Unsupervised feature extraction using neuro-fuzzy approach
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Abstract

The present article demonstrates a way of formulating a newro-fuzzy approach for feature extraction under unsupervised
training. A furzy feature evaluation index for a set of features is newly defined in terms of degree of similarity between
two patterns i both the original and transformed feature spaces. A concept of flexible membership function incorporating
weighted distance is introduced for computing membership values in the transformed space that is obtained by a set of
linear transformation on the original space. A layered network is designed for performing the task of minimization of the
evaluation index through unsupervised learning process. This extracts a set of optimum transformed features, by projecting
s-dimensional original space directly to #'-dimensional {#' < n) transformed space, along with their relative importance.
The extracted features are found to provide better classification performance than the original ones for different real life data
with dimensions 3, 4, 9, 18 and 34, The superiority of the method over principal component analysis network, nonlinear
discriminant analysis network and Kohonen self-organizing feature map is also established.

1. Introduction

Feature selection or extraction s a process of se-
lecting a map of the form x'= f(x) by which a
sample ®(x.x2,....x,) in an p-dimensional mea-
surement space (R") 15 wansformed mo a point
X{xLayonay ) inoan a'-dimensional (g <n)
feature space (R" ). The problem of feature selection
deals with choosing some of x;'s from the measure-
ment space o constitute the feature space. On the
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other hand, the problem of feature extraction deals
with generating new x;'s (constituting the feature
space) based on some x;7's in the measurement space.
The main objective of these processes is o retain
the optimum salient charactensues necessary for the
recognition process and to reduce the dimensionality
of the measurement space so that effective and casily
computable algonthms can be devised for efficient
categorization. The present aricle concems with
feature extraction.

Different useful classical techniques for feature
extraction are available in [3,6]. Some of the recent
attempts made for this task in the framework off ANN
are mainly based on multlayer feedforward net-
works [5,11.12,18,19] and self-organizing networks
[12,10,9]. The methods based on multlayer feedfor-
ward networks include, among others, development
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of prncipal component analysis (PCA) network
[17.5,1], nonlinear discriminant analysis network [22],
Sammon’s projection, linear discriminant analysis
(LDA) network [12], whereas those based on self-
organizing networks include development of nonlinear
projection based Kohonen's self-organizing feature
map {SOM) [12,8], distortion tolerant Gabor trans for-
mations followed by minimum distortion clustering
by multilayer self-organizing maps | 10] and a nonlin-
ear projection method based on Kohonen's topology
preserving maps [9]. Note that, depending on whether
the class information of the samples are known or
not, these methods are classified under supervised or
unsupervised mode. For example, the algonthms de-
seribed in [11,18,22] fall under supervised category
whereas those in [10,17.8] are i unsupervised mode.

Recently, attempts are being made to integrate
the ments of fuzzy set theory and ANN under the
heading ‘neuro-fuzzy computing” with an aim of
making the systems artificially more intelligent. lncor-
poration of fuzzy set theory enables one to deal with
uncerainties in different tasks of pattem recognition
system, arising from deficiency (e.g., vagueness,
mcompleteness, ete.) in information, in an effi-
cient manner. ANNs, having the capability of fault
tolerance, adaptivity and generalization, and scope for
massive parallelism, are widely used in dealing with
leaming and optimization tasks. In the area of pattern
recognition, neuro-fuzey approaches have been at-
tempted mostly for designing classification/clustering
methodologies. The problem of feature selection,/ex-
traction, particularly the later task, has not been ad-
dressed much in neuro-furey framework.

The present article is an attempt in this regard and
provides a neuro-fuzzy approach for feature extrac-
tion under unsupervised tmining. The methodology
imvolves connectionist minimization of a fuzey fea-
ture evaluation index. The feature evaluation mdex 1s
defined based on the membership functions denoting
the degrees of similarity between two patlerns in
both the onginal and transformed feature spaces.
The lower the wvalue of the index, the higher
s the impordance of the transformed features in
charmctenzing/discriminating  various clusters. The
ransformed space is obtained through a set of lin-
car transformations. Computation of the membership
values in the ransformed space involves a set of
weighting coefficients which provides flexibility in
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Fig. 1. Schematic description of the neum-fuzzy method for fea-
ture extmction.

modeling varous clusters and reflects the degree of
individual imponance of the transformed features.
A layered network 15 designed for perfonming the
task of minimization of the said index through un-
supervised learning process; thereby extracting the
optimum transformed space along with the weighting
coefficients. This is described m Fig. 1. The algonthm
considers interdependence of the onginal features.
The architecture of the network 15 such that the num-
ber of nodes in its second hidden layer determines the
desired number of extracted features.

