be the fuzzy set oft;, i.e., D’ = [up: (u})]1xm,eF (U;) fori =
fo — ﬂ R, G 1.2....a then, cardU) = m = [[;_, m; andu; is thectuple
-1 each of typeu; = (u}l,ui,...,ufc/ufpeUp,p =1,2,...,¢),

and corresponding membership value belongingitas de-

But the above mentioned system of equations in (4) may & mined as (8) shown at the bottom of the page, whete
have a solution [32]. Hence, in this paper we look for an a?;cq( ¢ )i, — 1)+ i., for eachi, = 1,2 My, p =
P 4 P [} 2t b A A 2 S

. . ; ; p=1\""k>p

E);;mmate solution of the system of fuzzy relation equations 2. ... c. Equation (6) can be put in the following form:
The advantages which we obtain from FRC approach to pat- m )

tern classification are as follows pe(c;) = \/{up(ui)tpn(ri;}, forj=1,2,....n (9)

* We obtain the local description of the pattern space in =1

terms of few quantized zones [61]. Depending upon theheret is thet-norm operator.
need or the problem, we may increase or decrease th&hus, from (8) and (9), where'*of (9) is one of the operators
granularity of our description of pattern space with smallén {prod, min}, we get following four types of problems:
or bigger quantized zones. Type I: by using i) of (8) and = prod of (9);
 For estimating the relatioR of a classifier, we do not have Type II: by using ii) of (8) andt = prod of (9);
to select the representative data set from the given setlgpe Ill: by using i) of (8) and = min of . (9);
data (patterns). Instead, we use the gross property of féype IV: by using ii) of (8) and = min of (9).

e

) o (us) = Ny {ppe (u7,) } = mpr () A ppe (u2,) - A upe (uf,) } ®
i) o (Us) = [yma {or (UR)} = por (ud,) - o2 () - oo (uf)
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Let £ be the sum of the square of the error oveand in this casé’; in (14) is determined as (16) shown at the

p=1,2,...,n and is defined by

E= Z{NC(CP) - M(”;(Cp)}Q (10)

whereC is the calculated fuzzy set using (9), afids the de-

sired fuzzy set.
Now, the basic problem is to estimaite= [px (7:;)]m x» Via

some givenD and C which minimize £/ defined in (10) and

Sa“Sfy'ng{liSR(?”u) A (1 - Nﬂ?(ru))} > O/VL = 1727' RN
andj = 1,2,...,n.

(10). Thus, we havf(OF)/(Oun(1ij))]mxn = [0]mxn. NOW,

we discuss the applicability of Newton’s method and its simplf

fication.

The Newton'’s iterative scheme for finding the solution of

R = [un(rij)]mxn is

oFE

IR =%G) 11
Opw(rij) 1)

p(ri) T = pg(ri)) ) — a,

where; = 1,2,...,mandj = 1,2,...,n-«a, is the convergent

L,
0,

A general method to solve an optimization problem, defined
above, is to solve a set of equations, which form the necess
conditions for a minimum of the square of the error defined i

bottom of the page, for=1,2,...,mandj =1,2,...,n.
Again, if we cosidert-norm operator asiiin,” then (9) is
written as

pe(cj) = \/{up(ui)/\ugn(rij)}, forj=1,2,....,n (17)

i=1

and in this casel’;; is determined as

it Vil tep (up) A pw(rp)} < o (ui) A pw(rij)
andup (ui) > ps(ri;)
otherwise

(18)

r
%h:ljwwman:LZ”qw

Here, the derivative of the max-function and min-function in
he (14), (16), and (18), respectively are as follows:

2 (wVa)={5

wherea = \/7o {1 (up ) tpm(rp;)} andw = pp (u;)tps(rij)
and

if w>a

ifw<a (19)

1, ifz<b

P
&“A“:{miu>b (20)

factor and also is an nonincreasing gain factor depending on {igeret) = 411, (u;) andz = s (r:;), which are piecewise dif-

number of iteration. It can be describedas= 1/(2.0+s*)- >

ferentiable and is undefined at = a for max-function in (19)

0 is chosen empirically in order to achieve good convergeghq, = 4 for min-function in (20). Thus, we get some prob-
properties and avoid significant oscillations in the iteration prems in our numerical computation [7] which may be overcome

cedure [2].
Now
oF
D) 2{pc(Cj) — ne(C))}Pij (12)
whereP;; = gzcigcjg, ie., (13)
®(745
8 m
Pij = () L\Z/I{ND(Up)tNER(TpJ)}]
= O W/ {up ) tan(r)
Oim Tij) v P PJj
X v{ﬂD(ui)tﬂéﬁ(rij)}] (14)
fori =1,2,...,mandj =1,2,...,n.

If we considert-norm operator asprod,” then the (9) is
written as

pnelej) = \/{ND(W) ~pw(rij)}, forj=1,2,...,n (15)
=1

by defining the derivatives at = ¢ andz = b, respectively as
follows

) 1, fw>a

%(wva)_{o, ifw<a (1)
and

9 1, ifz<b

m@Am_{miu>a (22)

Both formulas for the computation of the derivatives of the max
and min functions, as mentioned above, return either 0 or 1
value of the derivatives. Such two-valued results of the deriva-
tives have some inherent difficulties, in connection to the con-
vergence of the solution as mentioned in [7]. To overcome such
difficulties there are some propositions in [7]. In the following
section, we will provide an alternative approach based on gen-
eralized functions (see Appendix A).

The above method for solving fuzzy relational equations can
be extended to simultaneous fuzzy relational equations [2] as
given below.

The simultaneous fuzzy relational equations for given tbtal
number of data in the training set are as follows:

Ci=DioR, 1=1,2,...,k, (23)

P, = {gl)(ui)a it \pwiltp (up) - pr(rp;)} < pp(ui) - pr(riz)

otherwise

(16)
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and their membership functions are as follows We calculate the partial derivative$oG)/(0h,.) and
(0GQ)/(0hmax), Using the derivative oHeaviside functiorin
1e, (¢;) \/{MD, (u)tus(ri,)}, forj=1,2, ... n (24) (55) of Appendix A, as follows:
i=1
oG
wherel = 1,2,...,k, and o —0(hmax — hr) (31)
= [up, (ui)]1xmeF (U) oG -
AL 0 hmax - hi 32
C’l [NC[(CJ)]lanF( class) (25) ahmax ; ( ) ( )
R= [N?l%(""z])]aneF(U X C’class)

tavhereé(«) is theDirac deltafunction.

In this case, the errat is taken by summing over all the da .
Using Egs. (31) and (32) in (30), we get

set. Thus, (10) is modified as follows:

k n ) 8hrnax _ 5(hmax - h’l")
E=7"% {nci(en) = ne(ep)} (26) Oy S 6(hmax — hi)
- o —d s B = By (33)
satisfying{ux(ri;) A (1 — pn(riy;)} > 0,i=1,2,...,mand 0, otherwise

j=1,2,...,n,whereC] is the calculated fuzzy set using (24),
andC; is the desired fuzzy set. The iterative scheme of (11) fQfhere N, 2 number of termsh;, satisfying the condition

finding the relationk® remains the same. Only the expressmn —hii=12..., $, 1.6, Nimax = Y01 6(hmax — hi),

i (11) could be modified as, = 1/(2 x k + s*), which  \yhich never vanishes because at leastoéofi = 1,2,...,s

depends on the number of ddta must be equal td,,,.y. SO(Ohmax )/ (9h,.) in (33) always exists
everywhere.

