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Abstract

Earlier we proposed a connectionist implementation of compositional rule of inference (CO1) for rules with antecedents having a single
clause. We first review this net, then generalize it so that it can deal with rules with antecedent having multiple clauses. We call it COIN, the
compositional rule of inferencing network. Given a relational representation of a set of rules, the proposed architecture can realize the COL
The outcome of OO depends on the choice of both the implication function and the inferencing scheme. The problem of choosing an
appropriate implication function is aveided through neural learning. COIN can automatically find a "good” relation to represent a set of fuzzy
rules. We model the connection weights so as to ensure learned weights lie in [0.1]. We demonstrate through extensive numerical examples
that the proposed neural realization can find 2 much better representation of the rules than that by usual implication and hence results in much
better conclusions than the usual COL @ 2002 Elsevier Science Lid. All rights reserved.

Keywords: Furzy reasoning: Neum-fuzey system: Compositional mle of inferencing: Furzy relation

1. Introduction

Fuzzy sets (Zadeh, 1965) are generalization of cnsp sels
and have greater flexibility o capture faithfully varous
aspects of incompleteness or imperfection in information,
and can be used o model human reasoning/thinking
process. Let A and B be two fuzey sets defined on the

universes X and ¥, respectively. Consider a simple rule: If

x is A then v is B. Now given the fact, [fx is A', we like
infer y is B', such that the closer the Ao A, the closer would
be B' w B, where A" and B’ are fuzzy sets on X and ¥,
respectively. Thus, the problem of fuzzy inferencing s as
follows:

Premise I: If x is A Then v is B
Premise 2: x is A’
Conclusion: v is B'

Neural networks (NNs) (Havkin, 1994), ike fueey logic
systems, are excellent at developing  systems that can
perform information processing similar o what our brain
does. The concept of anificial NNs has been inspired by
biological NNs, which enjoy the following characteristics:

¢ They are non-lincar devices, highly parallel, robust and
fault tolerant.

¢ They have a buili-in capability 1o adapt 118 synaptic
weights o changes in the sumrounding environment.

¢ They can easily handle imprecise, fuzey, noisy and
probabilistic information.

¢ They can generalize from known tasks or examples o
unknown ones.

Artificial NN is an atlempt to mimic some or all of these
characteristics. Although the development of NN is inspired
by the model of brains, its purpose 1% nol just to mimic a
biological neural net, but to use principles from nervous
systems to solve complex problems mnoan efficient manner.

Both fuzzy systems and NN have been successfully used
in many applications (Haykin, 1994; Lee, 1990; Scharf &
Mandic, 1985; Self, 1990; Sugeno, 1985; Suh & Kim, 1994;
Zadeh, 1988). Apart from the learning ability of NN, it has
inherent robustness and parallelism. Fuzzy logic, on the
other hand, has the capability of modeling vagueness,
handling uncertainty. and can support human type reason-
ing. Integrution of these two soft computing paradigms
(often known as neuro-fuzzy computing) i, therefore,
expected o resull moomore intelligent systems (Gupta &
Rao, 1994; Pal & Pal, 1996).

In the recent past extensive research work 15 going on for
integration of fuzzy systems with NNs (Hayashi, Buckley.,
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& Crogala, 1992; Ishibuchi, Fujioka, & Tanaka, 1993;
Keller, 1994, 1993; Keller & Tahani, 1992a.b; Keller &
Yager, 1989; Keller, Krishnapuram, & Rhee, 19924; Keller,
Hayashi, & Chen, 1993; Nie & Linkens, 1992, 1995; Shann
& Fu, 1995; Takagi & Hawyashi, 1991). The objective here is
e combine the expert knowledge or operators’ experience
and reasoning ability of fuzey systems with the computa-
tional capabilitics of NNs i an efficient manner 1o solve
complex problems (Hayashi et al., 1992; Ishibuchi et al.,
1993; Keller, 1990, 1993; Keller & Tahani, 1992a.b; Keller
& Yager, 1989; Keller, Yager, & Taham, 1992b; Keller
et al., 19924, 1993; Nie & Linkens, 1992, 1995; Pal, Pal,
& Keller, 1998; Shann & Fu, 1995; Takagi & Hayashi,
1991y The integration of fuzzy logic and NN ofen is
done in two ways—a fuzey system implemented inoa
neural  architecture  (neural fuzzy  system) and a NN
equipped with the capability of handling fuzey information
(fuzey NN). Several attempts have been made in both of
these directions. Of course, there are several hybnd systems
which may not be categonzed stricty to either of these two
classes.

