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Pattern Classification Using Fuzzy
Relational Calculus

Kumar S. Ray and Tapan K. Dinda

Abstract—Our aim is to design a pattern classifier using fuzzy
relational calculus (FRC) which was initially proposed by Pedrycz
. In the course of doing this, we first consider a particular interpre-
tation of the multidimensional fuzzy implication (MFI) to repre-
sent our knowledge about the training data set. Subsequently, we
introduce the notion of a fuzzy pattern vector to represent a pop-
ulation of training patterns in the pattern space and to denote the
antecedent part of the said particular interpretation of the MFI.
We introduce a new approach to the computation of the deriva-
tive of the fuzzy max-function and min-function using the concept
of a generalized function. During the construction of the classifier
based on FRC, we use fuzzy linguistic statements (or fuzzy mem-
bership function to represent the linguistic statement) to represent
the values of features (e.g., feature 1 is small and 2 is big) for a
population of patterns. Note that the construction of the classifier
essentially depends on the estimate of a fuzzy relation between
the input (fuzzy set) and output (fuzzy set) of the classifier. Once
the classifier is constructed, the nonfuzzy features of a pattern can
be classified. At the time of classification of the nonfuzzy features
of the testpattens, we use the concept of fuzzy masking to fuzzify
the nonfuzzy feaure values of the testpattens. The performance of
the proposed scheme is tested on synthetic data. Finally, we use the
proposed scheme for the vowel classification problem of an Indian
language.

Index Terms—Fuzzy pattern vector, fuzzy relational calculus
(FRC), generalized function, multidimensional fuzzy implication
(MFI), pattern classification.

I. INTRODUCTION

I N real-world pattern classification problems, fuzziness is
connected with diverse facets of cognitive activity within the

human being. The sources of fuzziness are related to labels ex-
pressed in pattern space, as well as, labels of classes taken into
account in classification procedures. Although a lot of scientific
developments have already been made in the area of pattern clas-
sification, existing techniques of pattern classification remain
inferior to the human classification processes which perform ex-
tremely complex tasks. Hence, we attempt to develop a plausible
tool using fuzzy relational calculus (FRC) for modeling and
mimicking the cognitive process of human reasoning for pat-
tern classification. The FRC approach to pattern classification
can take care of uncertainties in feature values of patterns under
different conditions like measurement error, noise, etc. Though
there are several existing approaches to designing a classifier
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using the concept of fuzzy set/fuzzy logic [35]–[59], we have
selected the concept proposed by W. Pedrycz [32] and suitably
modified it to incorporate our new concept of the computation
of the derivative of the fuzzy max-function and min-function. To
represent the knowledge about the training data set, we consider
a particular interpretation of multidimensional fuzzy implica-
tion (MFI) [26]. We consider a notion of fuzzy pattern vector,
which represents the antecedent part of the said particular inter-
pretation of the MFI to meaningfully carry out the task of pattern
classification using FRC. During the construction of the classi-
fier based on FRC, we use fuzzy linguistic statements (or fuzzy
membership functions to represent the linguistic statement) to
represent the values of features (e.g., featureis small and

is big) for a population of patterns represented by the above
fuzzy pattern vector. Note that the construction of the classifier
essentially depends on the estimation of a fuzzy relationbe-
tween the antecedent part and consequent part of the rules. Once
the classifier is constructed, the nonfuzzy features of a pattern
can be classified. At the time of classification of the nonfuzzy
features of the testpattens, we use the concept of fuzzy masking
to fuzzify the nonfuzzy feature values of the testpattens. The
performance of the proposed scheme is tested on synthetic data.
Finally, we use the proposed scheme for the vowel classification
problem of an Indian language.

II. STATEMENT OF THE PROBLEM1

For the present problem, let us consider the conventional in-
terpretation of a MFI [see App. B, Eq. (56a)] as given in

a) if is A and is B then is C
or b) if is A then is B then is C

(1)

and the notion of a fuzzy pattern vector (see App. B) which
represents the antecedent clauses of (a) of (1) and locates a
population of patterns in the quantized pattern space.2 As-
sume that the quantized pattern space consists of “c” universes

in the form , where
each represents the universe on theth feature axis

.
Assume that is a fuzzy relation [formed by the antecedent

clauses of a) of (1)], which is a fuzzy set in quantized product
space , namely . Also, assume that there
exists a set of finite number of classes , i.e.,

, by which the finite range of the pat-
tern space is covered. The consequent clause of a) of (1) is a

1For further clarity of the section, the see Appendix B.
2See Remark 8 of Appendix B.
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fuzzy set , where denotes the de-
gree of belongingness of the population of patternsto the class

, for (see Example 2 of Appendix B).
Therefore, by considering the conventional interpretation of

a MFI, the fuzzy set formed by the antecedent clauses of a)
of (1) is associated with the fuzzy set which represents the
consequent clause of a) of (1). Hence, there exists a relation
between and . More precisely, and are related via
a certain relation (i.e., ), which is presently unknown
and has to be estimated, based on the training data set, for the
design of the classifier. Now, for the testing of the classifier,
we specify how is derived from given and estimated .
We may consider the fuzzy relational equation, namely, a direct
equation

(2)

where composition operator, whereis a -norm
operator.

