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Abstract. A new criterion of fitness evaluation for Genetic Algorithms is introduced where the fitness value of
an individual is determined by considering its own fitness as well as those of its ancestors. Some puidelines for
selecting the weighting coefficients for quantifying the importance to be given o the fitness of the individoal and
its ancestors are provided. This 1s done both heunstically and aontomatically under fixed and adaptive frameworks.
The Schema Theorem corresponding to the proposed concept is derived. The effectiveness of this new methodology
15 demonstrated extensively on the problems of optimizing complex functions including a noisy one and selecting

optimal neural petwork parmeters.
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1. Introduction

Genetie algorithms (GAs) [1-6] are adaptive and mo-
bust computational procedures modeled on the me-
chanies of natural genetic systems. They can be viewed
as randomized yet structured search and optimization
lechnigues. GAs efficiently exploit the historical infor-
mation so that new offspring with expected improved
performance can be generated [ 1], They iteratively per-
form the following cycle of operations on a set of coded
solutions or chromosomes, called a population, un-
ul some termination condition 18 achieved: selection
(including fitness evaluaton of each solution), wepro-
duction (including crossover and mutation), and reduc-
tiondreplacement of the old population with a new one.

Conventional genetic algorithms (CGAs) consider
only the fitness value of the chromosome under con-
sideration for measuring its suitability for selection for
the next generation, that is, the fitness of a chromaosome
z s g( fiz). where f(z) s the objective function and
£ 15 another function which by operating on f{z) gives

the fitness value. Hence, a CGA does not discnminate
between two identical offspring, one produced from
better (thighly fit) parents and the other from compara-
tively weaker (bow fit) parents. In nature, nommally an
offspring 1s more fitor suitable if its ancestors (parents )
are betler, that is, an offspring possesses some extr fa-
cility o exist in its environment if it belongs to a better
family (or its ancestors are highly fit) [7, 8]. In other
words, the fitness of an individual depends also on the
fitness of is ancestors,

The present article provides an investigation based
on the aforesaid observation. We propose anew way of
measuring the fitness of an individual by considering its
own fitness as well as the fitnesses of its ancestors, The
fitness of a chromosome 7 is g fiz), ap, a2, ..., a@y,)
where a;s are the original fimess values of its n ances-
tors. The function g may be of vanous types consid-
ering the amount of importance given to the fitness of
different ancestors. Various procedures are deseribed
for determining the weights which charactenze the de-
grecofancestors” importance. The weights may be kept
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constant or varying during the operation of GAs. The
effectivencss of this concept has been demonstrated
experimentally on various problems such as complex
function optimezation, noisy function evaluation, se-
kection of optimal set of weights in a multilayer per-
ceptron [9-11], and evolving Hopfield type optimum
neuril network architectures for object extraction [ 12].
A schema analysis 1s also provided (Appendix A).

The rest of the article is organized as follows. In
Section 2 a brief intmoduction to genetic algorithms 1s
provided. Section 3 describes the proposed fitness eval-
uation methodology. Implementation details and anal-
ysisof results are presented in Section 4 and concluding
remarks are pul in Section 5.

2. Genetic Algorithms: Basic Principles
and Features

Conventional GAs(CGAs) are intended to mimic some
of the processes observed in natural evolution. The evo-
lution starts from a set of individoals and proceeds
from generation o generation through genetic oper-
ations. Replacement of an old population with a new
one s known as a gencration when generational re-
placement technique (replace all the members of the
old populaton with the new ones) 1s used. Another re-
producton technigue, called steady-state reproduction
[13], replaces one or more individuals in each itera-
tion instead of the whole population. This cycle 1s re-
peated until a desired termination condition 1s attained.
A schematic diagram of the basie structure of a genetic
algorithm 15 shown in Fig. 1.

A GA typically consists of the following components
[1. 14]:
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Figure !, Basic steps of a genetic algorithim.
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A population of strings or coded possible solutions

(often referred o as chromosomes).,

¢ A mechanism o decode and encode a possible solu-
tion (often as a binary string).

e Objective function and associated fitness evaluation
Lechnigues.

e Sclection procedune.

¢ Reproducton (with the help of some genelic opera-
tors, e.g., crossover and mutation).

e Probabilities to perform genetc operations.

¢ Reduction/replacement of population for the next

generation.

3. A New Fitness Evaluation Criterion

In this section we describe a new method for evaluating
the fitness of an individual chromosome by considering
the effect of fitness of its ancestors along with its own
fitness, As mentoned before, in a CGA, chromosomes
are selected for reproduction based on their own fitness
values. The process does not consider any influence
of its ancestors (predecessors). Bul in nature, “family
background” plays a significant role to determine the
characteristics and suitability of offspring; descendants
from a better family (highly fit ancestors) invariably
possess some extra advantages to be treated as fitin an
environment [7, 8] This observaton has motivated us
to consider the effect of fitness of ancestors (or parents)
to measure the fitness of individuals.

Considering the influence of r ancestors, the modi-
fied fitness value (MFV) of an individual chromosome
z will be

MFV = g(fit,a;,as, ..., iy s (1)

where fit 1% the onginal fitness of the individual z, and
a6, ... d, are the fitnesses of s n ancestors, A

simple form of g may be as follows:

MFV =afii+ ) fia;. (2)

i=l

where o and f;5 are the weights gquantifying the degree
of importance of the fitness of the individoal under con-
sideration and those of its ancestors. For convenience,
wie have taken o + Z:'=| =1, where) =@, § = 1.
These weighting coeflicients may be takenas static (ini-
tially set to some value, based on heunstcs, and kept
constant throughout the procedure), or dynamic (these
coclficients will change automatcally with evolution).
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MNow, if we consider the effect of a single previous
generation, we need to take into account the fitness of
the parents (say, py & pa)only; inthat case (2) redoces
]

MFV = fit+ ip1 + . (3}

As a special case, il we choose § = fla = A, (that is,
we pul equal weight to both parents), then

MFV = a fit + B(p, + pa). (4)

If we go two generations back, thar is, fitness of parents
(& padas well as that of grandparents (say, g/, g0,
g & gpg) are considered, (2) wall take the form

2 4
MFV=afit+Y Bp+) vigp;. 5
=1

i=l1

where fiis and pys are the weights corresponding Lo
parents and grandparents, respectively. Moreover, if
fi=f=Fandy = =)y =ps= y,then

MFV =a fit + 8(p + p2d+yigm +em
+gps+ gpal. (6)

Intuitively, f; = p;. ¥i & ¥Vj, that is, the influence
of grandparents is smaller than that of the parents. In
this context one may note that even when we exphicitly
consider the influence of only parents for determining
the suitability of an individual, the influence of grand-
parents and their ancestors also comes inlo account
implicitly because the computation of fitnesses of chro-
mosomes al generation ¢ requires the fitmess values of
chmomosomes of generation (f — 1) which, in tum, ane
computed vsing those in generation (f — 2).

