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Abstract

In this article, we propose a new generalization of the rank nearest neighbor (RNN) rule for multivariate data for diagnosis
of breast cancer. We study the performance of this rule using two well known databases and compare the results with the
conventional k-NMN rule. We observe that this rule performed remarkably well, and the computational complexity of the

proposed k-RNN is much less than the conventional k-NN rule.
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1. Introduction

Of all types of cancers, breast cancer is one of the leading
causes of death among middle-aged and old women. Accord-
ing to an estimate by WHO, by the end of yvear 2000, world-
wide death due to breast cancer alone would be 500,000/ vear
{We do not know yet the exact figure of 2000). Thus, pre-
vention and an early diagnosis of breast tumor are imme-
diate demands from the society. The primary prevention is
difficult as the causes of the disease are not well understood.
But if it can be detected at its early stage, success rate of
survival is quite high. Physical examination is one of the
methods used for detection of breast tumor, but effective-
ness of this technique is limited by the subjective ability of
doctors. In addition to physical examination, mammograms
are quite often used. Currently mammography is the best
way to make an early diagnosis of the disease. A precise
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detection, however, often depends on the visibility of mi-
crocalcifications in the mammogram. It is still challenging
for radiologists to differentiate between benign and malig-
nant cases. The existence of breast tumor is usually reflected
in the mammogram. Some of the important signs of malig-
nancy are: clustered calcifications, poorly defined masses,
isolated dilated ducts, etc. But all of these are not equally
reflected in the mammograms. Experts (doctors ) physically
look at the mammograms to detect deformations that may be
taken as an indicator of cancerous changes. Obviously this
suffers from the human error and error with visual inspec-
tion, which may further be enhanced by poor quality of the
mammogram images. Most importantly, with such subjec-
tive visual analysis, explicit use of any consistent diagnostic
principle is often difficult. There is a demand for intelligent
systems for early detection of tumors, assessment of their
malignancy and monitoring of the same [ 1-3]. In this direc-
tion even some aiding tools would be of immense help. The
efficiency and effectiveness of this process can be increased
if tumors are detected and classified sutomatically through
computers as benign or malignant.
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In this article our aim is to use the proposed £-RNN clas-
sifier to discriminate between benign or malignant masses,
and to compare the results with the conventional £-NN rule.

2, k-RNN rule and £-NN mle

The nearest neighbor (NN classification rule was first in-
troduced by Fix and Hodges [4,5]. This rule is based on the
density estimates using distance nearest neighbors. Cover
and Hart [6] proposed and studied a slightly modified ver-
sion of Fix and Hodges's NN rule. They termed the rule as
the k-NN rule. This rule is very widely used and popu-
lar among computer scientists. This conventional k-NN rule
may be described as follows:

The k=-NN rule: Let {X1, X Xy Jand {¥, Foooo
¥, } be training samples from two given populations m and
Mz, vespectively, and Z be an unknown observation known
to be from either m; or m to be classified between m; and
mz. Using a distance finction &, order the distances of all
the observations from 2. For a fixed integer k. the &-NMN
rule assigns the unknown observation Z to m, if the majority
of the & nearest neighbors {in a distance sense) of £ come
fromm, = 1,2

Cover and Hart [6] showed that for 1-NN rule, bounds for
the limiting risk By satisfy 8" = B < 2R*(1 — R*), where
R* is the (minimum ) Bayes error rate. That is

R =f min( iz ) Er 2z ))dz,

where £y and f) are prior probability and the density function
for the class i, respectively, i= 1, 2. Devrove [ 7] obtained the
following upper bound on the asymptotic risk of the k-NN
rule &

Reo<(+ak, o= (,+_.ﬁ_..)__
koodd, & =35,

where & = 03399 and § = 0.9749 are universal constants,
This bound is the best possible in a certain sense. Next we
describe the k-rank nearest neighbor (k-RNN) rule.