Equation (2) can be rewritten, in terms of the membership
function, in the following form:

for (3)

This explicit form of (3) is needed for actual design study of the
classifier.

Let us asume that the training set consists of ordered pairs

and the classifier relation is supposed to specify a system of
equations

(4)

then the fuzzy relation which satisfies (4) is given by

(5)

But the above mentioned system of equations in (4) may not
have a solution [32]. Hence, in this paper we look for an ap-
proximate solution of the system of fuzzy relation equations in
(4).

The advantages which we obtain from FRC approach to pat-
tern classification are as follows

• We obtain the local description of the pattern space in
terms of few quantized zones [61]. Depending upon the
need or the problem, we may increase or decrease the
granularity of our description of pattern space with smaller
or bigger quantized zones.

• For estimating the relation of a classifier, we do not have
to select the representative data set from the given set of
data (patterns). Instead, we use the gross property of few

populations of the given data (patterns) spread over the
pattern space by using few fuzzy pattern vectors which are
formed by the different combinations of the primary fuzzy
terms defined over the universe of the individual feature
axis (see the Appendix B) and which describe the overall
distribution of patterns in pattern space.

• We obtain multiple classification which is very natural in
the case of overlapped classes of patterns.

III. EXISTING METHOD TOSOLVE FUZZY RELATION EQUATION

The numerical solution of fuzzy relational equation has been
proposed by several researchers [1]–[8], [10], [13], [17], [21]. In
this section, we briefly review the method proposed by Pedrycz
[2]. We focus our attention on max-composition operator of
fuzzy relational equations, which are defined on finite spaces

(6)

where composition operator, and are
the fuzzy sets defined on the universe of discourses

and , re-
spectively, and is the fuzzy relation on . Let

;
then, the fuzzy sets and and fuzzy relation are as
follows:

(7)

If the universe of the quantized pattern space consists of
‘ features, say the is a fuzzy set de-
fined on the quantized product spaces of , that is

, where is the
universe of theth feature axis with card . Let
be the fuzzy set on , i.e., for

; then, card and is the tuple
each of type ,
and corresponding membership value belonging tois de-
termined as (8) shown at the bottom of the page, where

for each
. Equation (6) can be put in the following form:

for (9)

where is the -norm operator.
Thus, from (8) and (9), where ‘of (9) is one of the operators

in prod, min , we get following four types of problems:
Type I: by using i) of (8) and of (9);
Type II: by using ii) of (8) and of (9);
Type III: by using i) of (8) and of . (9);
Type IV: by using ii) of (8) and of (9).

i)
ii)

(8)
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Let be the sum of the square of the error over
and is defined by

(10)

where is the calculated fuzzy set using (9), andis the de-
sired fuzzy set.

Now, the basic problem is to estimate via
some given and which minimize defined in (10) and
satisfying
and .

A general method to solve an optimization problem, defined
above, is to solve a set of equations, which form the necessary
conditions for a minimum of the square of the error defined in
(10). Thus, we have . Now,
we discuss the applicability of Newton’s method and its simpli-
fication.

The Newton’s iterative scheme for finding the solution of
is

(11)

where and is the convergent
factor and also is an nonincreasing gain factor depending on the
number of iteration. It can be described as

is chosen empirically in order to achieve good convergent
properties and avoid significant oscillations in the iteration pro-
cedure [2].

Now

(12)

where i.e., (13)

(14)

for and .
If we consider -norm operator as “ ,” then the (9) is

written as

for (15)

and in this case in (14) is determined as (16) shown at the
bottom of the page, for and .

Again, if we cosider -norm operator as “ ,” then (9) is
written as

for (17)

and in this case, is determined as

if
and
otherwise

(18)

for and
Here, the derivative of the max-function and min-function in

the (14), (16), and (18), respectively are as follows:

if
if

(19)

where and
and

if
if

(20)

where and , which are piecewise dif-
ferentiable and is undefined at for max-function in (19)
and for min-function in (20). Thus, we get some prob-
lems in our numerical computation [7] which may be overcome
by defining the derivatives at and , respectively as
follows

if
if

(21)

and
if
if

(22)

Both formulas for the computation of the derivatives of the max
and min functions, as mentioned above, return either 0 or 1
value of the derivatives. Such two-valued results of the deriva-
tives have some inherent difficulties, in connection to the con-
vergence of the solution as mentioned in [7]. To overcome such
difficulties there are some propositions in [7]. In the following
section, we will provide an alternative approach based on gen-
eralized functions (see Appendix A).

