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IsTrRODUCTION

Tt is well known that (i) tho problem of discrimination in respect of variances between
two univariate normal populations is tackled and solved in practically the same manner as
(i7) the problem of discrimination in reapect of mean valucs among I(I>2) wnivariate
normal populations supposed to have the samo variance. On the null hypothesis the statis-
tio for problem (i) has the same form of sampling distribution as the one for problem {ii).
Into symbols this may translated as follows : Suppose we havo (i) 2 samples S, 2nd S, of
sizea 7, and n, and standard deviations #; and s, drawn at random from 2 univariate normal
populatiing X, and X, with population standard devintions o, and o,; and furiher (ii)
Isamples S,, §,, ... S, of sizea ny, ny, ... n; with means X,, Xy, ... ¥, and standard deviations
8,85, ... 8 drawn at random from ! univariate normal populations X, X, ...=, with
mean values ¢, £, ... £ and a common standard devintion ¢. For (i) the null hy-
pothesis (associated with the process of discrimination in respect of variance) is ¢,=¢, and for
(i) the null hypothesis which goes with discrimination in respect of mean values is §,=¢,
...=§;.  Totest the null hypothesis for (i) the usual statistic is ¢%,/a;* and to test tho null
hypothesis for (i}) tho usunl statistic is Bf)", where B is tho familiar ‘between varianee
and JI" is the familinr ‘within vorinnce’. In fact with N =n, 4+ n, + ...n,ond ¥ =
M E 40T+ oy )N, Bas (T~ X 4+ (5= X) + ooony (T = XPFY
(=1 and WV = ((n,—1)at+(n, — Dot + ... (1 — 1Ja?) (¥ ) and it is well known
that 2,%/s,t of (i) hoa the same form of sampling distributiin when oy = o, 03 B/W of (i)
when ¢, = £, = ¢y = ...£,. Tho common distribution is Fisher's wellknown ‘F* distri-
bution. Whether it bo for purposcs of classification or for purposes associated with Neyman
and Pearson’s theory of testing of hypothesis it Is important to know tho sampling distri-
bution of 8,/s, of (i) on tho non-null hypothesis, that is, when o, :£ 0y, and similurly the
sampling distribution of B/ of {ii) when ¢, 5% £, 55 ... 54 §. It is also known that now
the two distributiona are cntirely different. In fact on tho non-null hypothesis #,3/s%, has
the distribution
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and BfW has tho distribution's
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Tho technique outlined above was developed for the univariate ense ;  but it could be com.
letely generalised for purposes of tackling tho corresponding problems in the multivariate,
As a matter of fact part of the generalisation has already been made and it is the objeet of the
prescnt paper to completo the schene.  What has been already achieved by others and by the
asuthor, and what the present paper proposes to do can be sent forth in technical lunguage as
follows : Suppaso wo have (iii) 2 samples S(1) S(2) of sizea n, and n,, and variances ani cov-
riances a(1, i)) and a(2, ij) (i, j=1, 2,. ... p) drawn at random from 2 p-variate pormal popu«
lations (1) and £(2) with variances and covariances a{l, ij) and a(2, ij) 6, j=1,2, ... p), and
further (iv) { samples S(1), $(2),...8()) of sizes n,, ny,...n), menn values F(1, i), H2, i),. . Z(1, i)
and variances and covariances a(l, ij), a(2,ij), .... a{l,ij) (i, j=1,2,....p; tho first suffiix
referring to the aamplo and the next ones to the character) drawn at mndom from 1 p-variato
normal populations with mean values §(1, i), £(2, 1) .... &(1,§) (i=1, 2, ... p); the first suflix
referring to the population and the next ones to the character) and a common set of variances
and covarianees a”(ij) (i, j=1, 2,... p). The situations (ii) and (iv) are respectively the multi-
varinte gencralisation, of the univarinte situations (i) and (ii) already discussed.  For (iii) tho
null hypothesis (associated with the process of discrimination in reapect of the sets of vari-
ances and covarinnees, between the populutions X(1) and X(2)) is ofl, ij)=a(2, )i, j=1,
2, ... p) for (iv) the null bypothesis (nmcin!nl with discrimination in respeet of the set of
mean values, between tho populations X(1), X(2),.... () is &1, 3)=(2,1) ... §(hi)i=l,
2,...p) Totest tho null hypothesis for (iii), llmr. is to test a(l, ij)=a(2.i}) G, j=1, 2, ... P)
the author constructed about three years ago from certain considerations a set of p-statistics
1, I, ... k%, which might bo regarded as appropriate generalisation of &% /%, of (i)
and which aro tha roots of the determinantal equation in k*

(1, ij)—k* a(2,ij)] =0 @

Thoe sampling distribution of these p-statistica in the null hypothesis {a(l, ij}=a(2 ij}; i, j=1
2,... p) was obtained in the form

NEE=)

X mod (1 —ke) ... (1 —kG) (By~4%) Lo (R =2h) L (=10} o ()
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The sampling distribution of tho aamo sct of slatistics on the non-null hypothesia {a(l, ij) =
a(2,ij); i, j = 1, 2,.., p) won alyo obtained somo timo later.