The k-RNN mle: The k-RNN rule for univariate popu-
lations was first introduced by Anderson [8]. This rule may
be described as follows:

Pool the observations Xi's, ¥;'s and Z, and rank them
in ascending order; then count down & observations to the
left-hand side of £ and count up & observations to the
right-hand side of Z; (i) if there are more X "s than ¥ samong
2k rank nearest neighbors, classify 2 into the X -population
my; (i) if there are more ¥'s than X7s, classify 2 into the
¥-population m; (iii) if there ave exactly & X's and & ¥'s,
classify 2 into either of the two populations with probabil-
ity 1 each (to break the tie); and (iv ) if on any side of Z &
observations are not available then use as many as available.

Dasgupta and Lin [9] studied the 1-RNN rule. They de-
rived the asymptotic risk (r1 ) of the 1-RNN rule and showed
that B* = ry = 2R*, where R* is the {minimum) Bayes er-
ror rate defined earlier. In fact the value of this asymptotic
risk ry is exactly the same as the asvmptotic risk of the con-
ventional 1-NM rule. Bagui and Vaughn [10] investigated
the &-RNN and obtained the asymptotic risk ry of this rule.
They derived an upper bound of this risk which is parallel
to the bound obtained by Devroye [7]. The upper bound on
K is

sl +alR, o

_wE-T1(
T 2k —423 TR

k=3

Bagui and Vaughn [10] also demonstrated that this risk con-
verges to the Baves risk twice as fast as the conventional
k-NM rule. Thus, the k-ENN rule has good asymptotic prop-
erties. But one drawback with this rule is that there is no
natural extension to the multivariate populations, since mul-
tivariate observations cannot be ranked uniguely. But the
majority of the real life problems ocour in a multivariate
form. Bagui and Pal [11] suggested a k-RNN rule for mul-
tivariate data. This rule uses the idea of component wise
classification using univariate k-ENN rule, then the majority
vote rule is applied on the feature level decisions to classify
an unknown multivariate observation.

In this article, we propose an efficient way of ranking
multivariate observations. This new procedure ranks the
multivariate observations taking into account the variability
between mean vectors and the covariance matrices of the
populations. Below we describe the multivariate £-RNN
rule.

20 The k-RNN rule for multivariare dara

Suppose we have two multivariate populations, say a
X-population m; and a ¥-population mz. We also assume that
X={x,x, .. ..x:) € B follows a multivariate distribution
with a mean of g, € R" and covariance matrix of £, of size
px poand Y =( 5. v .01 € RY follows a multivariate
distribution with a meanof g, £ R and covariance matrix of
Eyofsize p= p. Anobject Z={zy, 2, ...,z ) e R” is known
to originate either from my or w2, i to be classified into one of
M oor M. Suppose that only training data { past samples) are
available from both populations. Let {X;, Xz,... X, } and
1Y, Yo ..., Yy | be training samples from the two given
multivariate populations my and w2, respectively. In order
to use the above mentioned £-RNN rule we need to have
pooled ranks of X,’s. ¥,’s and Z. For this purpose we pro-
pose the following score function to obtain the combined
ranks of X, 's, ¥, s and Z

D(Z; iy, i, 50, 52) = (27— 425 ") 2

_ézf{z]]_zll}zl- {!}
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where g denote the transpose of the mean vector g, and %,
denote the inverse of the covariance matrix X fori= 1,2,

The score function %) maps from R to R'. It is also a
continuous function since it is a difference between a linear
and quadratic functions. Depending on the values of the
score function ). ) we get the combined ranks of X,'s. Y, "s
and Z. A nice thing about [2(. }is that itranks observations by
taking into account the variability between py, g, X, and
Zyand it is like a quadratic discriminant function between
two populations. We can consider two other variations of
D0y as discussed below

(i) Ifit is known that &y =X: =X then { 1) takes a simpler
form (2 ) that may be used for ranking observations:

D(Zp,. . E) ={p, —p, Y I 'L (2)
(it} If g, = p, = pis suspected then the score function (1)
reduces to

DZp 2050 =H2u—-Z)Y(Z7' - Z 2. (D)

If the parameters p . p,. . and X5 are unknown, which
would generally be the case, then they may be replaced by
their corresponding unbiased sample estimates X. Y, S, and
Sz, respectively. Thus the estimated score function is

L‘:'{Z.',E. Y.5.8:)
:{EPS; 1 .;_-'Sl- 1 }Z a ézr{sl- 1 S_{ 1 }Z._

where

T < L« < "
‘--;%V““’-ﬁgj:‘“-"“”“*‘“}

S:= o L Z}:{v, ~YKY, - VY,
see Johnson and Wichern [12].