The above method for solving fuzzy relational equations can
be extended to simultaneous fuzzy relational equations [2] as
given below.

The simultaneous fuzzy relational equations for given total
number of data in the training set are as follows:

(23)

if
otherwise

(16)
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and their membership functions are as follows

for (24)

where , and

(25)

In this case, the error is taken by summing over all the data
set. Thus, (10) is modified as follows:

(26)

satisfying and
, where is the calculated fuzzy set using (24),

and is the desired fuzzy set. The iterative scheme of (11) for
finding the relation remains the same. Only the expression

in (11) could be modified as , which
depends on the number of data.

IV. M ODIFIED APPROACH TOSOLVE FUZZY

RELATIONAL EQUATION

We modify the above said approach to solve the fuzzy rela-
tional equation (FRE) by incorporating a rigorous treatment on
the computation of the derivative of max-function and min-func-
tion indicated in the (21) and (22), respectively.

A. Derivative of Max-Function

Let the maximum value of be determined
by a function called max-function and defined by

(27)

Now, our intention is to calculate the derivative of max-function
defined as above with respect to one of its variables. Hence, we
transfer the said max-function of (27) into the following func-
tional form

(28)

where is theHeaviside functiondefined by

if
otherwise

(29)

and is the number of that are
equal to . Also, it is a constant and independent of

and .
Now, by using implicit function theorem, we write

(30)

where .

We calculate the partial derivatives and
, using the derivative ofHeaviside functionin

(55) of Appendix A, as follows:

(31)

(32)

where is theDirac delta function.
Using Eqs. (31) and (32) in (30), we get

if
otherwise

(33)

where number of terms , satisfying the condition
, i.e., ,

which never vanishes because at least one of
must be equal to . So in (33) always exists
everywhere.

B. Derivative of Min-Function

Let the minimum value of can be deter-
mined by a function called min-function and defined by

(34)

Now, our intention is to calculate the derivative of min-function
defined as above with respect to one of its variables. Hence, we
transfer the said max-function of (34) in the following functional
form:

(35)

where is the number of that are equal
to . Also it is a constant independent of
and .

Now, by using the implicit function theorem, we write

(36)

where .
We calculate the partial derivatives and

, using the derivative ofHeaviside functionin
(55) of Appendix A, as follows:

(37)

(38)
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Fig. 1. Approximation ofDelta function�(x).

Using (37) and (38) in (36), we get

if
otherwise

(39)

where number of terms satisfying
the condition , i.e., ,
which never vanishes because at least one of
must be equal to . So in (39) always exists
everywhere.

Thus, from the above discussion, we understand that both the
derivative of max and min functions depend on the derivative
of theHeaviside functionwhich is discussed, for general read-
ability of the paper, in the Appendix A.

C. Applicable Form of the Computation of Derivative of Max
and Min Functions

For the implementation of the expression of the derivative of
fuzzy max and min functions, we approximate theDelta function
using a finitepulseshown inFig.1.Themotivationbehind the ap-
proximationoftheDeltafunctionbyafinitepulseisto incorporate
the notion of uncertainties built in the given data, which are all at-
tached with fuzzy membership functions, indicating their (data)
degreeofpossibilities to takepart inanydecisionmakingprocess.
Thus, if we approximate theDelta functionby a finite pulse with
width , that means we try to take care of the possibilities of all
the data that fall within the range ofin our computation of the
derivativeofa fuzzymaxandmin functions.Using theseapproxi-
mations, we formulate the approximate derivative of the max and
min functions, respectively, as follows:

if
otherwise

(40)

where number of terms , satisfying the condition
, for , and the parametercontrols

the width of the pulse

if
otherwise

(41)

where number of terms , satisfying the condition
, for .

Now, the expression in (13) can be written as

(42)

Comparing (27) with (15) we have and
. Using (40) in the above (42)

where we get the derivative, of (15) as

if
otherwise

(43)
where and . These results are
used only for the problems of Types and II of Section III.

Comparing (34) with (17), we have
. Now, there is only one variable in as given above

so only when . Therefore, the
derivative

if
otherwise

(44)

Using (44) in (42) where , we get the derivative,
of (17) as

if
and
otherwise.

(45)

where and . These results are
used only for the problems of Types III and IV of Section III.

D. Algorithm for the Estimation of

This algorithm gives the step-by-step calculation ofusing
the modified computational approach.

Step 1) Start with an initial trial values of
such that

.
Step 2) Set the width of the pulse, convergent factor, the

error threshold, and maximum number of iterations
. Set the initial iteration number .

Step 3) Set new iteration number .
Step 4) Using the given fuzzy data and , evaluate

by (23) and by (26).
Step 5) Evaluate , in (12) using either (43)

(for the problems of Types III and IV) for
and and .