IV. MODIFIED APPROACH TOSOLVE Fuzzy
RELATIONAL EQUATION B. Derivative of Min-Function
We modify the above said approach to solve the fuzzy rela-Let the minimum value of;,7 = 1,2,...,s can be deter-

tional equation (FRE) by incorporating a rigorous treatment anined by a function called min-function and defined by
the computation of the derivative of max-function and min-func-

tion indicated in the (21) and (22), respectively. N
(21) (22), resp y. e = /\ h, (34)
A. Derivative of Max-Function
Let the maximum value of;,: = 1,2, ..., s be determined Now, our intention is to calculate the derivative of min-function
by a function called max-function and defined by defined as above with respect to one of its variables. Hence, we
s transfer the said max-function of (34) in the following functional
hmax = \/ hi- (27) form:
Now, our intention is to calculate the derivative of max-function L(h1 o, hs, .. b, hmm)
defined as above with respect to one of its variables. Hence, we — Z{H(h' — i) =1} + L. =0 (35)
transfer the said max-function of (27) into the following func- gt coom ‘
tional form

where L. is the number ofils,i = 1,2,...,s that are equal
G(hl7 h27 h37 RN} h57 hmax)

to hmin- AlSO it is a constant independentof,i = 1,2,...,s
_ andhmin-
Z{H max — hi) =1} + Ge =0 (28) Now, by using the implicit function theorem, we write
whereH (hmax — ki) is theHeaviside functiomlefined by Ol min oL oL
= - — (36)
i S b oh, Oh,/ Ohmin
H(hmax - h7) = { 07 thLmaX. < (29)
, otherwise wherere{1,2,...,s}.
and G, is the number ofh}s,i = 1,2,...,s that are W€ calculate the partial derivative$oL)/(9h,) and
equal t0 hya.,. Also, it is a constant and mdependent of0L)/(Ohmin), using the derivative oHeaviside functiorin
hiyi=1,2,...,5 andhmax. (55) of Appendix A, as follows:
Now, by using implicit function theorem, we write ol
Ohmax 0G| 0G on. = (hy — hmin) (37)

ah’l' N 0}2’7‘ ahnlax (30)

= - Z 8(hi — humin) (38)

Where7‘€{1,2,...78}. hmin
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i(x) the width of the pulse
8hmin 1 |f h — h in < /B
Zmin Nooin 7 min >
D Oh,. { , otherwise (1)

where N,,in = number of termg;, satisfying the condition
h; — hgin < ,B, fori = 1,2,...,s.
Now, the expression in (13) can be written as

o Ipc(c;) {pp (ui)tpr(ri;)}
F O pp (ui)tps(rij} Opx(riz) - (42

Comparing (27) with (15) we havie,,..x = pc(c;) andh; =
> pp(ui) - pw(ri),i=1,2,...,m. Using (40) in the above (42)

0 Gomrreccne M caceanny

<--8-- >

A wheret = ‘prod’ we get the derivativel’;; of (15) as
B= width ofthe pulse = { e i pe(ey) = {up(wi) - pw(rig)} < B
Fig. 1. Approximation oDelta functions(z). ’ otherwise (43)
wherei = 1,2,...,m andj = 1,2,...,n. These results are
Using (37) and (38) in (36), we get used only for the problems of Types and Il of Section Ill.
Comparing (34) with (17), we have,, = pp(u;) A
Ohmin __ 6(hr = huin) ps (7). Now, there is only one variable iy, as given above
oh., i1 6(hi — hunin) SO Npin = 1 only whenpup(u;) > ps(ri;). Therefore, the
1 if hoo = h derivative
— { Nmin ’ hmm ; r (39)
0, otherwise Ohmin { 1, if up(uw;) > pn(riy) (44)
A Opsn(rij) 0, otherwise
where N,;,= number of termsh;,7 = 1,2,...,s satisfying
the conditionhimin = hi, 1.6, Nin = Sy 8(hi — Bumin), Using (44) in (42) whereé = ‘min’, we get the derivativel;;
which never vanishes because at least otéofi = 1,2,...,s 0f(17) as
must be equal t@,in. SO(Ohmin)/ (k) in (39) always exists

everywhere.

Thus, from the above discussion, we understand that both the
derivative of max and min functions depend on the derivative
of the Heaviside functionwhich is discussed, for general readwherei = 1,2,...,m andj = 1,2,...,n. These results are
ability of the paper, in the Appendix A. used only for the problems of Types Il and IV of Section lIl.

andup(ui) > pw(rij) (45)

{ v if poley) = {up(ui) A ps(rij)} < B
0 otherwise.

C. Applicable Form of the Computation of Derivative of MaxD- Algorithm for the Estimation o
and Min Functions This algorithm gives the step-by-step calculatiorfofising

For the implementation of the expression of the derivative t¢ modified computational approach.
fuzzy max and min functions, we approximate Belta function Step 1) Start with an initial trial values oR(®) =
using afinite pulse shownin Fig. 1. The motivation behind the ap- [ (7:5)]mxn SUchthaf us (ri; )A(1—px(ri;)} >
proximation ofthdeltafunctiorby afinite pulseistoincorporate 0.
the notion of uncertainties built in the given data, which are all at- Step 2) Set the width of the pulgk convergent factok, the
tached with fuzzy membership functions, indicating their (data) error threshold, and maximum number of iterations
degree of possibilitiesto take partin any decision making process. smax- Set the initial iteration number= 0.
Thus, if we approximate thgelta functiorby a finite pulse with ~ Step 3) Set new iteration number= s + 1.
width 3, that means we try to take care of the possibilities of all Step 4) Using the given fuzzy daia, and C;, evaluateC,

the data that fall within the range @fin our computation of the by (23) andE by (26).
derivative of afuzzy max and min functions. Using these approxi- Step 5) EvaluatéE)/(dux(ri;)), in (12) using either (43)
mations, we formulate the approximate derivative of the max and (for the problems of Types Il and IV) foi =
min functions, respectively, as follows: 1,2,...,mandj = 1,2,...,n andas.
Step 6) Update the values pf(r;;) using the Newton’s
Omax { o M hax — hy <8 (40) iterative scheme [see (11)],
oh, 0, otherwise OB “
\(sH+1) N g 2 R =RE
M%(TU) - /I/SR(T‘”) o 8“3?(7"”) R="H%

where N ax 2 number of terms;, satisfying the condition
hmax—h; < B,fori =1,2,...,s,andthe parametgrcontrols wherei = 1,2,...,mandj = 1,2,...,n.
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TABLE | Exor (E)