The effectiveness of the algonthm is demonstrated
on five different real-life data sets, namely, las [4],
vowel [16,15], medical [7,13], mango-leal [14] and
an 1onospheric data [20]. The superior discrimination
ability of the extracted features over the original ones
is established using k-NN classifier for different val-
ues of k. The algodthm is also compared with both
supervised and unsupervised methods ineluding non-
linear discriminant analysis network (NDAN) [22],
principal component analysis network (PCAN) [17]
and Kohonen self-organizing feature map (SOM ) [8].
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2. Feature evaluation index

In this section we first of all provide a definition of
the fuzey feawre evaluation index. The membership
function for its realization 15 then defined in terms of
distance measure and weighting coefficients.

2.1, Definition

Let, ;e:,:r be the degree that both the pth and gth pat-
tems belong to the same cluster in the n-dimensional
orginal feature space, and ;e:,‘, be that in the
n'-dimensional (n' <n) transformed featre space. u
values determine how similar a pair of patterns are in
the respective features spaces. That 15, g may be inter-
preted as the membership value of a pair of pattems
belonging to the furzy set “similar™. Let, s be the
number of samples on which the feature evaluation
index s computed.

The feature evaluation index for aset(2) of features
15 defined as

- 2 - I}
L:I"{I‘I_IJZZE“E“;{_I—F“‘I}
pogFEp
+;e'}1,{1 - ;e}x‘,]]. (1)

It has the following characteristics.

(1) 11";1;1, =p}'x‘, =0 or 1, the contabution of the pair
of patterns to the evaluation mdex E is zero
(minomum ).

(ii) If pfy = py, = 0.5, the contribution of the pair of
pattems to £ becomes 025 (maximum).

(1) For pﬂ‘, =15 as }e;!:‘, — 0, £ decreases.

For ! =05 as ;e;L — 1, £ decreases.
Therefore, the feature evaluation index decreases
as the membership value representing the degree of
belonging of pth and gth pattems to the same cluster in
the ransformed feature space tends to either O (when
W =0.5) or 1 {when ¢” =0.5). In other words, the
feawre evaluaton index decreases as the decision on
the similarity between a pair of patterns (1., whether
they lie n the same cluster or not) becomes more and
more crsp. This means, if the intercluster/intracluster
distances i the transformed space inerease/decrease,
the feature evaluation index of the corresponding set
of features decreases. Therelore, our objective is to
extract those features for which the evaluaton index
becomes minimum; thereby optimizing the decision

on the similarity of a pair of patterns with respect to
their belonging to a cluster.

22 Computation of membership function

In order to satisfy the chamctenstcs of £ Eqg. (1)),
as stated in the previous section, the membership func-
tion { @) in a feature space may be defined as

d
fpg=1— ﬁ"“ if dpy < D,

=1, otherwise. (2)

Here dy, is a distance measure which provides sim-
ilanty (m tenms of proximity) between the pth and
gth patterns in the feature space. Note that, the higher
the value of &, the lower 1s the similarity between
pth and gth pattems, and vice versa. [0 1s a parameter
which reflects the minimum separation between a pair
of pattems belonging to two different clusters. When
dyy =0 and dpy =D, we have j,, =1 and 0, respee-
tively. IFd,, = D/2, pip, = 0.5, That is, when the simi-
lanty between the pattems is just in between 0 and D,
the difficulty in making a decision, whether both the
pattems are in the same cluster or not, becomes max-
imum; thereby making the situation most ambiguous.
The term O (in Eq. (2)) may be expressed as

D= ﬁd1m.u (3)

where . 15 the maximum separation between a pair
of patterns i the entire feature space, and 0 < f§ = 1
is a user defined constant. § determines the degree of
flattening of the membership function (Eq. (2)). The
higher the value of §, more will be the degree, and
VICE VErsa.

The distance dy,, (Eq. (2)) can be defined in many
ways. Let this, for example, be the Euclidian distance.
Then,

2

12
dpy = [Z (i _-“""r’] ’ X

where x, and x,; are values of ith Teature (in the cor-
responding feature space) of pth and gth patterns, re-
spectively. d .y 15 defined as

12
d:m:. e [Z {.-T:Iﬂi.ih i~ Xmini F] 5 '[ 5 ']

i
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WhEere Xy ; and Xy, are the maximum and minimum
values of the ith featre in the corresponding feature
space.

221 Incorporating weighting coefficients

In the above discussion, we have measured the sim-
ilarity between two pattems i terms of proximity, as
conveyed by the expression for d,, (Eq. (4)). Since,
dyy 15 an Euclidian distance, the methodology implic-
itly assumes that the clusters are hypersphencal. But
in practice, this may not necessarily be the case. To
model the practical situation we have mntroduced the
concept of weighted distance such that

12
dpy = Z Wy (X —-1"'"}2]

T

3 wip
= 11-1-'{]_-

i

12

s M= {.-T_ru' e -Tqu'L (6]

where wy € [0, 1] represents weighting coefficient cor-
responding to ith feature.