Step 6) Update the values of using the Newton’s
iterative scheme [see (11)],

where and .
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TABLE I
FUZZY SETSD ;D ; ~C ; l = 1; 2; . . . ; 8 FOR THEFUZZY SYSTEM

TABLE II
FUZZY SETSD ; l = 1; 2; . . . ; 8 FOR TYPE I

TABLE III
FUZZY SETSD ; l = 1; 2; . . . ; 8 FOR TYPE II

Step 7) Now test whether ,
or not for all and . If
not, then construct a set of index pairs

and

Set

Step 8) Repeat from Step 3 until and / or .

E. Illustration of the Modified Approach to the Estimation of

We illustrate the modified method based on the data set (see
Table I) given by Pedrycz [2]. Here,

, and . Therefore,
. Now the membership values of ,

given by the formula , where
and , are shown

in Table II, and those of obtained by the formula
, where ,

and are shown in Table III. We start with an initial
trial values and . The
value is chosen to ensure good convergence proper-
ties. The width of the pulse is . The error threshold is

Fig. 2. Squared error(E) against each 25 iteration(s).

TABLE IV
SOLUTIONS OFRELATION < OF PROBLEMS TYPE I AND TYPE II

, and the maximum number of iterations is
. The values of the error, calculated every 25 steps of itera-

tions, are displayed in Fig. 2. The solutions ofs, of the prob-
lems of Types I II of Section III, are shown in Table IV.

V. DESIGN OF THECLASSIFIER BASED ON FUZZY

RELATIONAL CALCULUS (FRC)

In classifier design (see Fig. 3), two phases exist, namely, the
learning phase (training phase), where we estimate the fuzzy re-
lation based on the algorithm of section IV-D, and the testing
phase (classification phase), where we test the performance of
the classifier using (3) which inovlves the expression.

At the beginning of the training phase, we discretize (quan-
tize) the individual feature axis and the entire pattern space in
the following way.

Determine the lower and upper bounds of the data ofth fea-
ture value. Let be the th data of theth feature , and let
be the length of segmentation alongth feature axis.
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Fig. 3. Classifier based on fuzzy relational calculus.

Minimum of the data of the th feature is
Let be the remainder when is di-

vided by . Therefore, the lower bound of theth feature axis
is

if
otherwise.

(46)

This is taken as theth coordinate of the origin.
Again, maximum of the data of the th feature

is . Let be the remainder when is
divided by . Therefore, the upper bound of theth feature axis
is

if
otherwise.

(47)

Let be the universe of discourse on theth feature axis ;
then, has generic elements and these
are , which we define as follows

for

for

(48)

Let the universe on theth feature axis .
Let the Cartesian product space of the universe

be , i.e., having elements
each of type ,

where for each
.

Now, we define fuzzy sets on , say,
which are in shown in Table V. So there are fuzzy
If-Then rules as follows:

: If is and is and is , then is

TABLE V
FUZZY SETS INF (U )

TABLE VI
FUZZY SETS INF (C ) FOR��f'min'; 'prod'g

, where for each
, and is the universe of

discourse constructed by all the classes in the pattern space, i.e.,
.

If is the fuzzy set which is a fuzzy pattern vector (see Def-
inition 7) formed by the antecedent clauses of the rule, i.e.,

, then the membership value of the belongingness of
in is determined by (8). According to the fuzzy implica-

tion method, we write
.

The membership value of the class when is on
is on , etc., is taken in the following way:

(49)

where is the zone which represents the
tip of the fuzzy pattern vector (see Fig. 7 in Appendix B) and is
constructed by the fuzzy sets of the rule ,
where for each .

For two-dimensional (2–D) pattern space, we may construct
the rules in the compact form as shown in Table VI.

: If is and is , then is
and the membership value of each class of
the fuzzy set , where will be de-
termined by(49). Based on the generated fuzzy rules as stated
above, we estimate the fuzzy relationat the end of training
phase using the algorithm of the section IV-D. In the course of
estimating , if the error given by (26) does not reach the de-
sired threshold, even after a sufficient number of iterations, we
may have to modify the initial fuzzyif-then rules to represent
our knowledge about the training data set. On the other hand,
after reaching the error threshold, we cross-verify the quality
of the estimated by checking the classification score of the
training data set (based on which the fuzzyif-then rules were
initially generated for estimating). If the classification score
of the training data set (which are fuzzified by fuzzy masking
at the time of testing) does not reach the satisfactory threshold
(say 80% recognition score is set as threshold), we may have
to modify the initial fuzzyif-then rules to represent our knowl-
edge about the training data set. After satisfactory estimation
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Fig. 4. First synthetic data.

of , we switch over to the testing phase (classification phase),
where we consider the classification of data which does not be-
long to the training data set.