To test tho null hypothiesia for (iv), that is to test ¢(1, ) =¢(2, §)=. . £(l, Mi=], 2,...p),
another set of statistica £2,, (2, ... 1, were constructed agnin about threo years ago which
might be regarded as appropriate generalisation of B\ and which came out as the p roota
of the determinantal equation in

la'(ij)—¢* a(ij)] =0 n

where a’(ij) and a”(ij) are quantitics defined by

< (n,~1) alr, ) =(N—1) a*(ij »
,

’:\‘;l w,(Y(r, §)—X) (3(r, —¥)=(-1) a'(ij},

N and z, (i = 1, 2,...p) being given by
ll 1
N=<n,; x=Sn, x(r,i))N
) ~l
with 4, j=1, 2,%..p J

It waa found", ® that the f)'s (i=1,2, ... p) of (f) have the same form of joint eampling
distribution on the null hypothesis for (iv) (£(1, ))=§(2, i)=...=¢(L i); i=1, 2,...p) as the sct
of statistics X'a(i=1, 2,...p) of (a) on the null hypothesis for (iii), which is a(l, ij)=a(2, ij)
0, j=1,2,...p). In fact the common form of joint distribution in that given by (e).

Tt is the primary objeet of the present paper to obtain tho joint distribution of the sct
of statistics 1)’ (i=1, 2,...p) of (f) on the non-null hypothesis for (iv), which ia £(1, i)5¢(2, i)
Fu.#4(,3) (1=),2,...p). This, as has been observed earlicr, is important both for purposes
of classification (in respect of mean values) of the populations X(1), X(2),...X(1) as well as for
purposcs connected with Neyman and Pearson's theory of testing of hypothesis. To make
this paper sclf-contained it would bo dexirable, however, not to take on trust tho p-statistics
defined by (f) and (g) and proceed forthwith to obtain the joint distribution on the non-null
hypothesis, but to go back to an carlicr stage, from there to build up the p-statistics of (f) and
(g} by properly generalising to tho multivariate case the BfW of (i) which applics to the uni-
variute structuce, and then obtain the ammpling distribution in question. The distribution
of this sct of statistics on the null hypothesia (¢(1,i)=¢(2,i)=...={(l.i); i=12, ...p)
would then como out as a speciul cese of this distribution so that the present paper would bo
scif-contained in practically every respeet except for ono important stage in the derivation
of tho main distribution where uso will be mnda of an earlier paper by tho author.

1. PRELIMINARIES TO Tite REpucTioN op TnE DisTriBuTiox ProsLex
As wo havo remarked carlier S(1), §(2), ... S(I) aro samples of sizes n,, n,, «.. n, dravn
at random from 1 p-variato normal popnlations £(1), X(2)...X(). «’(§j) (i, j,=1, 2....p) denoto
the common sct of variances and covariances for the populations ¥(1), 5(2), ... () so that
a*(ij)=p,; @, ), 9}, o) being tho common etandard deviations for tho i** and j* characters
for all the populations and py) the ccwmen corrclation cotflicient (for the populations)
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between tho i and '™ characters. [ a”(ij) I would be ealled the common dispersion matrix
for the populations. Likewise a(13j), a(2,ij), ... a(l, ij) denoto the seta of variances and co.
varianco for the samples S(1), S(2), ... S()) mqwclmly (i,ji=0,2,...p: the first suffix
denotes the anmplo and the next onea the various characters), wo that ga(L, ijin, w2, iji.. ..
Ba(l, §jii ara tho diapersion matricea for the varions ramples,

Yot ¢(L,0), &(2,1) ... fL D) li=1, 2, ... pi the first auffix denotes the popu-
lation and the next ono the chareter) denote the mean values of tho various popnintions,
and x(L,i), X(2i), ... %L ) (=1.2,...p; the fimt suffix denotes the sample and the
next ono the chnrncter) stond for the means of the different samples,

Let a(l 4, v)), 2(2, 4, v,), «..o0 7L, i, v, stand for the sample readings of the different
samples 8(1), 8(2), ... SN (1=12, ...piv =02, Lo v=02 0 0n 0 Lon=12, 000
tho fist sullix denotes the samplo, the reeond auflix denotea the character and the thind
suffix denotes the order of the individunt in the particnlar samplo in queation).

Wo havo thus

=r, l)— _— r(r. i, v,)

alr, ij

T S'. {rirsis v) =X (r D} {(r, }, v,) —51r, j)

and ) :
=X n, X(r, )N oom
rel
with
i=1,2...... psr=1 2 ... 1

1
vw=12...in; N= X »n,

After tho techinique of Profeasor Fisher the reduction of the problem to the univarinte caso
ean bo cffected as follows, A compound character built on a lincar compound of the vari-
atesis taken for the samples S(1), 8(2), .... S(l) which are now characterised respectively
by readinga (for tho different individnaly)

S(1)- g.x.x(l.i, , .;'. AL, .\.:u.-'m)‘

s@- £ aain b s, EA. H2in,) Tt
- a3 E

st £ e 3 A s, § i
(T) (1) -

Denoting now by B and W tho ‘between varinnee’ and ‘within variance' of the different amples
for the compound cl ter, and introducing new ities a'(ij), a”(ij) defined by

wli= %, (3l H-%) (2 D-Zp/0—1)
a"Gi)= ¥, (= Dle, /N —D

an.