The membership value g, 15 now obtained by
Egs. (2}, (5) and (6), and becomes dependent on
wi. The values of w; (< 1) make the p,, function of
Eq. (2) flattened along the axis of d,,. The lower the
value of w;, the higher 15 extent of flattening. 1n the
extreme case, when wy =0, Vi, dpy =0 and g, =1
for all pair of patterns, i.e., all the pattems lie on the
same point making them indiscrimimable.

The weight w; (in Eq. (6)) reflects the relative im-
portance of the feature x; n measuring the similarity
{in terms of distance) of a pair of patterns. The higher
the value of wy, the more 15 the imponance of x; in
charcterzing a cluster or diseriminating various clus-
ters. w; = 1 (0) indicates most { least) importance ol x;.

Note that, one may define g, in a different way
satisfying the above mentioned characteristics. The
computation of g, in Eq. (2) does not require class
information of the patterns, i.¢., the algonthm is unsu-
pervised. 1t is also to be noted that, the algonthm does
not explicitly provide clustering of the feature space.

3. Feature extraction

In the process of feature extraction, the input fea-
wre space (x) is transformed to x" by a mamix 2

{ = [D:_.I:I']JI"XJI'L i.ﬁ.,
X—X.

The jth transformed feature s therefore,
Xj = D (7

where o (f=1.2,....0', i=12,...,nandn>n") is
a set of coefficients. The membership values (u) are
computed using Eq. (2) based on the derived feature
values. The distance o, between pth and gth pattems
in the transformed space is, therefore,

- 5712
I'-"‘Il"ﬁ' = Z ”{f (Z D:_-"J{.'T_ru' = -qu'])
! i
¢ 5 12
= Z “{.'_? (Z D:.."J':"fl') s Fi T Xpi — Xgis
! i
r 12
- Z w-'zt"‘l'f] s W= Z %ilxpr —xg)  (8)
L i

and the maximum distance dy,, as

- " ”

d:mz = Z (Z i:_.il'!{-rmua i — Xmin J::I)

7 7
12
£

f,'!;r_.l' =Z i D:_J'J'i{-rmax i~ Xmin i }' {g ]

-1z 4

Weighting coefficients (w; ) representing the impor-
tance of the transformed features, make the shape
of clusters in the ransformed space hyperellipsoidal
instead of hypersphencal.

The membership p' is computed using d,, and
ey (Egs. (2), (8) and (9)), while @@ is done by
Egs. (2)—(5). The problem of feature extraction there-
fore reduces to finding a set of o, and w; for which £
{Eq. (1)) becomes a minimum. This is schematically
explained in Fig. 1. The task of minimization has been
performed under unsupervised mode by gradient-
descent technique in a connectionist framework. This

15 desenbed below.,
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Fig. 2. A schematic diagmm of the pmoposed neural network model.

3. Connectionist model

The network (Fig. 2) consists of an input, two hid-
den and an output layers. The input layer consists of a
pair of nodes comesponding to each feature. The first
hidden layer consists of 2n (for n-dimensional ongi-
nal feature space ) number of nodes. Each of the first
n nodes computes the part , of Eq. (8) and the rest
compute 'zf The value of (Xpay i — Xuns ) 15 stored in
cach of the first # nodes. The number of nodes in the
second hidden layer is taken as n', m order to ex-
tract #° number of features. Each of these nodes has
two parts; one of which computes t,.-'_]jf of Eq. (8) and
the other q'.rf of Eq. (9). The output layer consists of
two nodes which compute 1" and p values. There is
a node (represented by black cirele) in between the
output node computing ;" -values and the second hid-
den layer. This node computes d e, (Eq. (9)) in the
ransformed feature space and sends it 1o the output
node for computing ¢'. The value of § is stored in
both the output nodes. The feature evaluation index £

(Eg. (20)) is computed from these p-values off the
network.

Input nodes receive activations corresponding to
feature values of each pair of pattems. A jith node in
the first hidden layer is connected to an ith (1 £i<n)
input node via connection weight +1, and to the
(i +nth(l<i<n) nput node via connection weight
—1. A jyth node in the second hidden layer is con-
nected to a fith node in the first hidden layer via
connection weight %,;,. The output node computing
1 -values is connected to a jath node in the sec-
ond hidden layer via connection weight B, {=nﬁ 1,
and that computing @”-values is connected to a fith
(n+ 1= =2n) node in the first hidden layer via
connection weights +1 each. The node represented
by the black circle is connected via weights +1 with
the second hidden layer and also with the output node
computing p" -values.