Fuzzy SETSD,I,DIZ,CN'I,Z =1,2,...,8 FOR THEFUZZY SYSTEM a5

m— Typel

—

Membership values of | Membership values of Membership values of

fuzzy set D} fuzzy set D? fuzzy set C; 40-h Tt Type
0.00 0.27 0.80 0.97 0.11 0.00 0.00|0.00 0.35 0.80 0.11
1.00 0.23 0.00 0.00 0.35 1.00 0.00|0.08 0.66 0.30 0.18
0.00 0.05 1.00 0.08 0.70 0.30 0.00 [ 0.00 0.03 0.15 0.70
0.38 0.92 0.00 0.00 0.02 0.15 0.95|0.01 0.12 0.38 0.71
0.37 0.48 0.00 0.00 0.10 0.30 0.90|0.02 0.20 0.37 0.37
0.00 0.90 0.02 0.00 0.10 0.45 0.02]0.00 0.12 0.30 0.36
0.20 1.00 0.08 0.00 0.12 0.50 0.01]0.02 0.13 0.33 0.40
0.75 0.12 0.00 0.00 0.10 0.15 0.80|0.01 0.25 0.75 0.60

O~ DO [ WD

TABLE 1l
Fuzzy SETsD;, 1 =1,2,...,8 FORTYPEI

Membership values of fuzzy set D;

0.00 0.00 0.00 0.00 0.27 0.11 0.00 0.00 0.80 0.11 0.00 0.00
0.00 0.35 1.00 0.00 0.00 0.23 0.23 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.00 0.08 0.70 0.30 0.00 0 25 50 75 100 125 150 175 200 225 250 275 300 325 850 400 425 450 500
0.00 0.02 0.15 0.38 0.00 0.02 0.15 0.92 0.00 0.00 0.00 0.00

0.00 0.10 0.30 0.37 0.00 0.10 0.30 0.48 0.00 0.00 0.00 0.00 Number of iteration (s) —

0.00 0.00 0.00 0.00 0.00 0.10 0.45 0.02 0.00 0.02 0.02 0.02
0.00 0.12 020 0.01 0.00 0.12 0.50 0.01 0.00 0.08 0.08 0.01
0.00 0.10 0.15 0.75 0.00 0.10 0.12 0.12 0.00 0.00 0.00 0.00

Fig. 2. Squared errdiE') against each 25 iteratiqis).

O =~J| O Ot | WO DO b=t | =t

TABLE Il TABLE IV
Fuzzy SetsDy,l = 1,2,...,8 FORTYPEII SOLUTIONS OF RELATION R OF PROBLEMS TYPE | AND TYPE ||
1 Membership values of fuzzy set D; 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1]0.00 0.00 0.00 0.00 0.26 0.03 0.00 0.00 0.77 0.09 0.00 0.00 0.02 0.03 0.03 0.03 0.02 0.04 0.03 0.02
2[0.00 0.00 0.35 1.00 0.00 008 0.23 0.0 000 0.00 0.00 0.00 0.08 0.67 0.30 0.18 0.08 0.67 0.30 0.14
3]0.00 0.00 000 0.00 000 0.03 0.01 0.00 0.08 0.70 0.30 0.00 (.01 0.33 1.00 0.80 0.02 0.43 1.00 1.00
SO0 001011 0% 00 005 014 Uas G0 oo oa e L0 002 00¢ ool 000 003 003 0.01
6000 0.00 000 0.00 0.00 0.09 0.40 0.02 0.00 0.00 0.01 0.00 g'gi g'g‘; 8'2,5{ g'gg 8‘8; 8'22 g'gz g'gg’
710.00 0.02 0.10 0.00 0.00 0.12 0.50 0.01 0.00 0.01 0.04 0.00 . : : ' : : : '
81000 007 011 060 0.00 0.0l 0.02 0.0 000 000 000 o000 001 009 019 078 0.02 0.12 0.43 0.82
0.00 0.44 1.00 0.07 0.00 0.45 1.00 0.14
0.00 0.02 0.04 1.00 0.00 0.01 0.03 1.00
0.00 0.01 0.01 0.05 0.00 0.00 0.01 0.05
Step 7) Now test whethelpus(ri;) A (1 — p(rii))} 2 0, o0 000 0.00 0.00 0.00  0.00 _ 0.00 0.00
ornotforalli =1,2,...,mandj =1,2,...,n.If Type I Type II
not, then construct a set of index pairs
NF = {(i,5)/{pn(ri;) A (1 = pg(ri;)} < 0 e = 1072, and the maximum number of iterationssig., =
- ’ (¥ 1] ’

500. The values of the error, calculated every 25 steps of itera-
. tions, are displayed in Fig. 2. The solutions)ts, of the prob-
Set{un(rij) A (1 — px(ri;))} =0, V(i j)eNF. lems of Types | Il of Section IlI, are shown in Table IV.

i=1,2,....m and j=1,2,...,n}

Step 8) Repeat from Step 3 uniil < e and / ors = syax.

E. lllustration of the Modified Approach to the Estimatiorifof V. DESIGgEOL;TIT;\EI :I:_ng_lgfig'?ii%?’\l Fuzzy
We illustrate the modified method based on the data set (see

Table 1) given by Pedrycz [2]. Her&] = U; x Us, card(U;) = In classifier design (see Fig. 3), two phases exist, namely, the

my = 3, andcard(Us) = my = 4. Thereforecard(U) = learning phase (training phase), where we estimate the fuzzy re-

my X mg = 12. Now the membership values @¥,cF(U), lation% based on the algorithm of section IV-D, and the testing

given by the formulaup, (u;) = (1p; (uill)/\/l'D'f (u?)), where phase (classification phase), where we test the performance of

i =4(iy — 1) + 9,41 = 1,2,3 andiy = 1,2,3,4, are shown the classifier using (3) which inovlves the expressian

in Table I, and those ob; obtained by the formulap, (u;) = At the beginning of the training phase, we discretize (quan-

(1D (ul) - pp? (u))), wherei = 4(iy — 1) + 143,41 = 1,2,3, tize) the individual feature axis and the entire pattern space in

andi, = 1,2, 3,4 are shown in Table Ill. We start with an initial the following way.

trial valuesug (r;;) = 0,7 =1,2,...,12andj = 1,2,3,4. The Determine the lower and upper bounds of the datdiofea-

valuex = 10~ is chosen to ensure good convergence propéure value. Lep‘;? be thejth data of theth featureF;, and letd;

ties. The width of the pulse i8 = 0.05. The error threshold is be the length of segmentation aloitg feature axis.
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— Di ization of Representation of TABLE V
Training
] e el o o i A FuzzY SETS N F(U)
term s of fuzzy If-
IThen rul
e Check the error (E) in (%) uy Uy | e e e ur
E quation 25 with ) . :
mq‘:::;’;(!)w’ error ll HD; (’U,Zl) MD; (u%) ............... l’LDi (U:_n')
Dy | ppi(uy) | ppi(uy) | e e #pi (Umm;)
IModify the fuzzy . . . . -
If-Then rules Dy, | kpi. (u}) 1pi (Uh) | cooe e Epi (u3,,)
top}a_sﬁng
of training TABLE VI
data set Fuzzy SETS IN F(Cqlass) FOR0e{'min’, ‘prod}
© [ D7 [ DI [ o o D7)
EWP ce.l;unahng (C alculate the D% C 11 C 12 | eeere eeeee eeens C ka
& score| & score
L L DY | Cy | Cog | s . Car,
D,lﬁ Crit | Cry2 | e e e Chyik,
i Tassification by F 1 . .
 pine cain |—{Ciassiie in Seation ¥ CreF(Celass ), wherel = 3777 (TS kq)(jp — 1) 4 j. for each
Jp=1,2,... ,kp,p=1,2,..., ¢, andCyass IS the universe of
Fig. 3. Classifier based on fuzzy relational calculus. discourse constructed by all the classes in the pattern space, i.e.,
Cclass = {CI; (& F Cn}-