MULTIVARIATE NORMAL POPULATIONS : ANALYSRIS OF VARIANCE
whero z(r, i), Z(r, ij), F,, N havo been already defined in (1.1),
we have

p
B= X ) Ay
g e
»
W= ¥ Aoy
Oy
Setting now B/W=1%, we can ro choose tho As (i=1, 2, ... p) 88 to maximise ¢* whereby wo
obtain p stationary values of £(f2, £, ...4%,) as the roota of the p-fold determinantal
equation in £
la'ijy =2 a™(ij)| =0 o)
¥or cach of tho populations (1), X(2),....5()) start with a similiar linear compound
of tho p.variates and Dring in new quantitics ¢, a’(ij) defined by
1 . 1
b= 2 e fn N
\ 15

a'(ij)= = n,@r,D—E) Glr ¢

Having reduced tho multivariate problem to the univarinte case we can now introduce quan,
titics B and o® (analogous to B and o of enso (ii) of the introduction) defined by

= % Ay a’(ii)\

e,

. (16
o= X A (i) [

vl

Putting now B/a*=7? and maximising r* with respeet to the A's (i=1, 2, ...p) we obtain
tho p values of 3(r2, 12, .... 7%,) as the p-roots of the p-fold determinantal equation
in 7

- | '(ij)—1t a’(ij) | =0 o (rm
By considering (1-1), (12) (1-4), {1:5) aud(17) it can bo casily proved that all the roots of
(14)—4%, 47, ... 42, and all the roots of (1-7)—1,%, 4,7, ... t,? aro zero when awd only when
for the first caso Z(1, i)=%(2, i)= ... Z(1, i) and for tho second ease (1, i)=¢(2, i)=...¢( i)
(i=1, 2, ...p), that is, for cach character the samples (for the fimt case) and populations
{for tho sccond case) have tha samo mean value.

As in the caso of k,’s and x,%s of tho previous paper 4 24 the s of {1+4) and r('s of (1'7) aro
invariant under any general linear transformation of the p-variates to p new variates (tho sct
of p*-transformation cocflicicnts for the samples may not necessarily bo the samo as the p-set
for tho populations but, of course, for all the snmples it must be the samo p-yet and for all
{he populations thero must Lo the same ptsct though it may be different from the common
sct for the samples).

The samplo ${1) with readings x{1,1,v,) (i=1,2, ... pi v,=1,2,...8,) can Lo con-
veniently represented in tho usual Fisherian flat samplo apace f(1, ) of »,, dimensions by
the p pointa with co-onlinates (1, 1,1), 2(1, 5, 2), ...x{(),i,n,)) (i=1, 2,...p) or by p vectors,
x(1,1) (i=1, 2, ... p joining tho points to the origin. We may tako another flat spaco f(2, n,)

an
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of n, dimensions absolutely orthogonal to f(1,n)) and in it represent tho ramplo S(2) by p

other similr vectors x(2,i0) (i=1,2, ..., p); next tuko another fut spaco f(3, n,) of n,
li i bsol ! to f(1, n,)and f(2, n,) and represent in it S(3) by aimilar
vectors x(3, 1) (i=1, 2, ) s continuoe liko thix till we como to S{l) which wo represent
Ly psimilar veetors x(l, i) (i=1, 2, ..... p) in a similor flat f{l, n,) of n, dimensiona. Tn
Mace of the old varinbles introduce new surinbles y(r, §, vi) defined by

yin i, v)=a(r, 1, v) —X(r, i) o (18)

1 )
ly orthog

where §=1, 2,...p; v,=1,2,....... n;or=1,2,...... 1N

tho first suffix refers to tho sample, the sccond suflix refer to the character and tho third
suffix (whero it occurs) refers to the individual in a samplo.

For the #* samplo (r=1, 2, ... 1) the veetor x(r, i) is now conveniently resolved into
two orthogonal vectors, ono x(r, i) of magnitudo F(r, i) along the equinngular line in the flat
Jir,n,) and tho other, say y{r, i) (with componenta y(r, i, v,})ov,=1, 2,...n,) lying obviounly
ina flat f{r, n,—1) which is immersed in the flat f(r, n,) and is orthogonal te tho equinngular
tino. This is evident from (1.8). Tho end points of the veetors x(r, i) and y(r, i) will be
denots by X(r,i) und Y(r, i) whilo tho vectors y(r, i) (i=1, 2, ... p) will be called the p
variation vectors for the r* sample. Tho covarianco between the i and j* varintes
for tha r* sample (r=1, 2, ...1; i, j=1,2, ... p) is, thercfore, given by

afr, §j={y(r, i) y(r, D}/(n,—1) (1)