During training, each pair of patterns are presented
to the input layer and the evaluation mdex is com-
puted. The weights a;,;, and B},’s are updated using
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gradient-descent technigue in order to minimize the in-
dex £, When pth and gth patterns are presented to the
mput layer, the activation produced by ith (1 <i<2n)
mput node is

]

L'f-:” - u,j_ }1‘ {_].ﬂ']
where

() .

M; = X for l1=i=n and

{11)

(L) F

Wiiim) = ¥gi for 1=i=n.

m}

{1 =i=2n)is the total activation received by an
}[h input node. The total activation received by fith
node m the first hidden layer (connecting ith and
(i + njth input nodes) 15 given by

W) =1 x4 (=) x o), forl<isn,  (12)

and the activation produced by it is

(1) HP !
v, = (u for 1=j,=n,

_ 1Ir}2 fi . LeE
= (#uy or n+ 1= =2n.

The total activation received by fath node in the second
hidden layer is given by

2 il
“j'z = Z Dt"“l..lljl' (14)
A
The activation produced by jsth node in the second
hidden layer is given by
2 2
Uy =Y (15)

The total activation received by the output node which
computes i’ -values is

3
Wel ZHJ‘EJ* i (16)

and that received by the other output node computing
12-values is

g =Yg, (17)

52

! represent d}, as given by

Egs. (8) and (4), respectively. The activations, Lfr“

Therefore, “r and ::

and o), of the output nodes represent iy, and pf) for
pth and gth pattern pair, respectively. Thus,

Bﬁﬁ*r:l_{ﬂfrl;]” (18)

and

P m]” (19)
D

The evaluation mdex, m terms of these activations,
can then be expressed as (from Eqg. (1))

E(,W) =

[0 — o) o1 — )
‘_1}22 (1—rg ) +15 (1= )]

pogFEp

(20)

The task of minimization of £{z, W) (Eq. (20)) with
respect to oy, 5 and Wy, for all §; and jo is performed
using simple gradient-descent technique where the
changes oy, (Ao, )and W, (AW ) are computed
as

m p

i e
ﬂ‘:_."l.'] =—m - 1‘{“7_;—’ {.21]
o
and
oE
AW = —fe——: o (22)
= oWy,

where 1y and 52 are the learning rates.
For computation of O£/, and 0E/0wy,, the fol-
lowing expressions are used.

0F
E - (5 — I}ZZ

nogER

1—2*3'

. (23)

."-.'|

= A3}
duy

day, ;

i“ —1 P.n 1“ (3 !
-,{ )] {u’ J'] :,D:Ju,

Mt ) :D:."'.'I
Dz ]
(24)
= (3} A 420
i . t.-L-\
e (25)
Ui Ui
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oot o'
=i =, (26)
G0 T U
~ {2}
LAY
—E =, 27
il D:_.'.".'I k
D
il D:.-'."-'I
B i T
d:naa. ZJ: |3 il Xman i — Xewin ) '[-Tm;n_.u] X min ji )
(28)
(i 2 ZZ 1[1 4 {3) EU’I—” 29)
= =[1 — 2y,
W,  s(s—1)ewls? ol !
- PogEp o
T (7 ) Wt L 20
aw, D (
and
~ (3}
LR
L (31)

awy,
3.2 Algorithm for learning o and W

o Caleulate dy. ( Eq. (5)) from the unlabeled training
set and store it in the output node computing p*
values. Store J§ (user specified) in both the output
nodes.

o Initialize o;,; and W, with small mndom values in
[0.1].

e Repeat until convergence, i.e., untl the value of
E becomes less than or equal w centain predefined
small quantity, or number of iterations attains cer-
tain predefined number of iterations:

o For each pair of patterns:
— Present the pattern pair to the input layer.
— Compute Ay, and AW for each j) and ja,
using the updating rules in Eqs. (21 )and(22).
o Update 2, and W}, for cach j; and j» with the
average values of Aay ; and AW,

Afier convergence, E(x, W) attains a local minimum.

Then the extracted features are obtained by Eq. (7)

using the optimum z-values. The weights of the

links connecting the output node computing g "-values,
to the nodes in the second hidden layer indicate the
order of importance of the extracted feamres.

4. Results

Here we demonstrate the effectiveness of the above-
mentoned algorithm on five data sets, namely, Iris [4],
vowel [16,15], medical [7,13], mango-leal | 14] and an
ionospheric data [20].

Anderson’s 1ns data [4] set contains three classes,
ie., three vareties of Iris flowers, namely, fris
setosa, friv versicolor and Iriy virginica consisting
of 50 samples ecach. Each sample has four features,
namely, sepal length (SL), sepal width (SH), petal
length ( PL) and petal width (PH7). Iris data has been
used in many research investigations related to pattern
recognition and has become a sort of benchmark-data.