This type of score functions are previously used by Ran-
dles et al. [22] to rank multivariate observations between
two populations. Once the ranking of X,%s, ¥,'s and Z is
done, classification of £ can be done easily using the k-RNN
Algoritfim defined earlier.

241 Compurational complexity of k-NN and k-RNN
ritles

Mote that if there are N observations in the training data,
then the total cost of finding the rank of Z is equal to
the cost of score calculation for & and the cost of find-
ing the rank of Z. The score function has two parts, the
first part requires p multiplications and p — 1 additions,
while the second part requires { p* + p ) multiplications and
{p+ 1N p—1)additions and then 1 multiplication for 0.5

and 1 addition for combining the two parts. So the total cost
of score calculation is 2p° + p+ 1 operations (additions and
multiplications ), while the cost of finding the rank of Z is
log, N comparisons, where N = i) + i1, So the total cost is
log, (N )+ 2p" + 2p + 1 operations. On the other hand, for
the conventional £-NN rule, the cost of finding &-neighbors
BN — TN =2} (N — k) comparisons and V' distance
calculations involving a cost of M{3p — 1) operations as
each square Euclidean distance mvolves p subtraction, p
multiplications and p — 1 additions, which is much higher
than that of £-RNN rule.

2.2 Some asympitotic properties

In case of large samples from m; and w2, we may apply
large sample theory on X. Y. 5,.5; and 1.} and show that
X—p,¥Y—p.8 — 2.8 — L and H() — D(.)in
probability.

Let i =min (s, 2 ). Mote by Chebyshev's inequality that

Pl —p| e foralli=12_. p}

o [ Var(Xi)
sP{fi—wl >el=s T
MNow as i — oo, P{& —u| = e, foralli=1,2,....p} — 0,
we may conclude that X — p, in probability. Similarly, we
can prove that Y — g, in probability, §; — X, in probabil-
ity, and 8; — X; in probability. From 8, — X, in proba-
bility and 82 — Z1 in probability, we obtain 8, ' — Z, ' in
probability and S, ' — Z; ' in probability, since the proba-
bility limits of sums, differences, products, and quotients of
random variables are sums, differences, products, and quo-
tients of the probability limits as long as the probability limit
of each denominator is different from zero, Cramer [13, p.
254]. Furthermore,

&si'-vs") - (F:Ej R 1 ]) in probability
and
87" =83y = (I ~ ') in probability.

Thus, we may conclude that L'J'{.} — (.} in probability.

3. Implementa tions

We implement our &-RNN rule on two well known breast
cancer databases namely: (i) Wisconsin diagnostics breast
cancer (WDBC) database; (ii) Wisconsin breast cancer
{(WBC) database. The performance of the £-RNN rule is
compared with the conventional k-NN rule,