Keller et al. (1992a) proposed a neural implementation of
fuzzy reasoning. Pal et al. (1998) analyzed the system by
Keller et al. (1992a) and derived leaming rules for finding
good parameters for this network. For a special case, Pal et
al. showed how the optimal parameters can be computed,
and demonstrated the method with some examples. A new
architecture is also proposed by Pal et al. (1998) which
exhibits better charactenstics than the network by Keller
et al. (19924).

The philosophy behind the models proposed by Keller et
al. (19924) and Pal et al. (1998) 15 a Kind of similarity-based
reasoning. The more the similanty between the antecedent
of a rule and the given fact, the more close would be the
infemed conclusion or the consequent of the rule. Pal and
Pal {1999} proposed a scheme for realization of composi-
tional rule of inference (COI) ina neural framework. But the
method by Pal and Pal (1999 can deal with only simple
rules with one antecedent clavse. Here, we generalize the
system W implement COL with several clauses in the ante-
cedent, in g connectionist framework. We explain how the
connection weights should be modeled so that a learning
rule can be designed to ensure the weights to e in [0,1].
Note that this i not a multi-layer perceptron which loses
the fuzey reasoning structure and acts as a black-box type
function approximator.

2, Neural realization of compositional rule of inference
2.4, Compositional rule af inference

LetA = {0 i = L2, mysx & X be a fuzey set
defined on X, B= {pu(y)y,j=1.2,...ng ¥, EY} be a
fuzzy set defined on ¥and let A and B define a rule: If x is
A Then v is B, Now using a T-norm, the fuzey rule can be

written a5 A — B=g relation R=AX B on X X ¥, such
that R = 3 yu y sl ¥ V00 30 = Dxser TLaa b ey b

Now given a fact xis A" = [p'i(x),i= 1.2,...,n,}, the
conclusion B of v is B’ can be oblained by the composition
of A’ and R. The composition of A’ and R results in a fuzzy
set B' defined on ¥ as

B = AR = Proj(Ce(A") M Rjon Y. (1)

Here, Ce and Proj are the eylindrical extension and projec-
tion operators, respectively (Klir & Folger, 1988), and «
denotes the composition operator. If the intersection in
Eq. (1) 15 pedormmed with the minimum operator and
projection with the maximum operator, then we gel

,u.'},f_vj} = max min | gy 0, ) g (x;, ¥k (2)

This 15 known as max—min composition. Similardy, the
max—prod composition s defined as:

pn(y;) = max {pate) pe(. v} (3)

Usually, any T-nomm can be used o perform the intersection
operation resulting in max =T composition.

Given asetof Nrules Ry, i = 1,... N the composition can
be done with respect to each rule separately, and then the
different B} can be aggregated to get a resultant conclusion
B'. On the other hand, the relations representing different
rules can be aggregated first and then the composition
operator can be directly applied w R In the later case, the
composite relation R can be obtained as

N N
rR=|Jr =JA x8. (4)
=1 i=l

Nommally, B' = AR # B, where = is a composition operator
implemented through max and a T-norm. This may be the
case even when B represents only a single and simple rule
like ffx is A Then v is B. This 15 a very undesirable property.
Mormeover, the use of COT mises two important ssues: which
function should be used for imphicaton and which T-norm
(Klir & Folger, 1988) should be used for inferencing. Even
for a given inferencing scheme, say max—min COL, the
choice of the implication function has a significant impact
on the conclusion drawn. Lee (1990) explams this issoe.

This problem has been addressed by many researchers
(Mamdami, 1977;  Mizumoto, 1985;  Mizomoto &
Zimmerman, 1982 Mizumoto, Fukami, & Tanaka,
19793, b, 1980 Zadeh, 1975). Zadeh (1975) suggested
two relational representations ford — B

P, Y ) = (a (o) A paCy)) V (1 — palo)),

(3)
Wix. v,
and
FI'K{'YJ'?.F‘I'}'IP[-":H.I:I'} =1A |f1 g5 F‘Af'ri} + f“['.ﬂ'f."‘l}} }!'

(6)

Yix,v).

o Jy
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Mamdam (1977) defined a relatnon as:

pgec, ¥ W0, 350 = pg () A pg(yg), Yix;. v (7)
while Mizomoto et al. (Mioumoto, 1985; Mizomoto &
Zimmerman, 1982; Mizumoto et oal, 1979ab.c, 1980)
introduced many ways of computing B including

(1 if ) = pely),
Ll ¥ M, 30 = o ) ! (8)
L0, otherwise,

amd

f ’ } (1 if ey () = pglyy), )
X Wi Wlx, vi) =+
R = | g (v).  otherwise.