The vowel data consists of a set of 871 Indian
Telugu vowel sounds collected by trained personnel.
These were uttered in a consonant—vowel-consonant
context by three male speakers in the age group of
30-35 years. The data set has three features, £y, Fs
and F; corresponding o the first, second and third
vowel formant frequencies obtained through spectrum
analysis of the speech data. Fig. 3 shows a 2-D pro-
jection of the 3-D feature space of the six overlap-
ping vowel classes (0, a, 1, u, e, 0) in the £—F plane
(for case of depiction). The details of the data and
its extraction procedure are available in [16]. This
vowel data is being extensively used for more than
two decades i the area of pattern recognition.

The medical data consisting of 9 input features
and 4 pattem classes, deals with various Hepaiobil-
iary disorders [7,13] of 336 patient cases. The input
features are the results of different biochemical tests,
viz., glutamic oxalacetic transaminate ( GOT, Karmen
unit), glutamie pyruvie transaminase (GPT, Karmen
Unit), lactate dehydrase (LDH, /1), gamma glu-
tamyl transpeptidase ( GGT, mu/ml), blood urea nitro-
gen (BUN, mg/dl), mean corpuscular volume of red
blood cell { MCV, 1), mean corpuscular hemoglobin
{(MCH, pg), total biliubin (78i/, mg/dl) and
creatmine {CRTNN, mg/dl). The hepatobiliary dis-
orders aleoholic liver damage (ALD), pnmary hep-
atoma (PH), liver cirrhosis (L) and cholelithiasis
{C), constitute the four output classes.
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Fig. 3. Two dimensional

Mango-leal” data [14], on the other hand, provides
mformation on different kinds of mango leal with
18 features, (ie., 18-dimensional data) for 166 pat-
tems. It has three classes representing three kinds
of mango. The feature set consists of measurements
like Z-value (Z), area (A), penmeter (Pe), maxi-
mum length (L), maximum breadth ( 8), petiole {P),
K-value (K), S-value (8), shape index (87), L + P,
LiP, LB, (L + P)/B, A/L, A[B, AfPe, upper
midrib/lower midab (UM/LM) and perimeter up-
per half/perimeter lower hall { UPe/LPe). The tenms
‘upper” and “lower” are used with respect w maximum
breadth position.

The 1onospheric data was collected by a system in
Goose Bay, Labrador [20]. The system consists of a
phased array of 16 high-frequency antennas with a
total transmitted power on the order of 6.4 kW . The
targets were free electrons in the ionosphere. The data
set consists of 351 instances. Each data point has 34
featres and may be either “good™ or “bad”™. *Good™
data points are those which show evidence of some
type of structure in the ionosphere. On the other hand,
“had™ points do not show such structure; their signals
pass through the ionosphere. The signals received
by the radar were processed using an autocorrelation
function whose arguments are the time of a pulse and
the pulse number. There were 17 pulse numbers for

(F1-F2) plot of the vowel data.

the Goose Bay system. Each instance in this database
is described by two attributes per pulse number cor-
responding to the complex values returned by the
function resulting from the complex electromagnetic
signal; thereby resulting in 34 (= 17 x 2) feawres for
an instance.

As mentioned in Section 3, the number of nodes in
the second hidden layer determines the desired num-
ber of extracted features. That 15, in order to extract
n' number of features, one needs o employ exactly
n' nodes i the second hidden layer. For each data
set, we performed experiments for different number of
nodes in the second hidden layer for finding different
sets of extracted features. The particular set for which
F-value 1s minimum in a fixed number of iterations 1s
considered to be the best set of extracted features.

Let us consider the case of Ins data. Table 1 shows
the values of z; (in Eq. (7)) for different sets of
extracted features along with their E-values. The ex-
tracted features are obtained by Eq. (7). Note that, the
set containing two extracted features results in mini-
mum £-value, and therefore, 15 considered to be the
best of all. The expressions for these two extracted
featres are then watten, from Eq. (7)), as