At the testing phase (classification phase), we use (3), as
stated in Section II. The features of the selected patterns
are fuzzified using the concept of the fuzzy masking. The
classification results obtained from (3) produces a fuzzy set

, which represents the degree of occur-
rence of each testpatten at different classes in the quantized
pattern space. We, thus, get a fuzzy classification of a testpatten.
To calculate the recognition score from the above result, we
have to go through a certain decision process. In the first stage
of our decision process, we increase the level of confidence by
prescribing a -cut of the fuzzy set , i.e.,

If empty set, then the given testpatten is not recog-
nized by the present classifier. Otherwise;

Now, we get the set of recognized classes as

where is a small threshold prescribed by the designer to cap-
ture the relative change in membership values among the ele-
ments of the recognized classes .

i) In case is a singleton set, then the given
testpatten is recognized uniquely. ,

ii) Otherwise, multiple classifications of the given testpatten
occur.

The notion of multiple classification is very natural in the case
of testpattens occurring at overlapped classes. Such choice of
multiple classifications sometimes stands as a kind of grace, to

take care of all uncertainties (e.g., uncertainties in the represen-
tation of knowledge about training patterns, uncertainties in the
process of fuzzification, through fuzzy masking, of the testpat-
tens etc.) in our classification process.

VI. EFFECTIVENESS OF THEPROPOSEDMETHOD

To test the effectiveness of our design, as stated in Section
V, we consider the classification of two synthetic data as shown
in Figs. 4 and 5. At the time of writing fuzzyIf-Then rules for
the classifier, we may consider complete cover of the pattern
space (see Appendix B), but as the consideration of complete
cover of the pattern space does not bring any significant change
in classification score, for practical purposes, without loss of
generality, we consider partial cover of the pattern space.

A. Classification of First Synthetic Data

For the data shown in Fig. 4, we choose length of segmen-
tations . Therefore, we get
by (46) and by (47). Thus,

and .
1) For the Problem of Type I of Section III:We define

fuzzy sets on and fuzzy sets on which are shown
in Tables VII and VIII respectively and fuzzy
If-Then rules and their consequent parts are shown in Table IX.

Now we start with initial trial values of
and

and terminate the iteration scheme at .
The classification scores are shown in Table X.

2) For the Problem of Type II of Section III:We define
fuzzy sets on and fuzzy sets on , so we can find

fuzzy If-Then rules.
Now we start with initial trial values of

and
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Fig. 5. Second synthetic data.

TABLE VII
FUZZY SETS IN F (U ) FOR THE FIRST SYNTHETIC DATA FOR THE

PROBLEM OF TYPE I

TABLE VIII
FUZZY SETS IN F (U ) FOR THE FIRST SYNTHETIC DATA FOR THE

PROBLEM OF TYPE I

and terminate the iteration scheme at .
The classification scores are shown in Table XI.

B. Classification of Second Synthetic Data

For the data shown in Fig. 5, we choose length of segmen-
tations . Therefore, we get,
by (46) and by (47). Thus,

and . By (48),
we get

For both of the problems of Types I and II of Section III, we
define fuzzy sets on and fuzzy sets on so
we can find fuzzy If-Then rules.

Now, for both the problems, we start with initial trial values
of and

TABLE IX
FUZZY SETS IN F (C ) FOR THE FIRST SYNTHETIC DATA FOR

THE PROBLEM OF TYPE I

TABLE X
CLASSIFICATION SCORES OFFIRST SYNTHETIC DATA FOR THE

PROBLEM OF TYPE I

TABLE XI
CLASSIFICATION SCORES OFFIRST SYNTHETIC DATA FOR THE

PROBLEM OF TYPE II

and terminate the
iteration scheme at . The classification scores are shown
in Table XII.

VII. A PPLICATIONS

After achieving satisfactory results on a synthetic set of
data, we apply the proposed design for the vowel classification
problem of an Indian language, namely Telugu [24]. In the
following subsections, we discuss the classification results.

For the data shown in Fig. 6, we choose length of segmenta-
tions and Therefore, we get,
and by (46) and and
by (47). Thus, and

. By (48), we get
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Fig. 6. Telegu vowels.

TABLE XII
CLASSIFICATION SCORES OFSECOND SYNTHETIC DATA

TABLE XIII
CLASSIFICATION SCORES OFTELUGU VOWEL FOR THEPROBLEM OFTYPE I

For both the problems of Types I and II of Section III, we define
fuzzy sets on and fuzzy sets on , so we

can find fuzzy If-Then rules.
Now, for both the problems, we start with initial trial values of

and

TABLE XIV
CLASSIFICATION SCORES OFTELUGU VOWEL FOR THEPROBLEM OFTYPE II

TABLE XV
COMPARATIVE STUDY

, and terminate the iteration
scheme at . The classification scores are shown in Tables
XIII and XIV.