Minimum of the dataf},j = 1,2,... of theith feature is  |f D, is the fuzzy set which is a fuzzy pattern vector (see Def-

flfnm = mln](f) LetT

min min

be the remainder wheff.;,, is di- inition 7) formed by the antecedent clauses of the Rigi.e.,

vided byd,. Therefore, the lower bound of thh feature axis D,¢F(U), then the membership value of the belongingness of

is u; in Dy is determined by (8). According to the fuzzy implica-
LB, = in’ if 7l = 0 (46) tion method, we writé : F(Uy) x F(Us) x --- x F(U.) —
T fi. =i, otherwise. F(Celass)- _ _
The membership value of the classCelass WhenDjl-1 ison
This LB; is taken as théth coordinate of the Origin. U17 DJ2 is on U,, etc., is taken in the fo"owing way:

Again, maximum of the datﬁ; j =1,2,...oftheith feature

276 (Op) =

(np (i) (49)

is fiax = max;(f7). Letr},,. be the remainder wheff .. is \/ N
u;ec,NFZ(Dt ,D? ,....D¢ )
divided byd;. Therefore, the upper bound of tith feature axis Tz Je
is whereFZ(Dj , D3, ..., D5 ) is the zone which represents the
it i —0 tip of the fuzzy pattern vector (see Fig. 7 in Appendix B) and is
— max’ . max — 2 c
UB; = { N (di—ri ), otherwise. (47)  constructed by the fuzzy sel ,D? ..., DS of the ruleR,,
wherej, = 1,2,...,k, for eachp = 1,2

Let U; be the universe of discourse on tith feature axist;; For two-dimensional (2-D) pattern space, we may construct
then,U; hasm; = (UB; — LB;)/d; generic elements and theSGthe rules in the compact form as shown in Table VI.

areu}j =1,2,...,m;, which we define as follows R, If Fyis D1 andF; is D? , thenC'is C;,;, € F(Celass)
and the membershlp value of each clasge{l,2,...,n} of
the fuzzy seC;,;,, wherei; = 1,2,... ,k;,l = 1,2 WI|| be de-
[LB; + (j — 1) -d;, LB; + 7 - ;)] termined by(49). Based on the geqerated fuzzy rules as stated
. forj=1,2,...,(mi — 1) 48 above, we estimate the fuzzy relatinat the end of training
= [LB; + (m; —1) - d;, UB;] (48) pha_\se using t_he aIgonthm of the section IV-D. In the course of
for j = mi. estimatingR, if the error given by (26) does not reach the de-
sired threshold, even after a sufficient number of iterations, we
4 may have to modify the initial fuzzif-then rules to represent
Let the universe on theth feature axi€/; = {uf, u5,...,u},.}.  our knowledge about the training data set. On the other hand,
Let the Cartesian product space of the univet§ei = after reaching the error threshold, we cross-verify the quality
1,2,...,cbeU,ie U =U; x Uy x --- x Uc having elements of the estimated? by checking the classification score of the
each of typeu; = (u1 ui,,.oouf Juf €Up.p = 1,2,....¢), training data set (based on which the fuiizthen rules were
where i = 3 ° 1(H;’>p (i, — 1) + i. for each initially generated for estimatin®). If the classification score
ip=1,2,...,my,p=1,2,...c of the training data set (which are fuzzified by fuzzy masking
Now, we definek; fuzzy sets orv;, say,Dj,j =1,2,...,k; atthe time of testing) does not reach the satisfactory threshold
which are in shown in Table V. So there dre= 115_, k; fuzzy (say 80% recognition score is set as threshold), we may have
If-Then rules as follows: to modify the initial fuzzyif-then rules to represent our knowl-

Ry If Fyis Djl-1 andF; is D;‘?2 and... ... F_.is D3, thenC'is edge about the training data set. After satisfactory estimation
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F

2

Fig. 4. First synthetic data.

of i, we switch over to the testing phase (classification phasé&gke care of all uncertainties (e.g., uncertainties in the represen-

where we consider the classification of data which does not liation of knowledge about training patterns, uncertainties in the

long to the training data set. process of fuzzification, through fuzzy masking, of the testpat-
At the testing phase (classification phase), we use (3), @%s etc.) in our classification process.

stated in Section Il. The features of the selected patterns

are fuzzified using the concept of the fuzzy masking. The VI. EFFECTIVENESS OF THEPROPOSEDMETHOD

cIaSS|f|c§t|on results obtained from (3) produces a fuzzy Sty oot the effectiveness of our design, as stated in Section
C = Y._, nC(ci)/ci, which represents the degree of occur:

i h .V, we consider the classification of two synthetic data as shown
rence of each testpatten at different classes in the quantize y

o M Figs. 4 and 5. At the time of writing fuzzlj-Then rules for
pattern space. We, thus, get a fuzzy classification ofatestpattﬁ% classifier, we may consider complete cover of the pattern
To calculate the recognition score from the above result, X

WBace (see Appendix B), but as the consideration of complete
have to go through a certain decision process. In the first st ( P ) P

of our decision process, we increase the level of confidence er of the patter space does not bring any significant change
rescribin a)z-CFl)Jt of thé fuzzy set’. i.e i classification score, for practical purposes, without loss of
P J Y T generality, we consider partial cover of the pattern space.
Ca = {Ci//LC(CZ‘) > ciEOclass}-

A. Classification of First Synthetic Data
If C = 0(empty se}, then the given testpatten is not recog- £ the data shown in Fig. 4, we choose length of segmen-
nized by the present classifier. Otherwise; tationsd;, = 0.5 = d. Therefore, we geL.B; = 0 = LB,
\/ by (46) andUB; = 6 = UB, by (47) Thusm, = (UBl -
hgt(C) = ciécapic(ci). LB,)/dy = 12 andmy = (UBy — LBy)/dy = 12.
1) For the Problem of Type | of Section IIMWe definek; =
4 fuzzy sets o, andky = 3 fuzzy sets o/s which are shown
Classrecognize = {¢i/hgt(C) — pc(ci) < 0, c;eCy} in Tables VIl and VIl respectively ankl = k; x ko = 12 fuzzy