They also discussed the use of implication rules of multi-
vilued logie to define the relation R. For example
pelg, ¥ MO, ¥) = (1 — () A pegly; ) {100
and

Looaf pylxg) = pglyh

() (1

. otherwise.
palx;)

Kl ¥ WX, v) =

Mizumoto and Zimmerman (1982) compared 15 reasonimg
methods; e, 15 different fuzey relations for If x is A Then v
is B using the max-min composition operator. They have
considered both generalized modus-ponens and generalized
moduos-wollens. Their investigation showed that Zadeh™s
implication functon does not perform satisfactorily; e
does not produce a conclusion that conforms o our intui-
tion, while Mamdani’s method is not bad. But the implica-
tion functions proposed by Mizumoto et al. such as Egs. (8)
and (9 are satsfactory. The generalization of implication
rules of multi-valued logic, such as Egs. (10) and (11) are
not very good also. Thus, we sce that it s very difficult w
pick up a partcular implication operator which will produce
conclusions, that will consistently agree with our intuition.

In this investigation, we mestnet ourselves only o
generalized modos-ponens and nstead of trymg 1o pick a
suitable implication operator, given the T-norm for COL we
will try o find an ‘optimal’ relation R that can produce
conclusions conforming to our mtuition. In other words,
when the T-nomm for the COI s fixed, we want w find the
best representation of the relation B without binding
ourselves to any particular implication function. In addition
to that, we want to realize it through a NN so that we can
exploit the usual benefits of connectionist models.

S0 far, we have discussed about rules whose antecedent
has only one clavse, now let us consider rules with
antecedents having more than one clause. If the antecedent
has two clauses, then the rules will look like [fx is A and v is
B Then 7 is C, where

A= lpalxVe,i=1L2,..n,EX) be a fuzey sel
defined on X,

B=paglvidvii= 12,....ngmwiE ¥} be a fuezy set
defined on ¥, and

C=lpelzVo.i= 12,00, EZ) be a fuzzy set
defined on £,

The relation R now becomes R = A » B % C such that

R= Z g f.l'l t] .1':1': ik ::I"rf'l.J s .1":1'!' :J.'}
AxFPxZ

= Z Thpealx), ;). melze) 1

R

2.20 COIN: compasitional rule of inference net

Before presenting the net with two clauses in the ante-

cedent, let us first discuss how COL with rules having single
clavse in the antecedent can be mealized. Fig. 1 shows the
architecture for COIN when the rules have only one ante-
cedent clawse. It 1s a two layered net, the imput layer has ny
nodes, £,1 = 1,....ny and the output layer has ng nodes, O,
i =1,....ng Here, ny 15 the number of quantization levels
of an antecedent fuzzy set and ng 15 the same for a conse-
quent fuzzy set. Each node of the input layer 15 connected to
all ng nodes in the output layer.
Let wy; = ry; be the connection weight between the ith
input node and jth output node. Thus, the jth node in the
output layer 1§ connected o the set of ny inpul nodes and
these weights comespond to the jfth column of the relation
matrix K. The relation R 1s now represented by the connec-
tion weights. Let us denote the input to the ith node, £, in the
input layer by m;. An inputl layer node simply transfers
the input value unattenoated to the second layer nodes.
The activation function of a second (or output) layer node
15 defined as:

o = max; [T {wy. m;}}. (12)

Here, T s a T-norm. With these activation functions, it
15 casy to check that if W(=R) ® a relation
representing the rule If x is A Then v is B, then if the

Tt Tavore

Thess cuzecechion
weirhes represent the
relar’ren B

Inmut layier

Fig. 1. Architecture of COIM for rules with single clause in the antecedent.
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fuzzy set A= Ip.i;f.l.‘,-}l,r' = 1, ....nq} representing the fact x
is A" is given to the network as inputl, the network will
produce an  output  fuzey sct B = foy = pglyvdi=
loooong | where B =AR A straight forward substitution
will yield the result. 5o if we set the connection weights
properly we can realize COL by COIN (Pal & Pal, 1999).
Normally, B 1s generated as the Cartesian product

R=AXB= [r;= T(p(x), pay)]. (13)

If there are more than one rule, then the final B s obtained as
the union of K5, where R; 1s the relation matnx correspond-
ing to the ith rule; R =, R,

What can we achieve out of this? It is a neural realization
of COL It enjoys features like pamllelism, robustness and
learning capability of NNs. But the original problem of COL
i.e. the output may be quite off from the desired one still
persists. We already mentioned about the extreme example:
If R=1If xis A then v is B and the fact 15 x is A then the
conclusion B' = A=R may not be (usually is not) equal to B,
There are two possible factors that contnbute to this
problem: (1) the mmplication operator wsed, e the method
of generating R from A and B and (1) the method of
inferencing (the COI. We want to find an appropriate
relation R exploiting the learming capability of NN.