A mome general form of g can be used o caleulate
MFV as

MFV:(aﬁr’+Zﬁ,-nj')., vr=1, ()

i=l

where o, fit, a5 and fs carry the same meaning as
stated eardier (see Eqg. (2)). The term inside the bracket
should always be positive. Equation (2) comesponds Lo
thecaser = 1. Forfixeda; s, A5, 0, and fir, MFV mono-
onically increases with #. The valoe of r determines
the amount of importance o be given on the fitness of
different ancestors.

Schemes for Selection of Weighting Coefficients

In this section we describe a few ways of determining
the weighting coefficients (o, ).

Scheme 0. Here we use conventional genetic algo-
rithm (CGA), that is, @ = 1 and A =0 (see Eqg. (4)).
Seheme 1. In this case weighting coefficients are
heuristically assigned. We use (o = 6 ) that is, mome
imporance 15 given to the offspring itself than to its
parents. We have considered e =05 & ) = fH =
A =025 (see Eq. (3)).

Seleme 2. Here also weighting coefficients are as-
signed heunstically. Values are altered depending on
whether mutation has occurred on a chromosome or
not. Since the purpose of applying mutation operation
15 o bring out a drastic change in the characteristics of
an individual chromosome, the influence of the parents
on the said mutated chromosome should be smaller.
Hence, less weight will be given on the fitness of par-
ents and more weight on that of the individoal chromo-
SOme, in case mutaton occurs. We have considered,
o =08 & A = f = 0.1 1f mutation occurs on 4
chromosome; otherwise, o = 05 & #) = f» = 0,25

(see Eq. (3)).

Scheme 3. This scheme considers the reverse effect
of mutation (Scheme 2) on selecting the weighling co-
efficients. Hence, more weight will be given on the
fitness of parents and less weight on that of the individ-
wal chromosome, ifmutation occurs, In case of mutated
chromosome, ¢ = 0.5 & ) = > = (L.25; otherwise,
a=08& 8 = =0.1(sec Eq.({3)).

Scheme 4. Here the difference between the fitness
values of the individual chromosome and that of 1ts
parents 15 used o find the weighting coefficients (fs)
of parents (weighting coefficient of children (o) can
be determined automatically since @ + § = 1 where,
0 = o f = 1) The mfluence of both the parents s
treated separately. The eriterion 15 such that when the
fitness of parentéchild is greaterthan thatof child/parent
then increase/decrease the weighting coeflicient (#) of
a parent in proportion to this difference. This ensures
higher # value for a parent having higher fitness value.

Let fi be the fitness value of a chromosome and
S and fio be the fimess values of its two parents. 1F
fen = fu Uf 15 taken as the fimess value of a parent),
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the weight f of that parent 1s defined as

ﬁ=ﬂ’(1—(%) ) m=1. (8

where
const = max{{{ ful,  — () ) (Ufen by —(Fpd, 01

is o normalizing factor a’ is a preassigned constant
which controls the maximum value of 8. (-'ﬁ’}'»u &
(fp),, denote, respectively, [hl.: fitness values of th:
best and worst chromosomes of the parent population
and (f ), & (f ), correspond to those of the child
population. Here, 8 £ [0, a']. As fiy — [ Increases,
f decreases.

On the other hand, if f, = f. then

s f,lr_f;:'.l'l i
ﬁ_ﬂ(l-l-(\m) ) m=1. (9

As f, — foq increases, f increases. Here, § € [a', 2a'].
Combining (8) and (9), the expression for 8§ can be
wrillen as

ﬁ:a‘(1+n'(M)M), m=1, (10)

const

where | fup — f| represents the absolute difference be-
tween twao fitness values fig and fo.on’ =110 f, = fin,
elsen’ = —1.

Therefore, unlike Schemes 1-3, here the weighting
coelficients are determined based on fitness values (us-
ing (10)). For simulation we have taken a’ = 025,
Values of m are considered to be 2 and 3, and accord-
ingly we define two subschemes viz da: whenm = 2
and 4b: when m = 3.

From the previous discussion, it is clear that g £
[0, 2a'] and # is symmetric about a’. Here, the maxi-
mum value of a’ can be 0.25 o ensure & = 0 (since
a = 1 —(f + f) consdering the influence of
parents only). Figure 2(a) shows the vanation of g
with | fin — ful (a" = 0.25, m = 2) while Fig. 2(b)
shows the vanation of § with f, keeping f.; constant
(o' =025, m=2).

Note. In(8)and (9), f = 2a" indicates that a parent
having the maximum fitness value is producing a child
with minimum fitness value; this 1s a rare event in na-
ture. Therefore, attainment of this condition in a GA
might affect the evolutionary process.

Itis also to be noted that, in many optimization tech-
nigues historical information 1s exploited o determine
the present status. For example, in backpropagation
algorithm of neural networks we see that the present
weight values depend on previows weight values and
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the difference between actual output and target outpul.
Similarly, starting from an initial state (solution) a sim-
ulated annealing algonthm changes its state according
Lo some probabilistic transition rule that depends on the
fitness values of the previous and the newly generated
states. This strengthens our key idea of ntroduction
of Scheme 4 where we tried 1o quantify the historical
mformation by considering the difference between the
fitness valoes of the individoal chromosome and those
of ils parents.

Scheme 5. Here the weighting coefficients  are
evolved automatically overthe sequence of generations
by considering them as a part of chromosomes of the
population. Hence, some fields of the chromosome rep-
resentation of possible solutions are kept for o and f6;.
Due o crossover and mutation, values of @ and f#; will
be changing with tme and thus they will evolve au-
omatically. As we choose better chromosomes from
generation o generation, the evolved valoes of @ and
A will be more suitable for that environment. Parents
are given equal importance, that is, we use (4). Since,
a4+ = 1, we need to evolve only one weighting fac-
Lo {(say, o).