_ _ ) If-Then rules and their consequent parts are shown in Table IX.
wheref is a small threshold prescribed by the designer to cap-

ture the relative change in membership values among the eleyow we start with initial trial values ofis(ri;) = 0,i =
ments of the recognized clasgeissrecognize- 1,2,...,mandj = 1,2,....n,k = 1073,8 = 0.05,¢ =

i) In caseClass;ecognize 1S @ singleton set, then the giveni0-2, S, = 500 and terminate the iteration schemeSaf,.
testpatten is recognized uniquely. , The classification scores are shown in Table X.
ii) Otherwise, multiple classifications of the given testpatten 2) For the Problem of Type Il of Section llIIlWe definek, =
occur. 4 fuzzy sets or/; andk, = 4 fuzzy sets ort/,, so we can find
The notion of multiple classification is very natural in the caske = k; x ky = 16 fuzzy If-Then rules.
of testpattens occurring at overlapped classes. Such choice dflow we start with initial trial values ofix(r;;) = 0,i =
multiple classifications sometimes stands as a kind of grace It®,...,m andj = 1,2,...,n,k = 1073,8 = 0.05,¢ =

Now, we get the set of recognized classes as
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6 TABLE IX
Fuzzy SETS IN F(Cleiass) FOR THE FIRST SYNTHETIC DATA FOR
THE PROBLEM OF TYPE |
51 Rule | Antecedent part Consequent part
l Fl and Fg C1 C2 Cc3 Cq Cs Ce
R, | D} and D? [1.00 0.70 0.00 0.10 0.10 0.00
a4 R, D! and D% [0.30 030 0.00 1.00 0.70 0.10
R3 D% and D% [0.00 0.00 0.00 0.70 0.70 0.10
ot Ry DI and D? [0.70 1.00 0.70 0.10 0.30 0.30
34 Rs D; and D35 |030 0.70 0.70 0.70 1.00 1.00
Rg D; and D3 |0.00 0.00 0.00 0.70 1.00 0.70
Ry DY and D? [0.10 1.00 1.00 0.10 0.30 0.30
Rs | DY and DZ [0.10 0.70 0.70 0.10 1.00 1.00
21 Ry D% and D% |0.00 0.00 0.00 0.10 0.70 1.00
Ry | D} and D [0.00 0.30 1.00 0.00 0.10 0.30
Ry | DY and D% [0.00 0.10 0.70 0.00 0.30 1.00
1 1 R, | D} and D% 0.00 0.00 0.00 0.00 0.30 1.00
0. TABLE X
o \ 2 3 4 s 6 CLASSIFICATION SCORES OFFIRST SYNTHETIC DATA FOR THE
PROBLEM OF TYPE |
Fy ——
To Number of | Recognition
Fig. 5. Second synthetic data. From| A | B |C|D| E | F data score(%)
A 1091 2 | 0|0 0 0 116 93.97
TABLE VI B 7 1105]16| 0 1 1 117 89.74
Fuzzy SETS IN F(U;) FOR THE FIRST SYNTHETIC DATA FOR THE C 0 7117110 1 1 79 89.87
PROBLEM OF TYPE | D 0 0 77110 | 9 89 86.52
E 0 |28 |0 |1 |135]| 98 151 89.40
B e R I B R T R
- . : - - - - - : : : . 1 1 71 1 111 91.15
DI[00 00 01 03 07 1.0 07 03 01 00 00 00 Total | 109 | 105 71135
D3 |00 00 00 00 01 03 07 1.0 0.7 03 0.1 0.0
Dg |00 0.0 00 00 00 0.0 01 03 07 1.0 0.7 03 TABLE XI
CLASSIFICATION SCORES OFFIRST SYNTHETIC DATA FOR THE
PROBLEM OF TYPE Il
TABLE VIII
Fuzzy SETS IN F'(Us) FOR THE FIRST SYNTHETIC DATA FOR THE To Number of | Recognition
PROBLEM OF TYPE | From|[ A BJC[D|[E [ F data score(%)
A 114 | 6 05 4 4 116 93.28
G0N T T T SO T ST T ST T P PO et
D 03 07 1.0 07 03 0.1 006 0.0 0.0 0.0 0.0 0.0 D 0 0 1079 1211 39 88.76
D300 00 0.0 01 03 07 1.0 07 03 01 00 0.0 E [0 ]28[0([3[137]117 151 90.73
F [0 [ 3 [1][0]65][113 115 98.26
D100 00 0.0 00 00 00 01 03 07 1.0 07 0.3 ol Tt T 73 T T TG 535

1072, Simax = 500 and terminate the iteration schemeSat,.. 10738 = 0.05,¢ = 10~2,5 — 500 and terminate the

The classification scores are shown in Table XI. iteration scheme af,,,«. The classification scores are shown

B. Classification of Second Synthetic Data in Table XIl.
For the data shown in Fig. 5, we choose length of segmen- VII. A PPLICATIONS
tationsd,; = 0.5 = d,. Therefore, we getLB; = 0 = LBs o . .
by (46) andUB; = 6 = UB, by (47). Thusyni = (UB; — After achieving satisfactory results on a synthetic set of

LBy)/dy = 12 andmy = (UBs — LBs)/d» = 12. By (48), data, we apply the proposed design for the vowel classification
we get problem of an Indian language, namely Telugu [24]. In the
following subsections, we discuss the classification results.
Up = {uy,u3,...,ujy} For the data shown in Fig. 6, we choose length of segmenta-
Uy = {u%,u% ..... U%Q} tionsd; = 50 andd, = 100. Therefore, we getl.B; = 200
T and LB, = 600 by (46) andUB; = 850 andU B, = 2600
For both of the problems of Types | and Il of Section Ill, wdy (47). Thus,m; = (UBy — LBy)/dy = 13 andmy =
definer; = 3 fuzzy sets or/; andk, = 4 fuzzy sets o/, so  (UBz — LBy)/dy = 20. By (48), we get
we can findk = k1 X ko = 12 fuzzyIf-Then rules. L L
Now, for both the problems, we start with initial trial values U = {uuuz: e 7U13}

of up(ri;) = 0, = 1,2,...,mandj = 1,2,...,n,k = Ug:{u%,ug,...,ugo}.