where {y(r, i), y(r, §)} id the scalar product of tho vectors y(r, i) and y(r, j). The! equinngular
linca in the I flats f(1, n,) fir, n,), ... f(1, 0,) will be ealled oe,, oe, ... 0¢,. From the fact that
tho flats f{1, n,), (2, n,), ... f{l, n,) aro absolutely orthogonal to ono another and further that
any equiangulnr lino oe, lics in f{l, n,) and orthogonal to fir, n,—1) it is evident that ce,,
0ty, ... 0¢, arc mutually orthogonal, and all orthogonal ta fir, n,—1)'s(r=1, 2, ...1) which
latter aro themselves mutually orthogonal; thus oe,, fir, n,—1) (r=1,2,...]) form a mutually
orthogonal set.  For tho #* samplo we have p-vectors x(r, i) ulong o, and p-vectors y(r, i) in
the flat fir, n,—1) (r=1,2,...1; i=1,2, ... p; the first suflix refers to tho 2amplo and the
next to the character). Tako the resultant of the vectors y(1, i) 5(2, i)eyilhi) and call it
»"()(i=1,2,...p). Then tho p.vectors y*(i)’s (i=1,2,..p) lic in a fut of n,—14n,—14 ..
<. my=1 (i.e. N—1I) dimensions composced of tho flats f(1, n,=1), f(2, n;—1), ... . m=1)
which let we call tho fiat f*(N—1Ij; this f"(N—1) initsclf smmersed in & at composed of
S, fi2,n) ...l filn,) which let us call f(N). From tho foregoing considerations and
from {g) of the introduction and (1'1), (1-8) and (1'0) it ia evident that
aiy=(y"t. yGINN-D
whero {y”(i). y*(j)} is tho scalar product of the veetors y(i) and y°(j) Next consider the
equiangulnc linca oe,, oe,,. ..0e); these form a flat of Idimenxiona which let us eall f(1); in this
flat take a lino o¢ with direction cosines (referred 10 ey, 0e,,. .0¢y a3 axes) y (n,/N), ! (n,/N),
. J (n/N) with N=n,+ n,+ ...n;. Toko now in this flat f*(1) vectors y'(i) (i=1, 2,...n)
such that tho i veetor y'; has components along the I axes oe,(r=1,2, .....1) given by
I m@E, D=2) ¥ naE (2020, eV mEL D) ~ 5) } (0%
whero E,u'_}é a,7(r, )N
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It ia evident, therefore, that these povector y/'(i) (i=1,2,..... p) lie in a ftat #(1=1) which
is immersed in the fiat (1) nnd is orthoronal to the Jine oe in f°(1) introduced just now. Tt
is also clear that a'(ij)'s (i. j=1,2, ... p) defined by (g) of the introduction is conneeted with
thoe y'(i)'s by

a'Gj)=(y"(i). y'(i)/(1~1) . (103)

where (y'(i). y'{j)} is the scnlnr product of the vectors y'(i) and y’(j). Denote the enid points
of the vectorr y'(i)’s by Y'(i)'s. (i=1,2..... p).  Hence we have altogether p-vectors y'(i),
(i=1,2, ... p) defining a p-flat, say, f(p) which Jica immerzed in f1—1) (p<I—1) of 1-1
dimensions, and p-vectors y*(i) (i=1, 2, ... p) which define n pfat, ray, J7(p) whichli es
immersed in f*(N" — 1) of X' ~ I ditensiona ; the fats /(1 ~ 1) and f*(N¥ — 1) have been al-
ready deseribed.

Now tnke the reaultant of the vectors y'(i) and y7(i) and call it y(i), the end point
being Yi(i=1,2, .... p). Then yi's determine & p-flat, say, f,.  Then from considerations
similar to those discussed in the two previous papers  * jt would follow from (£ ) of the
introduction and from (1:01) and (1°03) that if 8,(i=1,2, .... p) be the p critical angles be-
tween the flat £ and tho flat f(N—I), then

4= tan 0, (X=N)ill=1), (i=1, 2,.... p) o (1004)

The #'s aro invariant under any ( } lincar trunsforation of the p-variates to p new
variates, This is for tho | samples $(1), S(2)...5(1). Likewise for the I populations x(i),
£(2) ...%() take vectors I'[n’(i)]s and V'[n"(i}]'s analogous respectively to vectors y'(i)s and
y(iYe for the | enmples (i=1,2, .... p) such that «’(ij)'s of {1'5) and a”(ij)'s the common
dispersion matrix for the populations are given by

a'(ij)="0"@) Vv ]

o(ij=V"®). V(i
where V(7'(i)]. ¥F[n’(j) is the sealar product of F'[x’(i)] and ¥[7°(j)) and V(2°(i)]. F{»*(j)) the
scalar produet of V'[9"(i) and F[n“(j)]. The p-veetors V{7°(i)] would consitute a p-flat F'(p)
and the p-veetors ¥[3(i)] would constitute a p-flat F*(p). So arrange matters that F'(p)
is absolutely orthogonal to F*(p). If now we form the resnltant of the vectors V[#’(i)] and
Y(n"(i)) and eall it F'(n;) then V(m,)'s form a p-flat F(p) which makes with the p-flat F*(p) p
critical angles which let us call 92 (i=1, 2, .... p). Then it follows from considerations
similar to those of the previous papers * 24 * that s of (1-7) are connceted with ©,s by

1,=tan ,(i=1,2,....p) .. (1'00)

The r,’s are invariant under any lincar (common to all populations) transformation of the
p-variates to p new variates.