Scheme 6. Similar to Scheme 5, but the amount of
importance gven W different parents is different ((3)).
Since, o + ) + f = 1, we need to evolve any two
weights, We restnet #) & Ao in [0, 0.5); it ensures that
o = 0, that is, some weight will always be there for
the individual ¢ hromosome.

Scheme 7. The influence of grandparents in addition
o parents 15 Luken mto account in Schemes 1, 2,5, and
G ousing (5) and (6).

4. Implementation and Experimental Results

The effectiveness of the aforesaid concept has been
demonstratedon three problems, namely, (1) oplimizing
complex functions including a nowsy one (De Jong Fd
[1]0 (i) selection of an optimal set of weights and
thresholds in a multlayer perceptron (MLP) for two
input XOR function, and (iii) evolution of Hopfield
type optimum neural network architectures for object
extraction from noisy images [12]. These are described
below.

Table {. Functions used for optimization.

Crptimum
Function Functional form [hvmain vilue
#1 10— 20 [0, 20 372 % 10P
i (B P T
] oo x3
F2 0.5 T T e | — 1K1, LiKI] 101
[ Jong F4 Z}E] izt Gass(Q, 1) [—1.28,127] 00 {without
noise)
i

P
\I
/
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Figure 3. Sketch of the function [1)7 ix — 201 {x & [0, 20]1.

4.1, Function Optimization

Tablke 1 shows the three functions which have varying
degrees of complexity with respect W number of op-
timit. The first one (F1) 1 a univariate function, the
second ( F2) s o bivanate, and the third one (De Jong
F4) has 30 variables [1, 15]. The complex behavior
of F1 and F2 is depicted in graphical form in Figs.
3 and 4 F1 has 10 maxima with the global maxi-
mum at x = 0. F2is a mpidly varying multimodal
function with several close oscillating hills and val-
leys with a global maximum at x = y = 0. Gaussian
noise with & mean value zero and a standard devia-
tion of 1.0 15 added w the functional value of De Jong
Fa.

4.1.1. Experimental Set-up. To optimize functions
F1land F2, the following steps are adopted.
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Binary coding is used for chromosomes. Substring
kength for cach pammeter (variable) has been taken
as 22 and that for o, 8, and y as 10. Each chromo-
sOme Or string 1% a concatenation of binary substrings,
generated mndomly, of the parmeters of the optimiza-
tion problem to be solved. Let the substring length of
cach parameter be [. Let the domain of the pammeter
be [{5. 1] The substring stris decoded into [0,1] and
mapped mnto the domain of the parameter. The decoded
vitlue v([0, 1]) of str 15 obtained from

2

')
Si;
V=g — Z T O=<v=10  (11)

i=1

where sty 15 the value of the ith bitof st This decoded
value is then transformed w o', v & [y, 1y ] with

v =1y + vl — Iy). (12)

The population size 15 kept fixed at 20 through-
out the simulation. (In a part of the experiment, it
wits also chosen as 500.) The inital populaton is cho-
sen randomly. Generational replacement technigue is
used [2].

The objective function is the wentity function. It
means, fitness of a chromosome 15 equal o its fune-
tional value. Therefore, the higher the functional value
15, the better 15 the chromosome. Both the elitist model

[2] and the standard GA (that is, non-clitist model)
are implemented. In the case of elitism, the lowest fit
string of the present generation is replaced by the best
fit string of the previous one, if the latter one 1s better
than the best fit string of the present generation.

Linear nommalization selection procedure (which
works better in a close competitive environment [2])
15 adopted. In this technigue, instead of considering
original fitness values (eg.. 100, 48, 43, 10, 3), nor-
malized fitness valoes (e.g., 100, 90, 80, 70, 60) ane
used for selecting chromosomes. The fitness values are
normalized using two parameters, namely, the decre-
mentfinerement parameter Chere, 100 and the maxi-
mum/minimum normahized value (here, 100 or &0).
Thus these normalized values will decrease/increase
lingarly. In our expenment, both the difference between
successive fitness values and the minimom fitness valoe
have been taken as 1. The number of copies produced
by the ith individoal (chromosome) with normalized
fitness value f; in a population of size & is taken as
round c;); where

kf;
Yor fi

roundl c; ) gives the nearest integer of the real number ¢;.

The crossover and (bitwise) mutation probabilities
are taken as 0.8 and 0.008, respectively. Multi-point
crossover operation 1s performed where for cach sub-
string (each parameter encoded as a pan of the chro-
mosome) the crossover operation 15 one-point. Hence,
the number of crossover sites is taken o be equal to the
number of parameters encoded in a chromosome. One

(13)

c; =

crossover site is chosen randomly on each substring.
In a part of the investigation, the mutation probability
was also vaned from 0.001 to 0.1 in the following way.

Genemtions  1-300 200400 401-600  601-80{0  801-1000

Mutation 0.1 001 (L0001 0. 0.1
prohability

The reason for this 1s as follows, AL the inital stage
of execution of the GA the chromosomes are assumied
to be random in mature. Higher mutation probability
leads to generate diverse chromosomes and helps o
explome the search space properly. As gencration goes,
the mutation probability 15 lowered. Lower mutation
probability helps to exploit the search. Further, as ex-
ccution continues the chromosomes become more and



Incorporating Ancestors’ Influence in Genetic Algonithms 13

more homogeneous i natre. To avoid this and the
premature convergence, the mutation probability is in-
creased again. The same procedure was also adopted
in [16]. Note that, one may use some other procedures
o vary the probability of mutation.

It may happen that the fimess value fir of a chro-
mosome becomes negative (since the fimess value of
a chromosome is taken as the functional value of the
chromosome). In that case, to differentiate between the
chrmomosomes having positive and negative fitness val-
ues (when (7) is wsed), we consider —(fir" ) instead of
(—fit)" and —(fir")"" instead of (—fir")"" while com-
puting MFV. The value of r (Eq. (7)) 18 taken as 1
and 2.

The algonthm has been run for 1K generations
mn cach simulaton. Fifty simulations are performed.
The same initial populations are taken for all the
schemes. Imitial populations are different for different
simulations.