10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 1, FEBRUARY 2003

“Telegu vowels I Size , Frequency of occurrences
4 | =2
o 3-8
a 6—9
(=] 10 — 14
a 1S and abuve
850
800
700
’ 600
~N
T 500
’/__:
s
400
300
200 1 1 1 1 ] 1
600 900 1200 1500 1800 2100 2400 2600
I, IN Hz
Fig. 6. Telegu vowels.
TABLE XII TABLE XIV
CLASSIFICATION SCORES OFSECOND SYNTHETIC DATA CLASSIFICATION SCORES OFTELUGU VOWEL FOR THEPROBLEM OF TYPE Il
To Number of | Recognition To Number of | Recognition
From| A |B | C data score(%) From [ a | e i o] ula data score(%)
A |287]13] 6 287 100.00 a |82 4 | 0 [20] 0 |74 83 98.80
B | 8 9]0 Ll 98.97 e | 7 |196] 52 | 21 | 7 |83 200 98.00
T(i 1 21827 906 gz 100 gggg i 0[50 [126] 0 | 0 |0 133 94.74
ota : o |16]| 26 | 0 |114| 72 | 30 116 98.28
Problem of Type I u 0 10 0 48 | 108 | 2 112 96.43
0 40 | 32 0 19 1 |65 66 98.48
To Number of | Recognition Total | 82 | 196 | 126 | 114 | 108 | 65 97.32
From| A [B | C data score(%)
A 283 | 43 | 38 287 98.61 TABLE XV
B 2 196l 0 97 98.97 COMPARATIVE STUDY
C 3 0|99 100 99.00 i _
Total [ 283 196 199 98.76 Different . }.iecogmtlon Score (%)
types of First synthetic | Second synthetic | Vowel data
Classifiers data (Figure 4) | data (Figure 5) (Figure 6)
Problem of Type II Bayesian 78.0 80.9 80.3
Fuzzy c-means 80.3 82.9 80.5
TABLE XIII Conventional multilayer 88.15 78.0 90.0
CLASSIFICATION SCORES OFTELUGU VOWEL FOR THEPROBLEM OF TYPE | perception (MLP)
P t method 91.15 99.59 95.77
To Number of | Recognition w;:l?e;a:fnixf operator
From|ja| e | i |o|u]§d data score(%) Present method with 93.85 98.76 97.32
a 82| 4 0|29 0 |74 83 98.80 max-product operator
e 71193 | 52 | 21 7 |82 200 96.50
i | 048 )119] 0] 0 O 133 89.47 0.05,¢ = 1072, Spax = 1000, and terminate the iteration
o 15126 | 0 |114) 72 ] 30 116 98.28 scheme ab,,.«. The classification scores are shown in Tables
u 0 10 0 48 | 107 | 2 112 95.54 X1l and XIV.
§ 41| 32 0 19 1 65 66 98.48 ’
Total | 82 | 193 | 119 | 114 | 107 | 65 95.77

VIIl. COMPARATIVE STUDY

For both the problems of Types | and Il of Section Ill, we define In Table XV we have compared the performance (in terms of
k1 = 5 fuzzy sets or/; andko = 7 fuzzy sets orl/s, so we recognition score) of the present classifier with those of some
can findx = k1 X Ko = 35 fuzzyIf-Then rules. existing ones. The results shown in Table XV indicate that the

Now, for both the problems, we start with initial trial values operformance of the present design of the classifier is comparable
pw(ri) =0,1,2,...,mandj = 1,2,...,n,k = 1073, = with those of some existing ones.
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IX. CONCLUSION Definition 3: A sequenceg~, (z)} of good functions is said
In this paper, we consider a particular interpretation [i.e., (58 be regular if for every given good functiorz), such that
of (1)] of MFI and introduce a notion of fuzzy pattern vector . oo
which represents the antecedent part of the interpretation a) of n— 00 Yn(2)y () dae
(). The advantage of considering such notion is two-fold. First, e

we can describe a population of training patterns by linguistiists and is finite
features. Second, the notion of fuzzy pattern vector helps us for- -
mulat.e the consequent part of a) of (1) (see Example 2 c_>f Ap- hmoc/ a(2)y(2) d = / ~(z) da.

pendix B). We develop a new approach to the computation of

the derivative of the fuzzy max/min function. A detail design of

pattern classifier based on FRC is developed and very promisifige sequencée=(**/} of good functions is regular.
results are obtained. We compute the performance of the preserRé€finition 4: Two regular sequencesy, (z)} and{3,(z)}
classifier with those of some existing classifiers and get satRre said to be equivalent if and only if

factory response. A neural net version of the present design to oo

estimate the fuzzy relatioR (for classification problem) would % o (2)y(z) dz = nh_,moo/ Bz

be the scope for future work. In the present design study we have —oo

only considered the problems of Types | and Il of Section Il. )

Similar results are also obtainable for the problems of Types i€ two sequencege™(**/"} and {e~(**/2"} of good func-

— 00

and IV. tions are regular and equivalent.
Definition 5: An equivalence class of regular sequences is a
APPENDIX A generalized function.
A conventional notation is to writge as a generalized func-
Good Function tion associated with the equivalence class of wHigh(x)} is

Definition 1: A function~(x) is said to be a good function a typical member. Now, we write

if it is infinitely many differentiable everywhere oR and if ‘ oo

N w0 [ qu@ne)de= ¢ gapi(o)ds
|$|hm | r%ff)lzo —o0 J—oc0
. _ The ¢ emphasizes that a limiting pocess is involved and that
for every mtggem >0 andzgvery integer 2.0- the quantity on the righthand side is not an ordinary integral.
The functiony(z) = e~ is a good function. Later on, when certain properties have been established, it will
A good function has the following properties: be found reasonable to replageby |-
1) If v1(x) and~y2(z) are good, thenry,(x) + v2(x) and Let{a,(z)} and{p,(z)} are two regular sequences defining
~1(x)y2(z) are also good. the generalized functiog, andgs, respectively. Thus
2) If y(z) is good, ther(dv(z)/dz) is also good. - -
3) If y(z) is gpod, theny(az + b), wherea andb are real i ozn( Yy(z) dz = 7{ 91(z)y(z) dw.
constants, is also good. . J—co
lim o
Fairly Good Function n—>00/ Bn(2)y(x) dx —?{_ g2(x)y(x) dx.

Definition 2: Afunctiont(z) is said to be a fairly good func- )
tion if it is infinitely many differentiable everywhere i and If the above regular sequences are equivalent, then the above

if there is a some fixedV such that limits are equal. Consequently, we have:
lim —NdEW(x)_ > > .
ool ™ 45 =0 $ a@n@d= ¢ pEn@d o =,
for every integers > 0. (50)
A simple example of a fairly good function g, bute® is )
notafaifly good fﬂnction. v ‘ Proposition 1: The sequence/(n/m)e~ """} is regular.
A fairly good function has the following properties: Define a generalized function, denoteddfy:) such that
1) If 41(x) andypo () are fairly good, themp; () + v)2(x) 00
ands)y ()1, (z) are also fairly good. f 6(z)y(x) dz = ~(0)
2) If ¢(z) is fairly good, then(dy(z)/dz) is also fairly -
good. Proof: Now, we have
3) If ¢(x) is fairly good, then)(az + b), wherea andb are
real constants, is also fairly good. /OO e_"”“Zv(x) dz = ~(0) /°° o= o

Generalized Function ' P .
/ {7 0)}e™™" dx (51)

We first give the following definitions
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again by substituting = n2?, we get Calculation of the Derivative of Heaviside Functiéf(z)

- o . - The Heaviside functioris first defined insection IV-A [see
/ L / R L / e %712 g, (29)]. Our objective is to calculate the the derivative of this func-
0o Vnz v Jo tion. By using Definition 6, we have

— 00

1 _ /T
= —=rl1/2) = ﬁ : 2) 74: H'(w)y(w) d = — f: H(ay () de

Also, by mean value theorem of integral calculus, we have
sincey(z) is good,y(z) H (x) is a good function which vanishes

o) =1 =| [ ] <ol 53) @se —
o dx Hence
Here,y(z) is a good function, séd~(z)/dx) is also good and < o
is bounded by (say). Using (53), we get j{ H'(z)y(z)dz = — /0+ v (z) dz = v(0+).