I = 004064958 — 000040550
+ L168035PL + (L 164546° W
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Tahle 1
w-values corresponding to different sets of extracted features with their E-values for Iris data
Extracted Coefficients () of E
feature set (Eq. (1))
containing SL W PL P
Ome featun: 0071854 — 0028014 01950449 0.139982 0102437
Two featumes 00406449 — (0005 0168035 0. 164540 0099286
— 011870 —(00an a3 —0.012020 —.123748
Three features —(L01 7140 0005148 —{0.123089 —{.152892
—(L003976 — 0024542 — 0005904 —{1084350 0104762
0023984 — (004368 0237460 0.199510
Tahle 2
s-values corresponding to the best set of extmeted features with their w-values for vowel data
Extracted Coefficients () of W Rank
features
Fi Fa Fi
y —00056T6H 0050687 0000573 0710050 2
¥y 0000755 —{. 159839 (.00 34 07375497 1
Table 3
w-values corresponding to the best set of extmeted features with their w-values for medical data
Extracted  Coellicients {z) of i Rank
features
GoT GeT LD GoT BUN MCK MCH Tl CRTNN
Hy 00193 002 0155 —0.05  —0.081 0090 0135 0193 —0.096 0TS 4
s — (L0 0.7 0035 — {1045 0.070 0082 042 0088 —0.136 0711 1
H —{.163 002 0122 012 0155 0106 0110 LR — {0004 0703 6
Hy 0123 —0170 —0028 —0.107 0,142 0043 -0 0162 0.035 0706 3
Hs 0.142 0.173 0.132 0073 —0M5  —0177 0188 —002  —0.030 0Ts 4
He, —0.208  —0.003 0083 0z 0013 —0030 0132 0z —0.081 0T 2
Hy —0.160 0116 —0.163 0082 —0.146 a4 0052 —0142 —04078 074 5
Hy 0137 0.002 0125 0047 —0078 —0047 0064 0125 0.053 L V.
and medical and mango-leal data. (In order to restriet the

L = —01186705L — 0.0001035W — (0.012020PL
—0.123748PW.

w-values representing the imporance of the featres
I and & are found to be 0.992983 and 0.744317
respectively.

Similady, the dimension of the best extracted fea-
ture space is found to be 2 for vowel data, 8 for both
medical and mango-leal data, and 10 for the iono-
spheric data. Tables 2—4 show 2 and w-values for
the best extracted feature sets corresponding to vowel,

size of the article, we have not included the table Tor
the ionospheric data. ) Note that, in these experiments
the values of § are found to be 0.33, 016, 0.25, 0.33
and 0.5 for Iris, vowel, medical, mango-leal and the
ionospheric data, respectively.

In order to demonstrate the effectiveness of the fea-
ture extraction method, we have compared the dis-
criminating capability of the extracted features with
that of the onginal ones, using £-NN classifier Tor
k=1, 3 and 5. For Ins and vowel data, Tables 5 and
6 demonstrate the percentage classification using the
extracted feature set and all possible subsets of the
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Table 4

a-values comesponding to the best set of extmeted features with their w-values for mango-leaf data
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onginal feature set. In the case of Ins data, the recog-
nition score using the extracted feature set is found to
be greater than or equal to that obtained using any set
of the onginal features, except for one case (e.g., the
set {SL.SW.PL.PW} with k= 5). Similar is the case
with the vowel data, where the extracted feature pair
performs better than any other set of orginal features,
except the set {F, £, Fs)

For medical, mango-leal and the 1onospheric data,
comparison is made only between the extracted
feature set and the entire original feature set (Tables
7-9). Tables 8 and 9 show that the classification
performance in the 8 and 10-dimensional extracted
feature space of mango-leal and the wnosphere data
are better than those of the 18 and 34-dimensional
onginal feature space for all values of £. Similar find-
ing is obtained in the case of medical data, exeept for
k=1 (Table 7).

In a part of the experiment, the neuro-fuzzy method
for feawre extraction is compared with the well-
known principal component analysis (PCA) and
nonlinear discriminant analysis { NDA) in connection-
ist framework, called principal component analysis
network (PCAN) [17] and nonlinear diseriminant
analysis network (NDAN) [22], respectively. (For
the convenience of readers, PCAN and NDAN are
described briefly in Appendices A and B, respec-
tively. ) The method is also compared with Kohonen
self-organizing feature map (SOM) [8]. For all these
cases, we provide the comparative results, using
f-MM classifier and scatter plots, on Iris data only. As
far as classification ability is concemed, the neuro-
furzy method has extracted much stronger features
than both PCAN and SOM, but slightly weaker fea-
tures than NDAN (Tables 10 and 5). Note that unlike
the proposed method, PCAN and SOM, NDAN is
supervised.

Scatter plots in Figs. 4 -7 show the class structures
in the two-dimensional extracted planes obtained by
the proposed neuro-fuzzy method, PCAN, NDAN and
SOM, respectively. From these figures, it is observed
that the extracted plane (Fig. 4) obtained by the pro-
posed neuro-fuzzy method is much better than those
of others (Figs. 5-7) in tenms of cluster separability.
MNote that, an aray of 100 x 100 nodes was considered
in the output layer of SOM.