VIII. C OMPARATIVE STUDY

In Table XV we have compared the performance (in terms of
recognition score) of the present classifier with those of some
existing ones. The results shown in Table XV indicate that the
performance of the present design of the classifier is comparable
with those of some existing ones.



RAY AND DINDA: PATTERN CLASSIFICATION USING FUZZY RELATIONAL CALCULUS 11

IX. CONCLUSION

In this paper, we consider a particular interpretation [i.e., (a)
of (1)] of MFI and introduce a notion of fuzzy pattern vector
which represents the antecedent part of the interpretation a) of
(1). The advantage of considering such notion is two-fold. First,
we can describe a population of training patterns by linguistic
features. Second, the notion of fuzzy pattern vector helps us for-
mulate the consequent part of a) of (1) (see Example 2 of Ap-
pendix B). We develop a new approach to the computation of
the derivative of the fuzzy max/min function. A detail design of
pattern classifier based on FRC is developed and very promising
results are obtained. We compute the performance of the present
classifier with those of some existing classifiers and get satis-
factory response. A neural net version of the present design to
estimate the fuzzy relation (for classification problem) would
be the scope for future work. In the present design study we have
only considered the problems of Types I and II of Section III.
Similar results are also obtainable for the problems of Types III
and IV.

APPENDIX A

Good Function

Definition 1: A function is said to be a good function
if it is infinitely many differentiable everywhere on and if

for every integer and every integer .
The function is a good function.
A good function has the following properties:

1) If and are good, then and
are also good.

2) If is good, then is also good.
3) If is good, then , where and are real

constants, is also good.

Fairly Good Function

Definition 2: A function is said to be a fairly good func-
tion if it is infinitely many differentiable everywhere on and
if there is a some fixed such that

for every integer .
A simple example of a fairly good function is , but is

not a fairly good function.
A fairly good function has the following properties:

1) If and are fairly good, then
and are also fairly good.

2) If is fairly good, then is also fairly
good.

3) If is fairly good, then , where and are
real constants, is also fairly good.

Generalized Function

We first give the following definitions

Definition 3: A sequence of good functions is said
to be regular if for every given good function , such that

exists and is finite

The sequence of good functions is regular.
Definition 4: Two regular sequences and

are said to be equivalent if and only if

The two sequences and of good func-
tions are regular and equivalent.

Definition 5: An equivalence class of regular sequences is a
generalized function.

A conventional notation is to write as a generalized func-
tion associated with the equivalence class of which is
a typical member. Now, we write

The emphasizes that a limiting pocess is involved and that
the quantity on the righthand side is not an ordinary integral.
Later on, when certain properties have been established, it will
be found reasonable to replaceby .

Let and are two regular sequences defining
the generalized function and , respectively. Thus

If the above regular sequences are equivalent, then the above
limits are equal. Consequently, we have:

iff

(50)

Proposition 1: The sequence is regular.
Define a generalized function, denoted by such that

Proof: Now, we have

(51)
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again by substituting , we get

(52)

Also, by mean value theorem of integral calculus, we have

(53)

Here, is a good function, so is also good and
is bounded by (say). Using (53), we get

(54)

Using (52) and (54) in (51), we get

and taking limit, we get

Therefore, the given sequence is regular by Definition 3 and
defines a generalized fnction such that

Definition 6: The sequence is regular and
defines a generalized function, which will be denoted by
and called the derivative of.

The sequence is regular because

but , being a good function, vanishes as
and is a good function so that

This also demonstrates that equivalent give equiva-
lent , so we can write

Calculation of the Derivative of Heaviside Function

The Heaviside functionis first defined insection IV-A [see
(29)]. Our objective is to calculate the the derivative of this func-
tion. By using Definition 6, we have

since is good, is a good function which vanishes
as .

Hence

Since is continuous everywhere on we have
.

Using Proposition 1 and (50), we get

(55)

We use this result in sections IV-A [see (31) and (32)] and
IV-B [see (37) and (38)].

APPENDIX B

Multidimensional Fuzzy Implication and the Notion of Fuzzy
Pattern Vector

For simplicity of discussion and/or demonstration, let us
restrict ourselves to the problem of pattern classification on

. Without lack of any generality, all the discussions and/or
demonstrations are valid for the problem of pattern classifica-
tion on . Let us now give a brief discussion on the
correspondence between the conventional approach and the
FRC approach to pattern classification.

In the conventional approach, the position of each pattern (say
) on the finite range of pattern space is represented by a pattern

vector , and we always try to discriminate among patterns by
classifying the pattern vector (see Fig. 7).

Therefore, from the given data set (i.e., the training data set),
we always know where the patterns are located and then try to
separate them by some appropriate decision function. Subse-
quently, we use the said decision function to classify the test-
patten vectors.