3.1 Description of the darabases

Wisconsin diggnostics breast cancer | WDBC) darabase:
The WDBC database is created by Wolberg et al., Univer-
sity of Wisconsin [14,15]. This database contains 569 ob-
servations among which 357 are benign cases and 212 are
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Tahle 1
Summary of results for first partition of Xyppe
i k-BMN mule k-MN rule
Confusion Frob. of Avg. emor Confusion Prob. of Avg. ermor
matnx false positive rate matnx false positive rate
false negative false negative
1 246 i1 0045 0041 238 19 0074 004z
4 108 0036 15 a7 0134
2 240 11 0045 0041 249 B 0031 0044
4 108 0036 2 &7 0211
3 4 i3 0051 0041 241 16 006z 0081
2 10 0018 14 ag 0125
4 4 13 0051 0041 248 q 0035 0081
2 L 0018 | ai 0188
5 4 i3 0051 0041 242 15 0058 007
2 1o 0018 14 a8 0125
L] 4 i3 0051 0041 245 12 0047 0079
2 Lo 0018 I7 a5 0.152
Table 2
Summary of results for second partition of Xypee
ke k-BMN rule k-MN rule
Confusion Frob. of Avg. emor Confusion Frob. of Avg. error
matnx false positive rate matnx false positive rate
false negative false negative
| 249 B 0031 0044 2 18 0070 0089
1 102 00 15 a7 0058
2 241 16 a2 0059 250 7 0027 0070
L] 16 0053 19 a3 0169
3 241 16 006z 009 4 13 0051 0068
L] 106 0053 12 10 0147
4 241 16 00az 0059 249 ] 0031 0059
L] 106 0053 14 ag 0125
5 241 16 a2 0059 242 15 0058 0076
f 106 0053 13 949 LIRRI(]
L] 241 16 a2 0059 249 # 0031 0068
L] 106 0053 16 a6 0143

malignant cases. For each instance, there are 30 featured
variables. These features are computed from digital images
of fine needle aspirates (FNA) of breast masses [16,17].
These features describe the characteristics of the cell nuclei
in the image. The authors of this database considered 10
real-valued features for each cell nucleus:

(i) radius (mean of distances from center to points on
perimeter); (ii) texture {standard deviation of gray-scale
values); (iii) perimeter; (iv) area; (v} smoothness {local
variation in radius lengths ), (vi) compaciness ( per imeter "2/
{area—1.0)); (vii) concavity (severity of concave portions
of the contour); (viii) concave points (number of concave
portions of the contour ), (ix) symmetry; and (x) fractal di-
mension { coastline approximation—1.0).

They computed the mean, standard error, and worst mean
{the mean of the three largest values) of each feature. This

process resulted in 30 feature variables for each image. Ben-
nett and Mangasarian [18] arvived at three best features
from the above data by creating separating hyperplane that
uses multisurface method-tree { MSM-T) and a classification
method that uses linear programming to construct a deci-
sion tree. These three features are mean fe XIure, Worst mean
area, and worst mean smootfness, Based on these three fea-
tures they reported an estimated (best) correct classification
percentage of 97.5 [16,17]. This estimate was obtained us-
ing a repeated 10-fold cross-validation method.

Wisconsin breast cancer ( WBC) database: The source
of this database is the University of Wisconsin Hospital,
Madison [19]. There are 699 data points in this database of
which 458 are benign and 241 are malignant. In 16 instances
there are some missing values. So we decided to remove
these 16 incomplete observations from the original database
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Table 3
Summary of results for third pattition of Xypee
i k-BMN mule k-MN rule
Confusion Frob. of Avg. emor Confusion Prob. of Avg. ermor
matnx false positive rate matnx false positive rate
false negative false negative
1 242 15 0058 0059 23 26 0.1t 0087
7 105 0063 L] 16 0054
2 242 15 0058 0057 247 i 0039 a2
f 106 0053 13 949 LIRRI(]
3 242 15 0058 0057 236 21 0082 0073
L] 106 0053 L] 106 0054
4 242 15 0058 0ns7 246 i1 0043 0059
f 106 0053 1 1 0098
5 4 i3 0051 nsz 240 17 0066 0068
L] 106 0053 B 104 LRI
L] 4 i3 st 05z 4 i3 0051 0059
b 16 0053 9 103 0080
Table 4
Summary of results for fourth partition of Xppee
ke k-BMN rule k-MN rule
Confusion Frob. of Avg. emor Confusion Prob. of Avg. ermor
matnx false positive rate matnx false positive rate
false negative false negative
1 213 24 00493 0087 T 20 0078 0ns7
b 106 0054 1 101 0098
2 213 24 0093 0087 246 11 0043 00as
L] 106 0054 13 a9 01l
k] 213 24 LRI 0087 21 18 0070 0076
L] 16 0054 10 102 0089
4 233 24 00493 0087 4 13 0051 a7l
L] 106 0054 13 99 016
5 213 24 LRI 0087 240 17 a2 0073
L] 16 0054 10 102 0089
f 3 24 00493 0087 241 16 006hH 0073
f 106 0054 1 1 0098
and work with the remaining 683 data points (444 benign 3.2 Resulis

cases and 239 malignant cases). WBC isa nine-dimensional
data set with the following features:

(i)} Clump thickness; (ii) Uniformity of cell size; (iii)
Uniformity of cell shape; (iv) Marginal adhesion; (v } Single
epithelial cell size; (vi) Bare nucli; (vii) Bland chromatin;
{viii ) Normal nucleoli; and {ix) Mitoses.