In order to compare the said class structures of
the extracted planes (Figs. 4-7) with that of the
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Table 5

Recognition scome with £-MN classifier for dilferent feature sets of Iris data

[Pata set Feature set % classification
k=1 k=3 k=35
Original {sL} 4867 66.67 67.33
{Sw} 5533 5267 5267
{FL} 9333 9533 9533
{FW} B933 96,00 96,00
{80, 50} a7 T6.67 76.00
{8, PL} 9533 9333 9533
{80, PV } a7 94.00 24.00
{sw PL} W67 9200 9333
{SW, P} 2067 94,00 9407
{PL P} 93133 6,00 26,00
{SL. SW, PL} a4 00 94.00 24.00
{5L. SW. PW} 9333 9333 92,00
{SL, PL PV} a6 00 96.67 96,00
{SW, PL.PW } a4 00 96.67 9533
{&L, SW. PLPH} 9533 96,00 96,67
Extracted {02} a6 00 96.67 96,00
Table &
Table & Recognition scare with k-NN classifier for extmeted { obtained by

Recognition score with £-NN classifier for different feature sets
af vowel data

% classification

the neuro-fieey feature extraction) and original feature sets of
mango-leal’ data

Data set Feature set Featune set %o classt fication
k=1 k=3 k=5 k=1 k=3 k=5
Original {F1} 26,52 2721 2721 Extracted 85.71 BE.10 9286
{Fz} 1858 g 47.76 Original TL69 6R.67T TOA48
{F1} 206 14 3387
{F1.F2} 5637 68,20 T6.15
{Fi.F1} 44.32 4654 5580 Table 9
{Fr.F1} 5821 63.03 6395 Recognition score with £-NN classilier for extmeted {obtained by
{F1.FrFa} TRA42 BL.20 B2.43 the neum-fuzry feature extmetion) and original feature sets of the
Extracted {¥i. Fz} T4.63 75.78 T6.15 ionosphere data
Featune set %o classt ficat iom
k=1 k=3 k=35
Table 7 Extracted 8523 RB5.80 8523
Recognition scare with £-NN classifier for extmeted { obtained by Original 84.66 B4.66 8195

the neuro-fizzy feature extraction) and original feature sets of
medical data

Feature set % classification

k=1 k=3 k=5
Extracted 5192 5624 59.89
Criginal 5522 56.16 59.14

orginal feature space, we provide the scatter plot Tor
PL-PW in Fig. 8. (Note that {PL.PW} is known
to be the best feature pair [21,2] for Iris data.) The
extracted feature plane £1—0> (Fig 4) 1s seen to have
more resemblance with that in Fig. 8, as compared to
Figs. 5-7.
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Table 10

Recognition score with £-MM classifier for varions extracted feature

sets of Iris data
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Feature set % classification
obtained by
k=1 k=3 k=5
PCAN 0200 92,00 92,00
NDAN QR 6T 9711 Q600
S0M G 6T GE.00 7200
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Fig. 4. Scatter plot §f;—fz, in the extracted plane obtained by the
neumo-fuzzy method, of Iris data. Here *.°, *+ and “o" represent
classes Ins Setosa, Iris Vemsicolor and Iris Virginica, respectively.
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Fig. 5. Satter plot PCA1—PCAz, in the extmeted plane obtained
by PCAN, of Iris data. Here *.°, "+ and *o° represent classes Iris
Setosa, Iris Versicolor and Iris Virginica, respectively.
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Fig. 6. Scatter plot N6 —NE,, in the extracted plane obtained
by NDAN, of Iris data. Here *.°, *+° and *o" meprsent classes Ins
Setosa, Iris Versicolor and Iris Virginica, respectively.
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Fig. 7. Two-dimensional feature map obtained by S0M, of Ins
data. Here *.°, *+° and ‘o' represemt classes Iris Setosa, Ins
Wemicolor and Iris Virginica, respectively.

5. Conclusions and discussion

In this article we have demonstrated how the con-
cept of neuro-fuzzy computing can be exploited for
developimg a methodology for feature extraction un-
der unsupervised mode. The methodology developed
involves connectionist minimization of a fuzey fea-
ture evaluation index; thereby extracting an optimum
transformed feature space along with the importance
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Fig. 8 Seatter plot PL-PW of Ins data Here *.°, *+" and *o”
represent classes Ins Setosa, ks Vemicolor and Iris Virginica,
mspectively.

of various features. The algorithm considers interde-
pendence of the original features.

Although, the method is unsupervised, the extracted
featre space has been able o provide better clas-
sification performance than the original ones for all
the data sets. Results are compared with both unsu-
pervised (PCAN and SOM ) and supervised (NDAN)
methods. It has been observed that the extent of over-
lapping region i the feature plane extracted by the
neuro-fuzzy method is less than those obtained by the
PCAN, NDAN and SOM. The classification ability
of the extracted features obtained by the neuro-fuzzy
method 15 much more than PCAN and SOM, but 1s
slightly less than NDAN. Moreover, the neuro-fuzey
feature extraction preserves the data structure, cluster
shape and inter pattern distances better than PCAN,
NDAN and SOM.