If we try to mimick the cognitive process of human reasoning
for pattern classification; however, then, the first problem is to
represent (from a given set of imprecise observations stated in
terms of fuzzyif-then rules) the patterns on the pattern space in
an appropriate fashion so that we can develop a suitable infer-
encing technique for classification.

Since a multidimensional fuzzy implication (MFI) [26] such
as “if ( is is ) then is ” where are fuzzy sets,
is not merely a collection of 1–D implications, a conventional
interpretation is usually taken in the multidimensional case. For
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Fig. 7. Representation of a fuzzy Pattern vector. Key:The area ABCD represents the fuzzy pattern vector~F = (M ;M ) , whereM andM are the fuzzy
sets onF andF axes. The membership values of small quantized zones are determined by the relation� (~V ) = min(� (u ); � (v )), where~V =

(u ; v )8 = 1; 2; . . . ; 17; j = 1; 2; . . . ; 13. Instead of “min” operator, we may use algebraic product, etc., depending upon the way we want to write the relation
formed by the antecedent clauses of a one dimensional fuzzy implication.

example, according to the conventional interpretation, the above
2–D implication is translated into,

a) if is and is then is
or b) if is and is then is

(56)

Thus, by interpretation a) of (56), at every observation (rule),
features are given in the form of fuzzy sets which represent the
antecedent clauses of the fuzzyif-then rule and which are de-
fined over the universe of the feature axes. Therefore, in such a
case, we cannot represent an individual pattern by a vector. In-
stead, from a given observation (rule), we can represent a pop-
ulation of patterns in an area (in case of but a region in
general) on the pattern space by a fuzzy pattern vector (see Fig.
7).

Now we consider the following remarks.
Remark 1: We quantize the universe of individual features

axis by a small line segments [30], as shown in Fig. 7. Thus, we
make the universe of each feature axis finite.

Remark 2: Over the quantized universe of the individual fea-
ture axis, we define the primary fuzzy terms ,
where , and

(see Fig. 7) [30].
Remark 3: Primary fuzzy terms and are completely

overlapped, as shown in Fig. 7. Also, and may be partially
overlapped without any lack of generality.

Remark 4: For the present treatment, we assume the primary
fuzzy term as a fuzzy singleton. It may not be a fuzzy
singleton in general.

Remark 5: As we have quantized our pattern space onby
small square grids (see Fig. 7), a fuzzy point on the quantized
pattern space is represented from an area ABCD which contains
a fuzzy relation which is a fuzzy set in the quantized product
space .

Remark 6: The fuzzy point as stated in Remark 5 is linguis-
tically described as on the quantized product space.

Remark 7: In Fig. 7, the pair ( is is ) is the initial
point in the qunatized product space. This initial point is a fuzzy
point which is a fuzzy singleton in the quantized product space.
This is basically a single point fuzzy relation having member-
ship value 1 in the quantized product space.

Remark 8: In the present text, we identify quantized pattern
space and quantized product space .

Let us now consider the following definition of a fuzzy vector
between the initial point and a fuzzy point on the quantized
product space.

Definition 7: Let be a fuzzy vector having “c” compo-
nents, each of which is a fuzzy set defined over the universe

of the feature axis . The fuzzy vector is a fuzzy set in the
quantized product space . Each element of the
fuzzy set is a vector having the same initial point but different
terminal points which are the elements of the fuzzy point which
is a fuzzy set (see Remark 5). Each terminal point of each vector
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in the set carries one membership value indicating its (vector’s)
degree of belongingness to the set. A fuzzy vector is rep-
resented as

where is the membership

function of , and is the grade of membership of in

.
Remark 9: Without lack of generality, we may extend Def-

inition 7 of a fuzzy vector between two fuzzy points, but such
generality is not needed for the present discussion.

The process of defuzzification of the fuzzy vector is per-
formed on selecting the elements of the fuzzy vector, which
is a fuzzy set, having highest membership values. The defuzzi-
fied version of the fuzzy vector is a set. In the case that the
said defuzzified version is a singlton, then the defuzzified ver-
sion of becomes the crisp vector as stated in this section (see
Example 1). The fuzzy set as mentioned in the Definition 7
is an element of the term set as discussed earlier in this section.
The universe of the components of , i.e., the fuzzy set ,
may be continuous/discrete and the universe ofmay be con-
tinuous/discrete. If the universes are discrete, we should follow
the numerical definition of membership functions; otherwise,
we should follow the functional definition. If the defuzzified
version of reduces to the crisp vector as stated earlier, the
membership value at the terminal point of the vectorof
can alternatively be interpreted as the highest possibility ofto
hold the property of the fuzzy vector . By the term property,
we mean a particular combination of the elements of different
term sets. For instance, with respect to Fig. 7, the property as-
sumed by fuzzy vector is . Like this, we can have
property , etc.