Since(z) is continuous everywhere or-o0o, x|, we have
7(0+) = 7(0) = 7(0-).

\ | 6w = i

<M /oo 2o~ do Using Proposition 1 and (50), we get
J0
M —nz’ijoo _ M e 00
= e Ie = (54) § H @@ A=) = § dan(o)ds
Using (52) and (54) in (51), we get = H'(z) = §(). (55)
Con e B M We use this result in sections IV-A [see (31) and (32)] and
/_Oo \/;6 V(@) dz = 7(0) +0 (ﬁ) IV-B [see (37) and (38)]
and taking limit, we get APPENDIX B
lim °° [ _ Multidimensional Fuzzy Implication and the Notion of Fuzzy
e /_OO re V(@) dw =(0). Pattern Vector

, , _ For simplicity of discussion and/or demonstration, let us
Therefore, the given sequence is regular by Definition 3 apdgyict ourselves to the problem of pattern classification on
defines a generalized fctidiiz) such that R?. Without lack of any generality, all the discussions and/or
- - demonstrations are valid for the problem of pattern classifica-
ol / \/Ee_nzﬂv(x) de — % §(z)y(z) dz = y(0). tononRc > 2. Let us now give a brief discussion on the
Joo VT J -0 correspondence between the conventional approach and the
FRC approach to pattern classification.

Definition 6: The sequencg((dvy.(z))/dz)} is regularand  |nthe conventional approach, the position of each pattern (say
defines a generalized function, which will be denotedjlfy:)  P) on the finite range of pattern space is represented by a pattern
and called the derivative of. vectorF., and we always try to discriminate among patterns by

The sequencé((dyn(z))/dz)} is regular because classifying the pattern vectdr. (see Fig. 7).

Therefore, from the given data set (i.e., the training data set),
/°° dVg(x) () d = [v(x)’yn(x)]‘iooo—/oo () dy(z) . we always know where the patterns are located and then try to
z J o dx separate them by some appropriate decision function. Subse-
guently, we use the said decision function to classify the test-
but v, (z)y(x), being a good function, vanishes as— +co patten vectors.

— 00

and(dv(z)/dx) is a good function so that If we try to mimick the cognitive process of human reasoning
for pattern classification; however, then, the first problem is to
lim > dya(z) _ > dy(z) represent (from a given set of imprecise observations stated in
Nn— 00 (z)dx = — g(x) dz. , .
oo dx oo dz terms of fuzzyif-then rules) the patterns on the pattern space in

an appropriate fashion so that we can develop a suitable infer-
This also demonstrates that equivalémt (z)} give equiva- encing technique for classification.

lent ((dvyn(z))/dz), so we can write Since a multidimensional fuzzy implication (MFI) [26] such
as‘“if(zis A,y is B) thenz isC” where A, B, C are fuzzy sets,
<, e dry(x) is not merely a collection of 1-D implications, a conventional
j{_oo g'(@)y(w) dv = — j{_oo 9(@) dx de. interpretation is usually taken in the multidimensional case. For
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Fig. 7. Representation of a fuzzy Pattern vector. Kidye area ABCD represents the fuzzy pattern veEp0|§ (M, M>)T, whereM; andM, are the fuzzy
sets onF; andF, axes. The membership values of small quantized zones are determined by the p@?ﬁbhj) = min(par, (ui), par, (v5)), WhereV;; =

(wiyv;)Vi=1,2,...,17;5 =1,2,..., 13. Instead of “min” operator, we may use algebraic product, etc., depending upon the way we want to write the relation
formed by the antecedent clauses of a one dimensional fuzzy implication.

example, according to the conventional interpretation, the aboveRemark 4: For the present treatment, we assume the primary
2-D implication is translated into, fuzzy term Z,V,; as a fuzzy singleton. It may not be a fuzzy
singleton in general.
Remark 5: As we have quantized our pattern spacd®rby
(56) small square grids (see Fig. 7), a fuzzy point on the quantized
pattern space is represented from an area ABCD which contains
a fuzzy relation which is a fuzzy set in the quantized product
Thus, by interpretation a) of (56), at every observation (rulegpacel/; x Us.
features are given in the form of fuzzy sets which represent theRemark 6: The fuzzy point as stated in Remark 5 is linguis-
antecedent clauses of the fuzighen rule and which are de- tically described agM;, M>) on the quantized product space.
fined over the universe of the feature axes. Therefore, in such &Remark 7: In Fig. 7, the pair {7 is 71, F» is Z5) is the initial
case, we cannot represent an individual pattern by a vector. pwint in the qunatized product space. This initial point is a fuzzy
stead, from a given observation (rule), we can represent a pppint which is a fuzzy singleton in the quantized product space.
ulation of patterns’ in an area (in case dk? but a region in This is basically a single point fuzzy relation having member-
general) on the pattern space by a fuzzy pattern vector (see Bigjp value 1 in the quantized product space.
7. Remark 8: In the present text, we identify quantized pattern

Now we consider the following remarks. space and quantized product spébe x Us).

Remark 1: We quantize the universe of individual features Let us now consider the following definition of a fuzzy vector
axis by a small line segments [30], as shown in Fig. 7. Thus, wetween the initial point and a fuzzy point on the quantized
make the universe of each feature axis finite. product space.

Remark 2: Over the quantized universe of the individual fea- Definition 7: Let F} be a fuzzy vector having “c” compo-
ture axis, we define the primary fuzzy terds S;, M;, B;,Vi, nents, each of which is a fuzzy sBt defined over the universe
whereZ; = zero, S; = small, M; = medium, andB; = U, ofthe feature axi$’;. The fuzzy vectoﬁf isafuzzy setinthe
big (see Fig. 7) [30]. quantized product spa¢g x Us x - - - x U... Each element of the

Remark 3: Primary fuzzy termsZ; and S; are completely fuzzy set is a vector having the same initial point but different
overlapped, as shown in Fig. 7. Alsg, andS; may be partially terminal points which are the elements of the fuzzy point which
overlapped without any lack of generality. is a fuzzy set (see Remark 5). Each terminal point of each vector

a) ifzisA andyisB, thenzisC
orb) ifzisA andyisB, thenzisC |~
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in the set carries one membership value indicating its (vectortbjs case, note that the defuzzified version of the fuzzy vector
degree of belongingness to the 8t A fuzzy vectorF; isrep-  F; is a singleton represented by the vedtoy,.
resented as Depending upon the area of each class occupied ffqm
e A (see Fig. 7), we determine the degree of occurrence of different
Fr = {(“F“f((v)’v) VVelix U x - X U"} classes of patterns under that. Such degree of occurrence is
Whereuff : Uy x Uy x -+ x U, — [0,1] is the membership represented_ by_a fuz_zy sgt which is t_he consequent part o_f an
MFI and which is defined in the quantized pattern space which
is the universe of all pattern classes. Thus, in the same pattern
: ) . space, i.e., in the quantized produgt x Us (if ¢ = 2), we de-
. _Remark 9: Without lack of generality, we may_extend Def—ﬁne two types of fuzzy sets: one fuzzy setis representeﬁjby
inition 7 of a fuzzy vector between two fuzzy points, but SUCH 4 the other fuzzy setis the consequent part of a MFI. The con-
generality is not needed for the present discussion. sequent part of a MFI, which is a fuzzy set, simply indicates the
The process of defuzzification of the fuzzy vectdris PEr- relative position of a fuzzy pattern vector with respect to dif-
formed on selecting the elements of the fuzzy veétprwhich  orent classes of patterns in the quantized pattern space. Once
is & fuzzy set, having highest membership values. The defuzgjg antecedent part, and the consequent part of a MFI are repre-
fied version of the fuzzy vectaF is a set. In the case that theggpieq by two types of fuzzy sets as stated above, our next job is

said defuzzified version is a singlton, then the defuzzified vegs aitach a meaningful interpretation to the said representations.
sion of /'y becomes the crisp vector as stated in this section (Se%xample 2: Let us consider the fuzzy pattern veciﬁf of