As of 1990 this data set had 369 instances. Wolberg and
Mangasarian [20] used this data set for two different methods
and their reported correct classification percentages are 93.5
and 95.9, respectively. Zhang [21] also studied this data
set for classification purposes by two different methods. His
reported percentages of correct classifications are 93.7 and
922,

321 WDBC daradase

Let the random variable X & R™ denote the benign pop-
ulation and follow a multivariate distribution with a mean
vector of g, and a covariance matrix of Xy, and the random
variable Y € R* denote the malignant population with a
mean vector of g, and a covariance matrix of X;. Let us
denote the WDBC data set by Xaoec =Xp UXy where Xz is
the set of benign cases and Xy is the set of malignant cases.
The database Xposc contains 569 data points of which 357
are benign cases and 212 are malignant cases. We parti-
tion Xypee into Xr, and X5 such that Xypee = Xp U X5
Xre M X = b, where X7 is called the training data set and
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Table 5
Summary of results on Xypge with the three best features for fimst partition
k E-RNN mle k-NN rule
Confusion Frob. of Avg emor Confusion Prob. of Avg. ermor
matnx false positive rate matnx false positive rate
false negative false negative
1 254 3 0012 0035 27 40 0.156 0138
1 1z 008 9 103 0080
2 254 3 0012 0035 240 i7 0066 0087
10 102 0089 15 a7 0134
k] 251 f 0023 0033 M 13 0128 art
L] 16 0054 B 104 0071
4 251 f 0023 0033 M 23 0089 ahaz
L] 106 0054 1 1 0098
5 250 7 0027 0030 225 iz 0125 0108
4 108 0036 B 104 007l
] 252 5 LR 0033 237 20 0078 0084
7 105 0063 1 101 0098
Tahle &
Summary of results on Xypge with the three best features for second partition
k E-RNN mle k-NN rule
Confusion Frob. of Avg. emor Confusion Prob. of Avg. ermor
matnx false positive rate matnx false positive rate
false negative false negative
1 249 ] 0031 0073 292 45 0175 0141
19 a3 0170 7 105 0063
2 249 B 0031 0044 231 26 .t it
19 103 0080 15 a7 013
3 250 7 0027 0038 226 31 0121 0103
7 105 0063 7 105 0063
4 252 L] LR 007 241 16 a2 0073
5 17 0045 §} 101 0098
5 252 5 0019 0027 m 0 0117 0106
£ 17 0045 a 103 0080
L] 252 k] LR 0027 M 23 LRI 0125
5 17 0045 13 99 0116

Xree the test data set. Again Xr and Xt may be written as
Xre = Xrep U X and Xre = Xrep U Xreu, respectively.
Here Xrep and Xreu, respectively, denote the benign and
malignant training points; and Xtz and X'p. . respectively
represent the benign and the malignant test data points. We
use Ar- for designing the £-RNN and k-NN classifiers. De-
signing the £-RNN classifier involves estimation of the para-
meters p,. py. Xy and X of the populations and then
computation of scores of the points in Xy, via (. ) using the
estimated parameters. The classifier is then tested on Xr..
In the present case we used |Xreg| = [Xren| = 100 and
the remaining 369 (112 malignant and 257 benign) points as
At That i.SlX:r,l =369 with |X1.__|g| =257 and |X:r._.__u| =112,
We have tested both A&-RNN and &-NN for different ran-
dom partitions of Xwpec and the results are pretty consistent

across different partitions. We report here four typical cases
in Tables 1-4 for & = 1-6.