(1-05)

2. Tue REDUCTION OF THE IIsTRIDUTION PROBLEM

The joint probability of tho j samples S(1), $(2), S(1) coming as random samples
from (1), ¥(2), ..... (1) or the probability of sample.readings x(r, i, v,) lying between
z{r,i,v,) and z{r,,iv,)+dr{r, i v,) (r=1,2, .05 i=),2, . .p: v=1,2,....0,) is given by

Conet exp— } X a® I‘ | (e, —£(r, D) @r, D= ¢ N0, =) a(r, i)

red W g "
% 1o fidrteiy ) .o
[

]

41



You. 0) SANKHYX: THE INDIAN JOURNAL OF STATISTICS [ Pant t

whero as previously the autlix r refers to the sample, tho suffixesi and j refer to the
character and tho suflix v, (where it occurw) refers to the individual in a sample ; and
a" is tho co-fuctor of a’(ij} in tho determinant |a’(ij)] divided by tho determinant itsell,
Tho other quantitics 7(i)'s, ¢(r, i)'s, a(r, i})'s have been already defined in the introduction and
in section 1.

Consider now tho demsity factor exp( )in (20); X (n,~1)alr, j) in really equal to
to (¥ — 1) a*ij) from {1-2). Furihermore,

£ nu (vl =€ 1) (505, = 80 50
= % n{0Ete D=F+ GO 85 D) (Fr D=2)HE—, i)
=3 (0 0-2) Gt =T ¥, e ) @ )-2)
= % n e 1) G0 ) ~ F) + N2 5=V 6N £

= (I=1)a'(i, ji— ..il. mé(r, §) (¥(r, j) = 7,)— i: ne 4n §) (x(r, )—3)
+NF -N7 §,~NF ¢, .oy
where a’(if), Z{r, i), {(r, i) have been already defined respectively by (1-2), (11), (1:4) and (1°5).
Hence the density factory in (2.1) becomes
Const. exp. [—ll‘}:. at (N = Da’(ij) + (1 — Da'(ij)— ;; e §r, j) (%(n3) — Z,)—
1 ™
,‘_E' n §(r, Z(r, j)—3)) + NT 7 — NE §, ~ N §))) (23)

As has been observed in Section 1 and in the previous papers the #’s of {f) and #/a of (l 7)
are fnvariant under any lincar transformation to all the ples) of tho p-variut
top new variates (for the samples) and any linear transformation (common to all tho popula-
tions) of the p-variates to p new variates (for the populations). For purposcs of invariance
it iy not essentiul that the transformation cocflicivnts for tho eamples should be tho same
s the sct for the populntiona. Here, however, wo take them to be the same. It is known
from one previous paper®* by the author that we can construct a lincar transformation such
that in tho new schemio the changed population parameters have tho following properties :
a (i i)=1; a*(ij)=0 when izi o (29)
from which it cazily follows that
a™=1; a"l(izj)=0 Loo24n

We con assume now without any lons of generality that our variates aro what would be ob-
tained after this transformation and thus in place of (2:3) we con write

Const. exp. (=} £ (¥ ~ a"ii) + (1= Dai) ~ 2 £ n, £ (0 DEE ) — 2) + N
— 2N T 4]
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or
Const. exp. [~} .}t.‘: (N =Naii)+ (1 —-Da'(i i) — é'_:l n, (§(r,§) — £)(Z(r, 1) — 7))
+ MR —2VE )
or
Const exp. (—4 ?::. (O +¥ =2V 7 ([0). y' @)+ Nzt = 285 §)] .. (25)

from (191), 1:03) and denoting by y*(i) and ¢'(i) tho magnitudes of the vectors y"(i) and y'(i)
of section 1, and further by turning round the vectora V'[%'(i)] of section 1 (i=1,2, .... p) 0
as to lio in the flat f*(1) and make projections y m(&(1, 1) —€1, v na(E(2, i) —&). ..y mil, —4)
along the different 1 axes of f°().

(F[v'()). y'(i)) is of courso, the scalar product of tho vectors V[v'(i)] and y'(i)

Let ¥ be the anglo between tho vectors V{7'(i)] andy ‘(i) ; then (V[7'(i). y'(i)) could
be written as 7'(i) y'(i) cos y,. Henco in the density factor (2:4)
VIl Y= £ 7. v con gy @

(2-5) can, thereforo, bo written in the alternative form
Const. exp. [~} £ (y"()+ (-2 /Ol y+NFI-23F 4)) (52

Let us go back a little to the geometrical representation in Section 1. The vectors y,'s (with
magnitude y;’s), tho resultant of y’(i) and y°(i), constitute a p-Bat f(p) which make the p-flat
J°(p) (and also with the (N—1)-flat f°(N'—=D)p critical angles §,(i=1,2, ....p); with the flat
£(p) (and also with f’(1—1)) the flat f{p) makes p critical angles m/2—g;(i=1, 2,.... p);
thero are p ritical (orthogonal) lines in /. Referred to them as axea let the co-ordinates of
tho end points Y) of tho i-th resultant veetor y, bo yy(j=1,2, ....p); tho first suffix referc.
ing to the character and thoe second to tho axis along which tho component is taken.
Again referred to the p (orthogonal) cirtical lines of /'(p) as axes et tho co-ordinates of the
end ponits of y'(i) be y'(ij) and referred to the critical lines in /*(p) as axes let tho co-ordinates
of the end points of y“(i) bo y°(ij). Tho samo convention about suffixes holds for the
components of vectorsy,'s ag well.

Hence from considerations similar to thoso immediately preceding (26) of the previous
paper (5).