Thus, we introduce the notion of a fuzzy vector (i.e.,)
which is an analogous representation ofon (see Fig. 7).
When we write fuzzyif-then rules to represent the patterns on

, the fuzzy vector, as stated above, becomes a fuzzy pattern
vector. The fuzzy pattern vector no longer represents a single
pattern on ; rather it represents a population of patterns.

Example 1: Let us consider the following fuzzy pattern
vector (see Fig. 7),

is
is

where “ ” and “ ” are in the set theoretic
sense and is a fuzzy set

on the universe is a fuzzy set
on

the universe and each vector is a generic element of the
fuzzy set , that represents one small quantized zone on the
pattern space. Thus instead of a point pattern, a population of
patterns is represented by . Here the fuzzy set is defined
over the universe , i.e., the quantized product space. In

this case, note that the defuzzified version of the fuzzy vector
is a singleton represented by the vector .

Depending upon the area of each class occupied from,
(see Fig. 7), we determine the degree of occurrence of different
classes of patterns under that. Such degree of occurrence is
represented by a fuzzy set which is the consequent part of an
MFI and which is defined in the quantized pattern space which
is the universe of all pattern classes. Thus, in the same pattern
space, i.e., in the quantized product (if ), we de-
fine two types of fuzzy sets; one fuzzy set is represented by,
and the other fuzzy set is the consequent part of a MFI. The con-
sequent part of a MFI, which is a fuzzy set, simply indicates the
relative position of a fuzzy pattern vector with respect to dif-
ferent classes of patterns in the quantized pattern space. Once
the antecedent part, and the consequent part of a MFI are repre-
sented by two types of fuzzy sets as stated above, our next job is
to attach a meaningful interpretation to the said representations.

Example 2: Let us consider the fuzzy pattern vector of
Fig. 7. The position of on the pattern space means the area
ABCD. The position ABCD of is obtained when

is
is

and the position of is changed when

is
is

etc

Now, if we try to compute the fuzzy set which is the conse-
quent part of the following MFI:

If
is
is

we have to consider the relative position of, i.e., the area
ABCD with respect to the defined cover , and . For sim-
plicity of demonstration, we consider partial cover.

From Fig. 7, it is obvious that the area of classis substan-
tially occupied by ABCD. Looking at the possibility values of
the small quantized zones ofoccupied by ABCD, we can have
the following four types of estimate of class-membership for the
class .
For class

1) optimistic estimate: the highest membership value of the
small quantized zones of the area of classoccupied by
ABCD, for instance, 1.0 indicate by of Fig. 7 (also
see Example 1).

2) pessimistic estimate: the lowest membership value of the
small quantized zones of the area of classoccupied by
ABCD, for instance, 0.1 (see Fig. 7).

3) expected estimate: average of the membership values of
all the small quantized zones of the area of classoccu-
pied by ABCD, for instance, 0.381 (see Fig. 7).

4) most likely estimate: comes from the subjective quantifi-
cation of human perception as mentioned in [28]. Here, in
this example, the subjective quantification of belonging-
ness of a population of patterns to a particular class (say

) is achieved looking at the area of the said class oc-
cupied by the fuzzy vector, for instance, 0.7 (see Fig. 7),
which is the subjective quantification of human percep-
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tion as stated above and which may vary since the per-
ception from one person to another varies within certain
limit; but cannot be changed abruptly. For further verifi-
cation of the subjective quantification of our perception,
we may consider the following simple calculation.

Let the area of the class of Fig. 7 be approximated
by the total number of small quantized zones covered up
(partly or fully) by the contour of the class. From Fig.
7, we see 46 that such zones represent the area of the
class . The area of the class occupied by ABCD of
the fuzzy vector is 32 zones. Now, if we take the ratio

, which is the computed value of the
belongingness of a population of patterns to classwith
respect to the fuzzy pattern vector of Fig. 7, then we
see that the subjective quantification of belongingness of
a population of patterns, i.e., 0.7 or 0.6 or 0.8, lies close
to that of the computed value.

Similarly, we can have the estimates of the class-membership
for the classes and .
For class

1) optimistic estimate ;
2) pessimistic estimate ;
3) expected estimate

.;
4) most likely estimate . Note that here the computed

value of belongingness is .
For class

All estimates are zero.
Thus, we get four fuzzy sets for the consequent part of a MFI

(i.e., the fuzzy set )

In this paper, for all subsequent discussions for the design study
of the classifier based on FRC, we assume the optimistic esti-
mate of the fuzzy set (without mentioning anything like opt,
pess, expt, most) which represents the consequent part of (a) of
(56). Instead of considering the optimistic estimate of the con-
sequent part of a) of (56) in our study, we may use other kind of
estimates, as stated above.
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