To mantain consistency  with previous studies
[15], the parameters considered for De Jong F4
minimization are different from those used for F1 and
F2. Here the parameters are taken o be the same
as those vsed o [15] and only the elitist model is
considered. Different enteria are taken inlo account
W compare the performance obtaimed using different
schemes mentioned in Section 3. The performance
of each of the schemes 15 evaluated by measuring

its ability to detect a solution within a specific ac-
curacy. The parameters used for this funcion are as
follows.

Population stze: 10

Crossover probability: 0.7

Mutation probability: 0.005

Substnng length comesponding o cach parameter:
8 bils

Stopping condition: 2500 generations

Number of simulations: 5()

The other parameters taken are equal to those used for
optimization of F1 and F2.

4.1.2. Analysis of Results.  Let us now explain the
results in terms of mean (taken over fifty simulations)
fitness values of the best chromosomes at the last gen-
eration using various schemes (Section 3) for the func-
tions F1 and F2 (Table 1) with r = | and 2. For
convenience, we mention here the said schemes in
briel. These are Scheme ) (conventional genetic algo-
rithim, CGA), Scheme 1 (fixed weighting coefficients),
Schemes 2 and 3 (weighting coefficients dependent on
mutation), Scheme 4 (adaptive weighting coefficients
dependent on the fitness values of parents and chil-
dren), Scheme 5 (equal weighting coefficients auto-
matically evolved) and Scheme 6 (unequal weighting
coefficients automatically evolved). Table 2 shows such

Table 2. Average {over fifty simulations) of maximum fitness values (NE: non-elitism, E: elitism, r: exponent of (7)) and standard

devigtions from maximum fitness values (Std. dev.).

Fl F2
NE NE E
Scheme no.  Fitness = 107 Std. dev. = 0P Fitness = 107 Sd. dev. =107 Fitness Std. dev. Fitness Std. dev.
0 223 .82 211 1.E4 0958143 (052953 0953111 (058854
Lr=1 260 .70 260 1.70 0965042 (053804 094476 0047178
Lr=2 248 .75 e 1.64 0968671 (043855 097184 (045812
Zr=1 285 .57 248 1.75 0960611 0051774 0974791 (035812
Zr=2 260 1.70 248 1.75 0970324 Q041188 0972677 0044505
da,r = 260 170 273 1.64 DO8MH03 0024643 09TETZ2 (0306
qa,r =2 260 .70 271 L.63 0974000 Q036987 0972567 003746
4h, r = 236 1.70 ra7 1.64 0977907 0036136 0978830 (026404
4hr=2 AR .75 308 1.34 0980664 0025113 0975721 0026762
Sr=1 236 .79 248 1.75 0956425 Q049105 0970551 (0038064
Sr=2 236 .79 273 1.64 0955280 (QO7IE22 0977399 (0026527
f,r = el 1t 1.79 1.75 0.058676 Q047182 0971053 Q041560
f,r =2 285 1L&T a7 148 0955074 Q052986 0970445 (045738




14 Crhosh, Ghosh and Pal

results for Schemes 0,1, 2,4, 5, and 6. NE and E
denote respectively, the non-elitst model and the eli-
ust model. Std. dev. denotes the standard deviation of
all the best chromosomes obtained at the last gener-
ation of different simulations. This provides a com-
parative study among vanous schemes based on the
performance attained at the end of evolutionary pro-
cess. IUis seen from Table 2 that Scheme 0 performs
the worst, except for three cases of F2 with NE (e.g.,
the cases of ¥ = 1 and 2 for Scheme 5 and r = 2 for
Scheme 6). It is mostly Scheme 4 and then Scheme 2
or 6 which are seen o produce the best result (marked
bold). Note that Scheme 2 involves fixed weight-
ing coefficient, whereas it is adaptive for Schemes 4
and 6.

The effect of varying mutation probability s shown
in Table 3. Here we considered F2, as an example,
using elitism with Schemes 0, 2, 4b, and 6 only. The
performance of Schemes 2,4, and 615 seen to be slightly
better than that of Scheme ().

Table 4 demonstrates the performance of the afore-
said best resulting schemes when the population siee
15 mereased from 20 to 300 Here too, the conclu-
siom as in Table 3 holds good. Thus i appears
that with the increase in population size, the im-
provement of Schemes 2, 4, and 6 over Scheme 0
decreases.

Figures 5(a) and (b) demonstrawe graphically the
improvement in performance of the Schemes 2, 4b
and 6 over Scheme (0 with generations as per the ex-

perimental set-up of Table 2. As an illustration, we
consider the case of r = | with elitism for both
F1 and F2. The curves are drawn using least square
fit method. Here the ordinate represents the average
{computed over fifty simulations) of maximum fit-
ness values obtined at a generation. In a part of the
experiment, we have also plotied the average (com-
puted over fifty simulations) of average fitness val-
ues obtained over the population at a generation. 1ts
variation is shown in Fig. 6 for the function F1, as
a typical illustration. From these figures Scheme db
15 seen o be the best. One may note in this con-
nection that the version 4a also produces comparable
results.

Results of Schemes 0, 2, 4b and 6 on De Jong
F4, with Gaussian noise mjected on i, s presented
in Tabke 5. Percent solved represents the percentage
of fifty simulations where the functional value was
= —2a (where o denotes standard deviations of added
noise). The noisy average best denotes the average best
solution (over fifty runs) found afier 2500 generations
with respect to the noisy function evaluation value. The
true average best 15 the average of the true function
evaluation value (without noise) for the same popula-
tion eviluated for the noisy average best value. The
smaller the average functional value is, the better is the
corresponding chromosome. The last column of this
table indicates the minimum average (over filflty runs)
numberof generations required toattain avalue = 2o
usimg noisy evaluation. The entry *—" in this column

Table 3. Average {over fifty simulations) of maximum fitness valves (r: exponentof (7))
fior 2 using elitism: variable mutation probahility.
Scheme no.
2 4h 6

i r=1 r=2 r=1 r=2 r=1 r=12

991580 0991861 0992551 0992775 Q992875 099309 0992227
Table 4. Average {over fifty simulations) of maximum fitness values { NE: non-elitism, E: elitism,
r: exponent of (7)) for #2: population size = 500,

Scheme no.
2 4h Li]