¥'(ij)=yy sin 6;, y(ij)=yy cos 6,

" 4 . - P
yili)= I-‘-'.l yhy sin® 8, yHi)= ]S‘ y*y cost gy

T, 2:53)
Y 2(')'l'y"(')=‘_}|3 ¥y=vh

with 1,j =12, ...p.

Tho density factor (2:562) now reduces to
L4 " " ] —

Conat. oxp. [—} E‘ (v4=2V{r' ()} »'()+NTH—2NZ, ¢)) v (254)
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Consider now the joint distribution (2:1) which by uring (2:54) can be written in the form

.
Const. exp. (=1 £ (4 =2P17 0] Y@+ NE—2XF ()] X H1 11 11 delri, v,)
(=} (R TR R
(2:35)
Tn Scction 1 veetors y(r, i) were introdiced whoso components referred to a, axes of the r
samplo space f(r, n,) were defined by (1I'8).  As observed there these vectors y(r, i)'s lio
in a flat f(r,;n,—1) immersced in f(r, n,) and perp lar to tho lar line in the fat

Jlr,n,). Refer the veetors y(r, i) now to any arbitray orthogonal n,—1 axes in f{r, n,—1)
and let tho components be 2(r, i, v,) (v,=1,2, ..... n,—1).

By arguments axactly similar to thoso of Scetion 2 of the previous paper ' we can writo
down the volume clement of (2:35) in the form

et

Const. 11 10 dEr i) T I T di(ryiv) (256)
" el =1 1=t vt

Tho vectors y°(i)'s tho resultant of the vectors y"(1, i), y(2,1)....y"(L i) (i=1,2,....p), in-

troduced in Scction 1 in the lines after (1:9) lic, as observed there, in & flat /(N —1) absolutely -
orthogonal to the flat of the equinngular lines f'(l) or the derived flat f(I—1). Refermng
the vectors y°(i)'s to N — 1 arbitrary orthogonal axes in f*(N'—1) and denoting the compo.
nenta by 2°(1, v7) (V= N —1) we immediately sco that

1 P [d Nl p
1L M dr(r, i, v,) reduces to 1t d% 11 M dz°(i, ¥*) o (257)
1 el rm [ BN W
Again in Section 1 vectors y'(i)'s were introduced whose components referred to ¢ axes of the
space f'(1) (constituted by the ! equiangular lines of the I sample spnces f(1, n,), f(2, ny), o
JU, n)) defined by (1:92).  Theso vectora y'(i) really lio in a flat S’(—1) immersed in f'(1)
and perpendieulur to the line oe defined in tho lines after (2:02).  Let the components of y'(i)
referred to arbitrary (1—1) orthogonal axes in f'(1—1) be '(i, v'), (v'=1,2,.... 1~1)

1
Then l'.l 1l dFy(r, i) is easily transformed to
el

» -1 »
LN df,v) 1 dF .o (258)
Nt »-l

Altogether, therefore, the volume clement transforms to

hodn 0N odGy T d ) .25
-l el ey »el

Each of tho varinblea 7, z'(i, v*), 2°(i, ¥") varica from —o0 to 4. Turning now to the
density fuctor in (255) and taking account of the definitions of z' (l, v ), 2°(i, v°) just gncn
and of g, (i), y°(i) given in (2:63), in lince Jintely | g it, followi 2-5)
and preceding (1'01), (1'03) and 2:61) wo easily find that y*,'s aro purc func(mun of
2°(i v")'s, and 2'(i, v')'s, y'(i). (V'(i)])'s nro pure functions of 2’(}, v')'a
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Henee we write down (2:53) in the form
Comt. exp. [=1 S (= VIV@)] ¥+ N2 =27, £,))
[
x ldm DT vy T dov) .. (20)
-1 (LI I A ) (S At |

Next we integrate out (2:6) over I's (i=12,..... p) from —oz to -+ 20 nnd get tho joint
distribution of =°(i, v*)'2 und 2'(i, +')'s in tho form

3. @)X AT doy) o T aoen) (1)
Const. exp. [—1 p {y4=201r4). &) o dE nonaG oo

Jat un turn to the expression i VIv'(i))- y'ti) or X0°(i) ¥'(i) con ¢y in the density factor
— [

of (2:61). Lot OQ b n unit vector lying in the (1=1)-flat f(1—1) aml making angles
Vi V20«00 Y rexpectively with the vectors y'(1), ¥ ... y’(p). Thenif ¢ be the angle

Detween ()0 and the o(lor s '; ‘(i) y'(i) we have

(I’ ¥’ 0) or Xu'(i). ¥'(i) cos yy=7 (00 YN="2"y cos s

where y'= the wc!or ¢ n ‘(i) y(l)/( r)"(u))‘li
(2:62)

- -
(0Q. y')ix the sealar product of y” and GQ, and g ia the magnitude of the veetor y'.  In fuct

1= £ (5 70 vy . (263)

if we refer the veetors y'(i)a to the p eritical Jines of tho flat f'(p) (conutituted by the
¥'(i)’s) as axer.  Hence (2:61) now reduces to

B Pl P N
Const. exp [—}{ & y"—29" y' con 4}) lll ". ds'(i; v') .]l. III dz'li, ») .. (264)
1=-1 i »al =] »"al