The tables include the confusion matrices exhibiting the
number of correct classifications along the diagonal elements
and number of false positives and false negatives along the
off diagonal elements. We also calculate the probability of
false negatives, probability of false positives, and the total
{average ) probability of misclassifications.

For the first set of training samples the results are summa-
rized in Table 1. For the other three different sets of training
samples, results are summarized in Table 2, Table 3, and
Table 4, respectively.

Tables 1-4 reveal that the £-RNN rule performs better
than the conventional £-NN rule in the majority of the cases.
In fact, in the first three tables the k-RNN rule performs
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Table 7
Summary of results on Xypge with the three best features for third partition
i k-BMN mule k-MN rule
Confusion Frob. of Avg emor Confusion Prob. of Avg. ermor
matnx false positive rate matnx false positive rate
false negative false negative
1 246 i1 0043 0051 mm 34 0132 0141
B 104 0071 I8 94 0.1al
2 251 f 0023 0030 249 B 0031 0095
£ 17 0045 n 85 0241
k] 251 f 0023 0030 2315 22 008H 0106
5 17 0045 I7 a5 0.152
4 251 f 0023 0030 4 i3 0051 LEIE)
] 17 0045 20 a2 0179
5 251 L] 0023 0030 232 25 00497 0108
5 17 0045 15 a7 0134
] 246 11 0043 0038 2 18 0070 0098
k] 109 01026 1% a4 0.lal
Table &
Summary of results on Xypee with the three best features for fourth partition
i k-BMN rule k-MM rule
Confusion Frob. of Avg. emor Confusion Frob. of Avg. error
matnx false positive rate matnx false positive rate
false negative false negative
I 255 2 0008 0033 e 36 0,140 01g
10 102 0089 B 104 LR
2 254 k] o1z n2z 250 7 0027 0057
5 17 0045 14 a8 0.125
3 252 5 0019 LR 23 26 BT 0100
2 1o 0018 10 10z 0089
4 251 L] 0023 LR 2 18 LRV UEIE)
I 1 0008 15 a7 0134
] 252 5 LR 0n2z ! 28 LIRT 0,106
k] 109 0027 1 101 0098
h 252 5 LR 0n2z 243 14 0054 0084
3 109 0027 17 a5 0.152

uniformly better than the &-NN rule. The average ervor rate
for the £-RNN rule in these four tables is 0,060 with a stan-
dard deviation of 0.017. The average ervor rate for the k-NN
rule in these four tables is 0.073 with a standard deviation of
0.011. The r-test reveals that the performance of the £-RNMN
rule is significantly better than the &-NMN rule, since the test
statistic value r =3.15 and the critical value fygs 4 = 2.013,
Computationally, the k-RNN rule is easy to implement and
needs less computational time than the K-NN rule. The best
case found by us for the £-RNN rule using all 30 features
produces 4% ervor rate, that is 96% correct classification
rate. This result is comparable to the results reported in past
by Bennett and Mangasarian [18] which generated 97.5%
accuracy by using three best features. We like to stress here
that our &-RMNM rule used all 30 features for Tables 1-4,

while in Ref. [18] only the three best features were used.
This indicates a robust behavior of the £-RNN classifica-
tion rule. To establish this robustness further, next we con-
sider only the three selected features used in Wolberg et al.
[16,17]. Recall that these three features are mean texture,
worst mean area, and werst mean smoothness. We again
use the same computational protocalls for dividing the data
set into training and test sets. The results are presented in
Tables 5-8 for k = 1-6.