!Example 1). The fuzzy séb’ as mgntloned n th_e Qefln!tlon 7 Fig. 7. The position oiﬁf on the pattern space means the area
isan eI(_ement of the term set as dlgcussed earlier in this sectifBep The position ABCD ofﬁf is obtained when
The universe of the components b, i.e., the fuzzy seD?,
may be continuous/discrete and the universépfnay be con- ﬁf _ {Fl ?5 M,y }
tinuous/discrete. If the universes are discrete, we should follow Fy, is M,
the numerical definition of membership functions; otherwis%
we should follow the functional definition. If the defuzzified
version of Fy reduces to the crisp vector as stated earlier, the P = {F1 is M1:| ot
membership value at the terminal point of the vedfooquf Fy is 5
can alternatively be interpreted as trle highest possibility td  Now, if we try to compute the fuzzy s€t which is the conse-
hold the property of the fuzzy vectdr;. By the term property, quent part of the following MFI:
we mean a particular combination of the elements of different [

i ( LIS M1> ~C

function of Fy, andp s, (V) is the grade of membership Bfin
Fy

nd the position oﬁf is changed when

term sets. For instance, with respect to Fig. 7, the property as- .
sumed by fuzzy vectak'; is (M, M) Like this, we can have Fois M,
property(Mi, S2)", (M1, B2)", etc. . we have to consider the relative position &f, i.e., the area
Thus, we introduce the notion of a fuzzy vector (i.£5) ABCD with respect to the defined covey, ¢;, andc,. For sim-
which is an analogous representationfofon k? (see Fig. 7). plicity of demonstration, we consider partial cover.
When we write fuzzyf-then rules to represent the patterns on From Fig. 7, it is obvious that the area of classs substan-
R?, the fuzzy vector, as stated above, becomes a fuzzy pattgafly occupied by ABCD. Looking at the possibility values of
vector. The fuzzy pattern vector no longer represents a singhe small quantized zones@qfoccupied by ABCD, we can have
pattern onk?; rather it represents a population of patterns. the following four types of estimate of class-membership for the
Example 1:Let us consider the following fuzzy patternclasse;.

vector (see Fig. 7), For classc;
F is M, _ Lo 1) optimistic estimatethe highest membership value of the
Fy is M| Fy =Anp, (V)] F} small quantized zones of the area of classccupied by
17 13 ABCD, for instance, 1.0 indicate by, - of Fig. 7 (also
- Z Z“F (‘Z,j)/‘_/;,j = 0_1/17574 see Example 1).
im1 =1 ! 2) pessimistic estimat¢he lowest membership value of the

= - small quantized zones of the area of classccupied by
...1.0/V¢ -4+ 0.1/V; . .

* Vo &+ 01/Vigio+ ABCD, for instance, 0.1 (see Fig. 7).

where 4" and “>." are in the set theoretic 3) expected estimata@verage of the membership values of

sense and M; is a fuzzy set {0.1/us,0.3/ug, all the small quantized zones of the area of classcu-
0.5/u7,0.7/ug, 1.0/ug, 0.7/u1q, 0.5/u11,0.3/U12,0.1/us3} pied by ABCD, for instance, 0.381 (see Fig. 7).

on the universe U;,M, is a fuzzy set 4) most likely estimatecomes from the subjective quantifi-
{0.1/v4,0.4/v5,0.7/v6,1.0/v7,0.7/vs,0.4/v9,0.1/v10} ~ ON cation of human perception as mentioned in [28]. Here, in
the universd/, and each vecto¥;; is a generic element of the this example, the subjective quantification of belonging-

fuzzy setF}, that represents one small quantized zone on the  ness of a population of patterns to a particular class (say
pattern space. Thus instead of a point pattern, a population of ¢;) is achieved looking at the area of the said class oc-
patterns is represented W_if Here the fuzzy seff is defined cupied by the fuzzy vector, for instance, 0.7 (see Fig. 7),
over the universé/; x Us,, i.e., the quantized product space. In which is the subjective quantification of human percep-
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tion as stated above and which may vary since the per-g]
ception from one person to another varies within certain
limit; but cannot be changed abruptly. For further verifi- [
cation of the subjective quantification of our perception,
we may consider the following simple calculation.

Let the area of the class of Fig. 7 be approximated
by the total number of small quantized zones covered upii]
(partly or fully) by the contour of the clags. From Fig.

7, we see 46 that such zones represent the area of trﬂﬁ]
classc;. The area of the class occupied by ABCD of
the fuzzy vector is 32 zones. Now, if we take the ratio[13]
(32 + 46) = 0.696, which is the computed value of the
belongingness of a population of patterns to classith
respect to the fuzzy pattern vecté“'y of Fig. 7, then we
see that the subjective quantification of belongingness of®!
a population of patterns, i.e., 0.7 or 0.6 or 0.8, lies closq16]
to that of the computed value.
Similarly, we can have the estimates of the class-membershipz
for the classes; andc,,.
For classc;
1) optimistic estimate= 0.3;
2) pessimistic estimate- 0.1;
3) expected estimate= (0.3 + 0.3 + 0.1 + 0.1 + 0.1 +
0.1)/6 = 1.0/6 = 0.167.;
4) most likely estimate= 0.3. Note that here the computed [21]
value of belongingness {$/23) = 0.26. [22]
For classc,
All estimates are zero. 23]
Thus, we get four fuzzy sets for the consequent part of a MF
(i.e., the fuzzy se) [24]

(10]

(14]

(18]

(19]

(20]

Copt = {1.0/¢;,0.3/¢;,0.0/¢cp } [25]

Chess = {0.1/¢;,0.1/¢;,0.0/c,}
Coxpt = {0.381/¢;,0.167/¢;,0.0/c,}
Crost = {0.7/¢;,0.3/¢j,0.0/¢,}.

(26]

(27]

In this paper, for all subsequent discussions for the design stucﬁ/sl
of the classifier based on FRC, we assume the optimistic esti-

mate of the fuzzy sef’ (without mentioning anything like opt, [2°]
pess, expt, most) which represents the consequent part of (a) of
(56). Instead of considering the optimistic estimate of the con-

sequent part of a) of (56) in our study, we may use other kind o0
estimates, as stated above. 31]
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