Vectors y,(i=1,2, ....p) aa will be evident from the lines following (2:52), form a p-lat f(p)
which lies immersed a flat fAN—1) of N—I4I—1 i. o. dimensions, Again y'(i) of the
denvity factor in (2:64) is given by (2:63) where again, y'(ij)=y. sin ) from (2:53);
the y))°s as has been already observed, are the componenta of y;'a along the p (orthogonnl)
eritienl lines in f{p)

P P
Henee X o= X oy,
- e
.. (2:65)
7y cos §=cos g ’!l (}:' (i) yy). win 9)t)
e
wiing (2:05), the dennity faetor in (2:04) reduces to
Conat. exp [—} Px Y+ cos o ,S sin? g nx (i) yy) N o (208)
LTl =1 -
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Taking the joint distribution (2-64) and changing tho density factor to (2:08) our busincss
will now bo to obtain tho foint distribution of gy (j=1,2, ....,p) and henco of the ¢)'s
which aro connected with §)'s by (1'04), (je=1,2..... o) With this end in view wo have
first to expreas the volume clement of (2:64) in terma ol yig'a {i=1, 2, ... p). g2 (j=),2,.... p)
and § i.. wo havo to translato the volume clement of (2:04) consisting of p(N'—1) variablea
2 rYe(i=1,2, .. p; v'=1,2, ... 0=1), 2(W)e (i=),2,..p; v'=1,2, ... N—]) intoa
new volume element expressed in terms of the p?+p+1 variables that occur in tha density
factor (2:66).

Now tho end points of the veclors y's have Leen elready denoted by Y,'s(i=1,
2, ,..p)insection 1. Tho volume element in (2:64) can now be regarded aa tho joint volumo
element deseribed by the end points Q, Y,, ¥y, ... ¥ of vectors 0@, yi, yu »-.yp. Geometrie
cally spenking, to effect what has been proposed in the lnst paragmph all that wo have to do
I to find out the joint volumo clement deseribed by @, Y, V..., Y subicet to v, 'a lying
between y,; and yy;+dyy, 8, lying between 8; and 8,-+d6;, and 4 lying between ¢ and §+dp.
Now 0@ lica in the flat f(/—1) (derived from the flat of equiangular lines J'()), and mnkea an

anglo § with & given veetor y’ in that flat defined by _y'= ;: () y'(i)/7".  Heneo keeping

vectors y'(i)’e (i=1,2, .... p} fixed, i.e. keeping the vector ¥’ fixed, Q describes a volume
eloment
Conat. (sin §)I* dg .. 1287

Again, as will bo evident from Scction 3 of the previous paper (5) tho solumo clement dos-
cribed by Y)'s the end points of the vectors y(i) (i=1,2,...p) subject to y,'s lying between
yy and y,+dyyli, j=1,2, .... p) and §)'s lying between §) and §)+dgy(j=1,2,..... p)
would bo given by

[ dl,

i)

X mod. (=) vo.. (B5=0) (F3=17) ceu (Py=Pp) oo (pq=B5)) .. (208)

Const. {med|y;) )%+ n dyy % ll
”»

where #)'s aro connceted with 8,'s by (1-04).

Hence tho distribution (2:¢4) now finally reduces to

» 3 »
Const. exp. [—Il. E] y+cos 0 E;l ain? g;( .‘: 7'ty

X(sin 9)*1 dg{mod |y, [}¥-+e .;lll dyy

X mod (("l""i) e (= p) (h—11) .. —"') (¥ v))
e dy
j-l (]+ -1 l‘, )_.

48
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SecrioN 8. Tue Actuat Derivatiox or THE JorsT DISTRIBUTION 0F p-STATISTICS
To get tho joint distribution of )'s or §,’s wo have to inlegralo out (27) over yy's
from —o0 to 4c0 ond 8 fromOto =

J exp. [cos 8{ ) (sin g)"* do
[ ] =l 5 P,
=Const { S sin® 4y( 3 70} yu)') 1-_;- (3 vin® o X 0l yur’)! - 3D

)1
Hence from (2:7) wo havo the joint distribution of yy’s(i, j=1,2, ... p) and 8s (j=1,2, .. P)
in tho form

p » . P, LN
Const. exp[—} X y'y) (X in® 6,0 % w'li) yu)) T

X Tix (S st 00 S 000 )t mod(|yul > 11 dyy

X mod{{t,—1%) ... (10— 1%) (=0, oL W= L (0, — 1)
1A-4e dy,
l‘l:'—]#—,‘._, o (32)
" (O Ee) ¥

Tt should be noticed that since r'is defined by (1°7) are invariunt under any linear transforma~
tion of tho variates of the populations to p new variates, they (r's) aro neceasarily invariant
under the special linear transformation considered in Section 2 which makes a(i j)=0 (i7%4),
a’(ii)=1 and hence a*¥=0, a™=1. DBut 1(i)’s considered in (3-2) aro tho values of a’(ii)»
(of (1'03)) after this lincar transformation. Hence from (1-7) and (1'05) 7,=7’(i). Consc-
quently

P EI 71(i)= :El ) =1* (aappose) (39
- »
Hence B=r

where'r is given by (3-3)