Model i r=1 r=12 r=1 r=2 r=1 r=121
MNE (LOE1E49  Q98T0RS  OUOB3TI9 0991950 0983112 0984962 0991033
E O9E33E 098697 (0985565 0978694 (0981722 (0992282 (1989068
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Figure 5. Nariation of maximum fitness value over generations corresponding to Scheme (1, Scheme 2 ir =

Scheme 6 (r = 1) using the elitist model for the function: {a) F1: (b1 F2.
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Fignere 6. Warnation of avernge fitness value over generations cor-
mresponding to Scheme (0, Scheme 2 {r = 1), Scheme b {r = 1), and
Scheme 6 (r = 1) using the elitist model for the function £ 1.

means that the above mentoned value was not found
within 2500 generations. Here, in five out of six cases
(Table 5), MGA performed better than COA even for
noLSY environment

11, Scheme 4b r = 1), and

Ina part of our study, instead of using linear nommal-
teation selection procedure and mula-point crossover

operator, we used roulette wheel selection process and
single point crossover operator. Companson between
thern with respect to CGA and MGA 15 studied. As an
tlustration some of the results are put in Table 6. The
results further strengthen the superority of MGA.
Furthermore, a comparative study s made with some
enhanced variants of GA, namely, Eshelman’s CHC
[17]1{CHC is chosen because of its robust performance
on a wide variety of problems). Some of these results
are shown in Table 7 for illustration. As expected, CHC
performs better than CGA; and Scheme 4b of MGA

Table 5. Results of De Jong F4using elitism (r: exponent of {711

Avernge hest

Scheme Percent —2a obtained
mo. a0 lved (MNoisy)  {Tre) at genemtion
4] 4510 Xk T.18 —_
2r=1 580 349 697 21H
2r=12 500 337 681 2428
dhor=1 380 408 185 —_
4b,r =2 s3] 350 095 1479

b r= 380 333 704 et v
6r=2 660 325 .94 1746
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Tabie 6. Average {overfifty simulations) of maxi mum fitness valves for F2 (F: exponent
of {711 using elitism, moulette wheel selection and single point crossover.

Scheme mo.

[

4h Li]

i r=1 r=:=12

r=2 r=1 r=12

986979 0991743 (987400

(0.99325

0994410 0988290 0992013

Table 7. Average fover fifty simulations ) of muxi mum fitness val ues
for B2 (NE: mon-elitism, E: elitism, r: exponent of (711

Scheme no.

I

4h Li]

Maodel [i] r=1 r=1 r=1 CHC

NE 0973021 0974337 0982587 0975642 0975109
E 0970982 (0978812 (0985006 0978624 0980234

produces the best result. Momeover, CHC s computa-
tonally more intensive than MGA.

4.2, Selection of Multi Laver Perceptron (MLF)
Farameters for an XOR Problem

To determine an optimal set of connection weights and
thresholds in an MLP for classification problem, the
overall emror, that needs to be minimized, 15 defined
as[10]

[T

|
Error = — E E (i — VU-}I!, (14)
¥ .
5 =l

where 5 and ot represent the number of traming sam-
ples and the number of neurons in the output layer,
respectively. Vanable t,; and V,; denote the target and
obtained output for the jth neuron, (thar is, the acti-
vation of the jth output neuron) respectively, come-
sponding to the sth trining pattern. The weights and
thresholds are modified (using GAs) so that Error is
minimized. Each neuron j oin the output and hidden
layers is associated with a set of p’ input values [,
1l =i = p', athreshold value #;. aset of interconnec-
ton weights w;,, anactivation function { which is taken
as sigmoidal), and an output value
1

V= . 15
Yl 4explw; —8)) (3

4.2.1. Experimental Set-up.  Input values to the net-
work are in binary form. Total number of patterns
the data set 1s 148, These pattems are generated by
replicating the four mput-output pattems of two-input
XNOR function 32 tmes. The size of the training sel
15 considered to be 10%, 20%, 3% and 40% of the
data set and these samples are taken rmandomly. In this
problem, there are two neurons in the hidden layer.
Sinee it 15 a two-class problem, the number of neu-
rons in the output layer is 2. Hence, the total number
of parameters of the problem (including threshold val-
ues of the neurons of hidden layer and output layer)
=2x242x 24242 =12 Substring length ofeach
parameter e.g., w;; . #; has been taken as 100 Values of
these parameters lie in [—25, 425] and these can be
obtained by decoding the substrings using Egs. (11)
and (12). Thus each string represents a set of weights
and thresholds corresponding to a complete network.
The objective function to be minimized s the emor
value. The lower this value is, the higher is the fit-
ness. The population size 1s kept fixed at 20. The
crossover and mutation probabilities are taken as (L8
and 0.008, respectively. Equation (13) 15 used for se-
lecting chromosomes. The algorithm s also mun, like
the previous expenments, with fifty different initial
populations.

4.2.2. Analysis of Results.  Tuble 8 shows the average
(over fifty simulations) error values of the best chro-
mosomes in the last genemtion obtained for different
training sets using Schemes 0, 2, 4 and 6 for the prob-
lem of selecting MLP parameters. Here, insix cases oul
of eight, Scheme 4 (either Scheme 4a or Scheme 4b) is
seen o be the best.

4.3, Selection of Hopfield tvpe Network Architecture
Jor Object Extraction

For determining the optimum architecture of Hoplicld
type neural network  for  object  extraction,  we
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Tahle &,

17

Minimum error valse (averaged over fifty simulations) for MLFP problem (NE: non-elitism, E: elitism, r: exponent of { 7).

Trining sample used

105 2% % 1%

Scheme

no NE E NE E NE E NE E

] 168803 1. 295544 2EIES 1722724 2750636 3ETT250 55559601 3a35180
2.r=1 1107 500 (L8467 27 1 588272 1397355 1 448601 3022454 5207902 5014730
2r=2 1081293 1. 18943 2049644 2916845 2 T08330 342765 4 433890 2126072
4, r = 0205767 1. 136387 2H58492 2100025 1 8557449 LAMTEM 2013776 1727618
da r=2 070073 1054403 13421949 1915655 1207395 2{2HRER 1321304 200645
4h,r = (622872 (.91 1022 1. 362805 L126525 2012772 2990300 5155459 3314264
dhr =2 05724249 (.921924 1274718 1.505582 2764329 105179 4739758 ERETIE
6, r= 1044390 0776514 2169206 1221610 3288752 3287208 2347590 3438006
6,r=2 I 258785 1402526 2676056 26766035 3208401 18062 40061 5400 2907758

considered vanous noisy images as input. In order o
demonstrate the effectiveness of the proposed concept
of ancestors” influence, we have considered here only
Scheme 4b, as it 15 seen o produce the best overall
performance compared Lo others,

43.1. Experimental Set-up. The original imapge
(Fig. 7)1s a synthetic binary (two-tone ) one and 15 of
size 40 x40, Two different noisy versions are generated
by adding Gaussian noise (N (0, al 1. with mean valoe
pero and standard deviation o =20 and 32, to each
pixel of this binary image. The range of pixel value is
[1,32].