From Tables 5-8, we notice that the &-BENN rule per-
forms uniformly better than the &-NN rule. In these four
tables the average ervor rate generated by the £-RNN rule is
0,032 with a standard deviation (s.d.) of 0,011, whereas the
k-NM rule produced an average ervor rate of 0.103 with a
s.d. of 0,021, The i-test reveals that average ervor rate for the
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Table 9
Summary of results on Xypge for the first partition
i k-BMN mule k-MN rule
Confusion Frob. of Avg emor Confusion Prob. of Avg. ermor
matnx false positive rate matnx false positive rate
false negative false negative
1 330 14 0041 0035 i 12 0035 0039
3 136 Rl 7 132 0050
2 ix 15 0043 0039 236 B 0023 0037
4 135 00z 10 129 0072
k] ix 15 0043 0034 iy 10 0029 0025
4 135 00z 2 137 o4
4 inm 15 0043 0039 EE f 007 0031
4 135 00z a 130 0068
5 im 15 0043 0037 i 10 0029 0031
3 136 0021 5 134 0036
] ix 15 0043 0037 iy 7 0020 0034
k] 136 0021 12 127 0086
Table 10
Summary of results on Xypge for the second partition
k k-BMN mle k-MN rule
Confusion Frob. of Avg. emor Confusion Frob. of Avg. error
matnx false positive rate matnx false positive rate
false negative false negative
I 135 q 0026 0041 iy 7 0020 0033
1 128 007 a 130 0068
2 iy 1 0029 0034 138 f 0oy 0048
9 130 0068 I7 22 0122
3 i 1 0029 0037 135 q 0026 0037
B 131 0056 a 130 0068
4 i 10 0029 0037 EE" L] 0017 0041
B 131 0056 14 125 LRTIT]
] i 10 00z 0037 iy 7 0020 0035
B 131 01056 10 129 0072
h i 10 0029 0039 EE" L] 0017 0041
9 130 0068 14 125 i

k-RENN rule is (highly) significantly smaller than that of the
k-NN rule, since the test statistic value |1 = 14.73 and the
critical value fyos4s = 2013, These three selected features
have widely different domains and variations. The mean
texinre S [9,40], worst mean smoothness € [0.06,0223)],
while worst mean area < [184,4259), Because of the high
differences in feature values the &-NN classifier may not
perform well. The smaller values contribute very little to the
distance based function when there already exists a large
valued feature with high variance in the data set. Whereas
our method plays a robust role as the score function takes
into account the covariance structures of both populations.
Here the best error rate for the K-RNN rule is 1.9% (i.e.,
the best accuracy is 98.1). The best accuracy rate obtained
by authors in Refs. [16-18] for this data set is 97.5%.

The k-RNN classifier marginally beats the earlier best
results.

322 WRBC darabase

lgnoring the 16 points with missing features, the WBC
database resulted in Xpac having 683 points in RY with 444
benign and 239 malignant cases. In this case too we used
|Xrre| = |Xmene| = 100, Xrr = Xrep U X1, consequently
| X5 | =483, Like Xwoec, we estimated ﬁ{. } using Xrr, which
in turn is used to design the k-RNN classifier and tested
on Xp.. The experiment was repeated for several random
partitions X7, X7} and we report here only two typical
results in Tables 9 and 10

Tables @ and 10 show that the &-RNN rule performs as
good as the conventional k-NN rule or even in some cases
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performed better. The best accuracy rate produced by the
k-EMNN rule for this data set is approximately 97% which is
much better than any accuracy rate reported in the past on
this data set.

4. Concluding remarks

The k-ENN rule is a nonparametric distribution free clas-
sification rule. Through empirical study we have noted that
the £-RNN rule performs as well as the k-NN rule, or even
better in certain situations. The k-BNN rule is a rank based
rule, so it has better robustness property. Since the &-RNMN
rule is rank based, it is expected to perform better whenever
there are too much variations between features. The compu-
tational complexity in the k-RNN rule is much less than that
of the £~NN rule. Thus the k-RNN rule lessens the burden of
computing the distances of all observations from the object
to be classified as they are needed for the conventional dis-
tance based k-NN rule. Users of the &£-NN rule may consider
the k-RNN rule as a computationally simpler alternative to
the conventional &-NN implementation. Since it is a non-
parametric classifier, it can applied to any data set. However,
the multivariate £-BNN ranking procedure depends on the
distributions’ mean vectors and covariance matrices. If the
class distribution is characterised by mean and co-variance
structure, in particular, if the class distributions are of Gaus-
sian nature, the performance of the k-RNN rule is expected
be quite good. Since the family of distributions characterised
by mean and co-variances includes many, k-RNN can be
applied successfully in many cases.
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