Consider now in tho determinant |y in (3:2) any column, say, tho j* Then mako an
orthogonal transformation of tho constituents of this column yyli=1,2, .... p) to p now
values, sny vy such that

vy= $ ')yl

Oy=X12 Yy+An Yat oo Apy Y .. (332
Op1=Aip YuyHAsp Yyt oois App )
and fucther that tho p set (7°(1/%'s 22 oo V(DY) (Arse Arre - --dps)s == Dhypa Agpe »
a1
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Aup) conmtitute tho mets of fHici for an orthogonnl fi i Apply the samo
» 1

“trnnaformation to all the columns of [y,y]. Then xinee in (3.2), |9y, . X 2% and |lI dyy

o

are all invarinnt under tho orthogonal transformation conwsidered in (3-32), the distribution

{3.2) changes over into

» » . (X1
Comxt. oxp.[—} X ¢yl (v".\.'; vl sin? §))° ¢
n N

=]

T (7 ¥ ey sint gy {mod |y, }¥ 1 i dvy
X ( 7] )
~s Il "l

X mod{(1f,—1) <. (W —th) (=0 coen (B3=0) ... (Pya=1)

xno_tvedy, )
11

( '+;J_:ll"’ )

In the determinant |7y| we enn conveniently regnrd any row, say, the i** nx a vector p, with
componentx vy(j = 1,2, .. p) along the different orthogonal axes ; mod [y |is the volume of
the hyper-part ennatituted by theso p veetors p's(i=1,2,....p) a8 edges. Lot the
iagnitude of these vectors be vy's(i=1,2, .... p). Let the anglo madv by the vector v,
with the (p—1)lat formed by the other vectors o,y ... 0p. b0 gy, tho angle between
vp.y and the (p—2)-flat formed by oy, v + .. Up.s b0 gy, and 80 on, and finally the anglo
between v, and g, bo ¢, Then mod [o;)]=vol (0, vss ... 0p)

=0, Py vees Fpe AN @y KR 9y ... 8D 9py Lo (H41)

Abvo Il'l dry; transforms to
"o

W deyy lf: o1 deylsin )t (8ing ... (0 9,20 11 dy L)
153} o2 =1

It «hould be noticed that we do not tamper with the componenta r,;(j=1,2, .... p) of the
first vector p;. Thie is because these components occur separately in the density factor of
{34). The position is different with tho components of the ether vectom p)'a(i=2, 3, ...p)
which occur in convenient lumps in (3-4).

In (3-3) comnicler next the portion involving vy's which we ean naw conveniently write (by
uaing (3-41) and (3:42)) in the form
=

15
Comst exp [~} £ vy=h & o) (2 S it g™ %
: 3

XTI, (r* :‘: v sin? g)) n' 0, 0%
3 IS} IR

% 11 %8 deyfoin ¢,70 (sin g7 ... (oin 4., ')':l doy . (349
-1 L]
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vidently bo taken from —w 2to 7,2, Integrating ont (3.43)
OVer ¢y, P1r ++-9pa Wl nlio over vy, vy, .. vy nid absorbing into the const. we have the joint
distribution of v’z nud 8)'s (j=1,2, ... p) in the form

The limits of o1, g3 . v 9p., €

1o

P 4 S
Const. exp [<} X 1] (77 X oYy win? 9) " ¢
)~| -1

2 . » P X-1
X lea (12X 03 nin? g0 11 deyy(r* X )T
: -l I ¥

b o (344)
X mod ({5, =) B = )= 1) P = 15). L (17— 1)
. v
remeinbering that #?= ¥ o7 v (345)
i1
It ean bo shown that in (3-44)
3 » vy
Tiaqe ¥ ey sint g (11 X oy nint g) " 0
] »i -l
cnn be thrown into the form
»
s omy
@ " b Boie
X () 1L (sin® gy £%,,)™
= o o (340)
» 3
1 (my!) (v X )t
- 1t
he 1-3
where = 5= . @
Fenee(344) transforme ta
[ 13 R
Const. exp [—] X vty)) (r2 X vt,) 2
bt It M
’ ’
w ] vi2 X oy Xom, p
X X L X ) TR T T ) it gy et
o mye myo I (348)

r »
nmY) (v+ X !
= Iz

x mod (= 15). . =B Py=1,) (P =) (o~ 1))
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Remembering that v 'x(=1,2, .... p) vary from — « 19 + e and further that

4
J exp. (=} v%) (v))* dny
x
= Const | ( 2t l-) o (319Y)

one ean casily integrte out (3.4%) over ry's (j=
distribution of 2, 8 in the foim

,2,p) from—a to -+a aud obtain the

Conat.
-,
)
x mod ({12, —1) ... (5= 17) (=0 ... (10—
e i
xn .. (35)
where
. 1- -
Win 6= v \_—"l 40+ _\.:ll (L R )}

When #'s (i=1,2, ... p) are all zero, that is, when the populations sampled have the same
mean vahies for each character, (3:51) reduces, as it should to the form (e) of the introduc-
tion. Also when p=1, that is, in the univariate ease, the distributing of ¢* reduces to (b)
of the introduction.

The function in (3:7) involving tho muMiple summation can really be regarded as a
convenient generalixation to many varinbles of the ordinary hypergeometric function of ono
variable. It conld, of course, be thrown into a more suitable form amenable to practical
computation.  This will be consideredd in the next paper where distributions of symmetric
functions of 1 (more dircetly useful for purposes of classification as well as for purposes
connected with Neyman and Pearron’s theory of testing of hypothesis) will alo be discussed.
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