For an ml = nl image, each pixel (neuron) being
comnected to at most &1 of its neighbors, the length
of o chromosome is ml x nl = k1. Each bit of the
chromosome represents Wi If a neuron is connected
o any of its neighbors, the corresponding bit of the

Figure 7. Original synthetic image.

chromosome (Le, value of Wil as set to 1, else (.
Hence for an image of size 40 x 40, a binary string
of length 40 % 40 = 8 (here we consider maximum 8
neighbors for a pixel) is used for chromosome repre-
sentation. Each strmg represents a possible network ar-
chitecture forobject extraction. Since the numberof pa-
rameters to be determined here is very large, we consid-
ered a population size of 30. Fitness of a chromosome
i taken as a function of the energy value (Appendix
B) of the (converged) network. The lower the energy
value is, the better is the comesponding chromosome.
The crossover probability 1% taken as 008, The mutation
probability is chosen as 0.002. Selection procedure is
the same as in previous experiments (that is, Eg. (13)1s
used).

4.3.2. Analysis of Results.  Figures 8(a) and (b) show
the improvement of average fitness value of the net-
work with generations using Scheme 4b with respect
to Scheme O for o = 20 and o = 32, respectively.
Here too, the curves are drawn osing least squane
fit method. For a typical illustration the noisy in-
put for ¢ = 20 and the corresponding oulpuls us-
ing Scheme 0 and Scheme 4b (r 1)y are shown
in Figs. Ma)—(c), mspectuvely. Since this problem is
computationally intensive five simulations are consid-
ered. It is seen that the percentage of correct classifi-
cation of pixels are 97.4375 and 98.2500 comespond-
ing to Figs. 9b) and (¢). Momeover, the upper and
the nght edges of the object are better preserved in
Fig. 9c).
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Figure % {a) Noisy vemsion (g = 2(0) of Fig. 7: (h) output using
Scheme () considering Fig. 9 a)as input; and {c)output using Scheme
4h(r = 1) considering Fig. %a) as input.

5 Conclusions

A new fitness evaluation enterion for GAs has been
introduced by considering the effect of fitness of an-
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Varation of average hiness value over genertions for Scheme O and Scheme 4b {r = 1) using the non-elitist model for noisy image

cestors (predecessors) in addition o the fimess of the
individual itself. Selection of chromosomes 1s made
based on these modified fimess values. The Schema
Theorem for this new model 1s derived. Some condi-
tions (Eqgs. (213 and (25) of Appendix A) are found
where the proposed concept leads to supernior per-
formmance compared to the conventional GA m lerms
of the lower bound of the number of instances of
a good schema in subsequent generations. Differ-
ent schemes are provided considering the amount
of weight, to be given to the ancestors, either in
a fixed or adaptive manner, both automatically and
manually.

As the population size increases, the mprovement
of the proposed schemes over the CGA decreases. The
method also works better for noisy environments and
complex problem domains including preservation of
shape (edges) of mage regions.

Scheme 2 (mutation dependent fixed weighting co-
efficient), Scheme 4 (dynamic weighting coefficient,
dependent on the difference of fitness values between
parents and children) and Scheme 6 (auomatically
evolved dynamic weighting coeflicient) are given more
emphasis from the point of conducting expeniments,
because of their relatively improved performance. Al-
though the adaptive methods are computationally mone
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intensive, they are seen to have an edge over the fixed
ones even for noisy and complex functions. Note that
unlike Scheme 4, Scheme 6does not consider the differ-
ence between the fitness values of parents and children,
though the parents are given unequal weighting coef-
ficients in both the schemes under an adaptive frame-
work. Overall, it is Scheme 4 which s seen to provide
supenor results.

Although we have considered the value of r to be
1 and 2, one can take, as mentioned in Secton 3,
any value r =1 for conducting experiments. Results
under Scheme 7 are not incloded because the influ-
ence of grandparents was seen to be not much ef-
fective in enhancing the pedormance. Morecover, in
a part of the investigation, the new criterion of fit-
ness evaluation 1s also ested vsing gray coding and
the results are found o comoborate our above men-
toned findings. In this context it may be mentioned that
this new critenon may sometimes lead 1o a premature
CONVETECNCE.

Appendix A

Inflnence of Parents on Offspring
and the Schema Theorem

The Schema Theorem [1] estimates the lower bound
of the number of mstances of different schemata at
any point of time. According to this theorem, a short-
kength, kvw-order, above-average schema will receive
exponentially increasing imstances in subsequent gen-
erations at the expense of below average ones. In ths
section we derive the Schema Theorem for GAs us-
ing the aforesaid MFV (let us call it *Modified Genetic
Algorithms” (MGAs)) and find the lower bound of the
number of mstances of a schema, We also compare
this bound with that of the CGA. Before deriving the
theorem let us first introduce some definitions.

A schema 1s a similanty template desenbing a sub-
set of strings with similarities at certain stnng posi-
tons. As an example, **10F1* 15 a schema where *#°
indicates that the comesponding positions may be ei-
ther 1 or O (considering binary strings). Then 1010111
and 1110011 are two mnstances (chromosomes) of this
schema. The number of fixed bits of a schema 15 the
order of that schema. The distance between the first
and the last fixed positions is termed as defining length
of the schema.