Unlike NDAN and SOM, both neuro-fuzzy method
and PCAN extract features without clustenng,/class-
ifying the feature space explicitly. The neuro-fuzey
method, PCAN and SOM do not require to assume the
class information of the pattems as well as the number
of clusters. It 15 o be noted that the task of feature ex-
traction by both the neuro-fuzzy method and NDAN
mvolves projection of an n-dimensional onginal space
directly to an s'-dimensional (n" <n) transformed
space. On the other hand, in the case of PCAN, this
task involves projection of an n-dimensional ong-
mnal space w an a-dimensional transformed space,

followed by selection of the best ' number of trans-
formed components. Since the tmnsformed features
with low variances are ignored, there will be a loss
of information in the resulting extracted space. This
15 also true for all the statistical feature extraction
methods based on the K—L transformation.

In the present method, we have assumed linear
transformation, as in the case of principal component
analysis. However, this does not preclude the pos-
sibility of inclusion of nonlinear transformation by
increasing the number of hidden layers m the net-
work. It may be mentioned that Foley and Sammon
[6] derived a set of diseriminant vectors by selecting
the projection axes one at a time under an orthog-
onality constraint. On the other hand, the present
neuro-fuzey method, as mentioned above, determines
the extracted feawres simultaneously by minimizing
the feature evaluation index. Regarding the time com-
plexity of the neuro-fuzey algorithm, we can say that
it will be O(75%), where T s the number of iterations
required for raining the network, and s s the number
of training samples.

In order to validate the results quantitatively, we
have used a standard supervised classifier, viz., £-NN
classifier, as an example; and the comparison is made
in terms of % recognition score. Similar validation
could also be done with an unsupervised classifier.
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Appendix A Principal component analysis network

(PCAN) [17]

Principal component analysis 15 a well-known
statistical method for feature extraction. It involves
a linear orthogonal ransform {from an n-dimensional
feature space to an n'-dimensional space, n' = n,
such that the features in the new a'-dimensional space
are uncorrelated and maximal amount of vanance of
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the original data s preserved by only a small number
of features.

The principal component analysis network (PCAN)
architecture proposed by Rubner and Tavan [17] per-
forms principal component analysis i a connection-
ist framework. It consists of » input and »" output
nodes. An ith input node is connected to a jth output
node with connection weight wy;. All the output nodes
are hierarchically organized in such a way that an /th
output node 1s connected to a jth output node via con-
nection weight wj.:.’” ifand only if {=j. The training
algorithm of the network is summarized below.

o Initialize all connection weights to small random
values and choose the values of leaming parameters.

e Repeat the followmg steps until all the lateral
weights are sufficiently small for a given number
of presentations (1.c., until their absolute values are
below some threshold).

o Randomly select an n-dimensional pattem X,
and present it to the input layer of the network.
Compute the output (x) of the network,
representing  the corresponding pattern in n'-
dimensional  transformed  space, using  the

equation
! Alar)_»
X =W X, + Z Wi Xaps
l=j
j=12...1. (A1)

o Update wy Vil j following the Hebbian rule,

Awy; = o |-Tﬂr"f;:_;= {A2)
where iy =0 is the learning rate.

o Normalize wy; in such a way that [|w|| = 1.

o Update “,L!mb by the anti-Hebbian rule,
Al = — (A3)

where i 1s a positive leaming parameter.

Appendix B. Nonlinear discriminant analysis
network (NDAN) |22

MNonlinear diseriminant analysis network (NDAN)
[22] 15 a multilayer feedforward network and 1s used
to realize a nonlinear diseriminant analysis. The main

objective of the method is to project higher dimen-
sional data set o a lower dimensional one under
supervised mode of learning. The network consists
ol an input, one or more hidden and an output layers.
The role of hidden layers 15 to implement a nonlinear
transformation which projects input pattems in the
orginal space to a space in which pattems are casily
separated by the output layer.

The number of nodes in the input layer is the same
as the number of features, and that i the output layer
is equal to the number of patiem classes. We fix the
number of nodes in the final hidden layer to »', the
dimensionality of the projected space. The activation
functions of the hidden nodes are nonlinear (sigmoid)
and those of the input and output nodes are linear. The
backpropagation learning algorithm is used to train
the network which minimizes the squared error be-
tween its desired and actual outputs. After training, the
outputs of nodes in the final hidden layer provide the
featre values in the projected space.
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