For the sake of convemence, let us first show the
denvation of the Schema Theorem for CGA [1]. The

notations that we will be using are listed below:

fiz a short-length, low-order, above-average schema

A4f): the defiming length of schema b

ol h ) order of schema f

L:length of a chromosome

k: size of the population

mih, t): number of instances of a schema it inoa popu-
lation at generation t for the CGA

[ average fitness value of the population for the CGA

fi: average finess value of the sirings representing
schema i for the CGA

e crossover probability

Pars- Mutation probability

Letm instances of o partic ular schema f existin the
population at tme + (denoted as mih, 1)), Now selec-
Lion process copies cach stnng into the mating pool
according o its fitness value. In a population of size k
the ith string (where, 1 =@ = k) A, with fitness value
Tie gets selected with probability preb = E—I-T
non-overdapping population of size k is produced with
replacement from the population at time f. Hence in
the population at time (¢ 4 1) the number of instances
of schema b (denoted as mifh.t + 11) 1%

fi
mih, 1k ——
Z,k fi
mih. i) % f

Hence the number of above average schemata will grow
exponentially, and below average ones will receive a
decreasing number of samples.

If & crossover site 1% selected uniformly at random
among (L — 1) possible sites, a schema i will be de-
strovyed with a probability

mih,t+ 1)

- dih)
T

Thus, the survival probability (p, ), when the crossover
site falls outside the defining length, is

pi=1—pa
dlh)
(L—1)
If p. 15 the crossover probability then,

i aith)
= l—_p—
Pz l=pep—py



X0 Crhosh, Ghosh and Pal

Moreover, in order to survive a schema f, all the
fixed positions of f (o(h)) should remain unaltered. If
P 15 the mutation probability, a single allele survives
with a probability (1 — p). Hencee, for o(f) number
of fixed positions of a schema b o survive, the survival
probability is

E]- - _P.'mu }MJI :I-

If powe <1, the above wvaloe 8 (1 — olf)pa)
Therefore,

mih,t+ 1) = m{'h,r}%{l — p8(R)(L — 1)}
x { ]- _'”{'h }'Pmau }- “6}

MNeglecting the small cross-product tenm, we have

mih, r+1) = m[h,f}l%

# ]l — pﬁﬁfh}lfff_ -1 —'ﬂ[h}ﬂurm}-
(17

We now denive the expression for the expected num-
ber of instances of schema h, that is, we determine
mih,t +2) from mih, ¢ 4 1) for the MGA considering
the influence of parents only. For deriving the theorem
wi have computed the fitness distributions of the popu-
laitions both before and after the selection procedure in
each generation. Let the time instants “before selection”
and “after selection” of the tth geperation be denoted
as (%) and (1), respectively. The other notations that
we will be using for this purpose are listed below:

m*(h, 1): number of instances of a schema b o a pop-
ulation at generation ¢ for the MGA

Fe™): average fitness value of the population at + for
the CGA

FHry: average fitness value of the population at t
for the MGA

Filrm ) average fitness value of schema h at 9% for the
CGA

Frir™): average fitness value of schema h at 1 for the
MGA

Fle + 1f%: average fitness value of the population at
(t + 1 for the CGA

FHr 4 1™ average fitness value of the population at
(t + 1 for the MGA

_ﬁ, (r 4+ 1% average fitness value of schema b at
(¢ + 1" for the CGA

Ly

Fir+ 1™ average fitness value of schema h at
(t + )™ for the MGA

Fi': average fitness value of schema h (at 1) of the
first parent for the MGA

j'}'l’!: average fitness value of schema b (at ) of the
second parent for the MGA

fiz fimess value of ith chromosome at (r + 17" for the
CGA

_f'l.f" - fitness value of the first parent (at #** ) of ith chro-
MOS0

fl"",: fitness value of the second parent (at #) of ith
chromosome

Sio modified fitness valoe of ith chromosome at
(t + 1™ for the MGA

For the CGA, the expected number of instances of
schema f obtained from mih . 1+ 1) can be written from
(17) as

_'I i 1 ey
mih,t +2)=m(h, t + 1}.M

ff_r + 1}.'!.'.'
o (18)
s _ng__ 1 [ o f -
In the MGA, the MFV of the ith (Vi = 1,..., k)

chromosome 15 calculated based on its own fitness
value and its ancestors” (here, pl and p2) fitness values
as

_.IF," — .?."[_fj. -ﬂ'm~ f;NL

where g 15 the fimess function. The MFV of cach chro-
mosome changes the average fitness value of the pop-
ulation (at (f + 1), Let the modified average filness
value be F*(t + 1)%. Then

i=k ey
_.F"U + 1}.';.-.' e, ZJ::I -'fa :

(Note that for the CGA, f(r + 1) =3125) / fi/k.)

The MFV of chromosomes also changes the av-
erage fitness value of the schema. The fitness val-
ues of the parent chromosomes at (f + D™ are
obtained from . Hence, the modified average fitness
value of schema h ( Fi(t 4 1) can be represented
as

_.F:-;{f + 1}.'!.'. — gfjlfr + 1}.'!.'.'1 f_:llfrﬂ.\'}}_ f].g::l
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Chromosomes from stage (t + 1 are selected
based on their both modified fitness values and the
modified average fitness value £t 4+ 1 Thus, the
probability of selection of each chromosome for the
MGA may be different from that of the corresponding
chrmomosome of the CGA.

The expected number of instances of the schema b
at (i + 23" for the MGA will therefore be

. 1 r.-.1 _'I iy
m*th, £ +2) =mh, t + 1}|*'3'f“'F“E}.frfr i 1}‘:“ 2

ath)
®il—p. S A P - 120)

Foe ]

Now we will denve vanouos conditions for differ-
ent values of r {exponent of (7)) under which the
rght hand side of (18) will be smaller than that of
(200, thar is, the expected number of instances of
schema A in the CGA will be smaller than that of
the MGA. Here we consider the general form of g as

in (7).
Casel: r=1:

falt £ [ dh)
fir+1)= g —
5 g{j_.fl {r + 1 Yr.-.'1 j_:h{fﬂ.\ }}
ft{f + l}b'\.

® ll - P,-% —r.rffi}pmu}

Fult + 1% g(file + 1P, f(e™)

fle+ 10 FHir+ 1

At + 17 afult + D" + B+ B ful1™)
Fla+18 7 afle+ D + () + fa) f(1e)
(using (3) and any o, 0 =@ < 1)

afyt + D" afilt + 1" + (1 — ) fils*)
aft +1)% = af(e+ 1P+ (1 —a) f)
a frlt + 1) e a) fiult™)

aft+D (1 —a)f(r=)

: a a—+c a c
smuc,g-c: = — < —

e ”{h}f?uml }

b4 d |
AU+ i) 55
_,Fff o 1}&\ j‘{fﬂ.\} ) -

Equation (21) means that if the proportion of aver-
age fitness value of the strings representing schema f

with respect o the average fitness value of the popu-
lation in g mating pool (at +) in CGA s greater than
that after performing crossover and mutation operation
{at{t + 1)), then the perdformance of MGA in terms of
the number of instances of schema fi will be better than
that in CGA. Intuitively, this condition is likely 1o be
satisfied in many problems since due o crossover and
mutation some of the instances of schema i would al-
ways getdisrupted. The possibility of such a disruption
15 smaller in the case of MGA since more bias 15 given
here to keep schema undisrupted through ancestors.

Care2:r=12:

Jult + 1) I] (1)

Fo+rnm | P _”m”"’””}
(falt + D, fulr™ S(h
Fult + 1% g(filt + 17", ful(t™)
Fa+F = Pa+1p
fult + )"

_laGhe+ 119+ 1(72) + Aa(72))
Ly fe(r) + 8057 + B
{using (7))
(fult + 107
{f‘{r + J}.'M'}E
e+ 24 B () +A(7F)
L5 {a() +8(5" ) + b)) )

{22)

It is of the form

Xl X3
e RESE
X2 X4

where

X1 = (fult + 177,
X2 = (@t + 1)*P,
X3 = alfilt + D + A (FEY + B(F7), and

3

X4 = % Y la(2) +A(5") + sl £7)) .
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Let us simphify the components.

X2 =(f(t+ 1)
a

_(.f'.+f;+---+ﬁc)'
B k

1
= Glfi+fte+ A
k&
4R+ + 2+2) ) 6 f
=1 j=I
f#i
1
— k—ED1
where
k&
D=|fl+ R+ +R8+2Y Y Fif;
i=1 j=1
iFj

Let us denote

(@(£2)+B(F) + B £)) = Es.
Mow X4 can be written as

k

Z a(f2) +Bi(f1) +ﬁz{f;-’“}"!;]_

I
=£_—_,[£E. +E +---+Ekf}

Substituting the values of E; in (23) we oblain

X4 =

—_, erl:r +ﬁ.ZU”'1

+ﬁ’2{f ) +?Z Eia{f )

=l j=l
iy

+B(F7V + ) ) e(2)

+B (1) +ﬂz{ff“}2}{| . (24)

MNow
= (o (/) + BlA"Y + B U))-
Hence
= [ 217+ BV (Y
+B(E () + F
where

F = api( (") + epal £V (1)
+api (£7) U+ BB ()
+afa ()7 + BB ) ()

or
EE;=(*f2f*+G)"
where
G =BV () + B (F7) + F.
or
EE;=afif;+H.
where

H=EE; F,/EE -G.

Therefore, from (24)

{ ij +ﬂ.Z{f*"} + 1 Z{rﬁ' y

k k

+ EZZGJ"L+H{|
ey

ar

k k
X4=g {“D +8 ) () +8: ) (57)
=1 i=]

k k
= fﬁ[ﬂ'ﬂ 8 Y (1) +8 Y () ”‘”}
=] w=x]
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where

tiﬂ

=

o

Substituting the values of X2 and X4 in (22) we get

a(x)D
_ alfule+ 1P 48 (FR Vg (P
(=) [“D + 6 TP+ B T PR+ H']
al fiult + 1P R
oy ——
w
r e fult + 1} }+ﬁ,{,r"'"} +ﬁ,“rh}—
eD+ /[T Y+, () + 1

(flr + 1
Ii)

ﬁ]{i'f"} -I-ﬁ_{,r’”}'
Zm GPY + 8T (57 +H

Thus the nght hand side of (18) will be less than that
of (20 11 (25) holds.

Similarly, the expressions for r = 2 can be deduced.
One may note that the right hand side of (21) 1% inde-
pendent of o and A, whereas itis not the case for (25).

(25)

Appendix B

Haopfield tvpe Newral Network Architecture
Jor Object Extraction

To use a Hopfield type neural network for object back-
ground classification [ 18], a4 neuron is assigned come-
sponding w every pixel. Each neuron can be connected
o all of its neighbors (over a window) only. The con-
nection can be full (4 neuron 1s connected o all of its
neighbors ) or can be partial (a neuron may not be con-
necled with all of its neighbors). The network topology
for a fully comected third order neighborbood s de-
picted in Fig. 10, Here the maximum number of con-
nectons of aneuron with its neighbors is 8. In practice,
all these connections may not exist. Agan, different
neurons may have different connectivity configuration
within its neighbors, The initial status and input bias

of each neuron are set depending on the gray value of

the corresponding pixel The status updating rules are
similar to those of Hoplield s model [19]. The objective

Figure {3, Topology of the neural network with third onrder con-
nectivity {in the proposed system all connections may not exist).

function to be minimized for object extraction s simi-
lar to the expression of energy of the above mentioned
network.

The energy function of this model has two parts.
The first part is due to the local field or local feedback
and the second part corresponds o the mput bias of
the neurons. In terms of images, the first part can be
viewed as the impact of the gray levels of the neighbaor-
ing pixels, whereas the second part can be attnbuted
to the gray valoe of the pixel under consideration.
The wtal energy contnibuted by all pixel pairs will be
— ¥ EJ. Wi 858 where § 8} are the status of the i th
and jth neurons, respectively and Wi 1s the connection
strength between these two neurons. In our expenmen-
tal study Wi, is either ( or 1 (connection is absent or
present).

For every neuron @ there 15 an initial input bias B
which is taken w be proportional to the actual gray
level for the corresponding pixel. If the gray value of
a pixel 1s high (low), the corresponding intensity value
of the scene is expected to be high (low). The input bias
value is taken in the mnge [—1, 1]. Under this frame-
work an ON (1) neuron corresponds to an object pixel
and the OFF (—1) one as background pixel. So the
threshold between object and background can be taken
as (0. Thus the amount of energy contributed by the in-
put bias values is — ¥, B, 5. Therefore. the expression
of energy for the object extraction problem takes the
form

Energy = — Y ) W55, =) BS. (26)
i J i
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From a given initial state, the status of 4 neuron is
modified iteratively Lo attain a stable state. Stable states
of the network (local minima of the energy function)
are made 10 comrespond to the paritioning of a scene
ko compact regons.
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