For notatonal simplicity, we represent a rule B [fxis A
Then v ix B by the pair (A, B). Suppose we wanl o learn the
rule or relation (A, B), given some training data (A, 8.0 = 1,
oo NV, where the par (A, B represents a rale of the form
If x is A; Then v is B; and cach A; is defined on X and
cach B; is defined on ¥, A; = {p, (x;h k= 1.....n,} and
B, = {pp )k =1,...ng}. Aguin for clarity, we write
B ) =ap. k= 1o 0= 1,0,N and pg (y) = by,
k= 1,...ng; i= 1. N, We will discuss the issue of
generation of training data m the mplementation section.
Let the conclusion obtained from x is 4, be B = o =
=1, ..np); i=1..N Bi=ApR, i=1,..N.
Note that, in the present context B is the output vector of
the network when the connection weights mepresent the
relation R and A; is given as the input.

In order to get an optimal set of connection weights and
hence an optimal relation B, we minimize the emror E,

g

N N
E= Z "B: - BJ'"2 — Z Z fbi, B bjj}!
=1

i=1 j=1

N m

— Z Z (miix fag-wy} — b,‘,-)_. (14)

i=1 j=1

N ay uxp(—.mn el=Kits I:'}).‘f,;,-l'r = 1}!1:f Kl ”}[—B, + Bys oKt I:I}ﬂn = J.'A,]

In Eq. (14), we assumed the max —prod (T-norm = product)
inferencing. Use of gradient descent o minimize Eg. (14)
with respect to wy; poses some problems because of two
reasons: use of the operator max in Eq. (14) and gradient
descent, as such, does not guarantee that every wy; will lie in
[(L1] even if we start so.

The first problem is easily solved by using any soft
version of the max operator. We use

Z'rf expl —s5x;)
ST s X ) = (15)

n

Z expl —ax;) -

=1

There ame other possible choices wo. Note that
lim, ., o SMix,.....x, ) = max|x,....x, }. Therefore, by
choosing a reasonably big (negative) value for s, practically,
wie can realize the max operator and yet we can use caleulus
to derive the learning rules. Thus, the activation function
(12) of a second layer node becomes

o, =SM{w,mi= 1.0} o)

To solve the second problem we maodel the connection
weights ry =w; = uxpf—.‘iﬁ-}l, where K is unresiricted in
sign. With this choice, irrespective of the sign and magni-
tude of K, wy will always be i [0L1], 1e. 0 = wy; = 1. We
can now leam K with gradient descent search but we use
Wi = e as the connection weight. Using Egs. (15) and
(16) the output of the jth node, when the input to the netis
a= I.ra,,.|:1_:.,...,.ﬂ“_L }. becomes

i

i gy eXpl—sagw;)
o =b) = = : (17)
Z expl —sagwy)
k=l
i ay ex p( —Ki-)cx p( — S, uxp( —.‘L’fj)}
oj=h; = =—— . (18)
; ex p( —5aj uxp( = .‘f,i,))

Thus, the leaming rule for .‘L’u- can be shown (Pal & Pal,
19997 1o be

Kin=Kjt— 1) — mgiby; — f?,;}I_ZI

. (19
B )
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where
M
Ar="Y apwy; exp(—sagwy), (20)
=1
and
M
B, = Zuxpf—m&wg-}l. (21)
=1

Here, ny is the leaming co-efficient of K. Eq. (19) 15 a
batch update formula. For an online update, the formula is
the same as Eq. (19) except the summation over all points
=110 N will not be there. Note that, replacement of the
‘max” operator in the error function (14) by is softer version
5M in Eg. (15) makes the error function ‘smooth’, as the
first and second derivatives exist everywhere. 5o the
steepest descent will converge to either a local mmima or
a saddle point, which can be checked using the Hessian
matrix al that point. Mimmization of this ermor function
will lead to a network that can draw conclusions conforming
Lo our mtuilion.

Omne might be wempted o call the COIN as a one layer
perceptron. But that is NOT the case because COIN uses
COl (max—prod) to get the conclusion and of course does
not use the sigmoidal activation function.

Onee the values of K are obtained, the final relation R can
be obtained and then we can caleulate the values of B, =
lb:J-} using Eq. (17).

In real life, antecedents with single clause are rarely seen.
So we must generalize our network so that it can handle
rules having arbitrary number of clauses in the antecedent.
Neal, we propose a modification in the architecture of the

network so that it can tackle rules with two clavses i the
antecedent. Then we will show how we can extend the net to
learn rules with more than two clavses in the antecedent.

Let us consider a rule R: If x is A and v is B Then
z i C, as described earlier, where A = [, (Vi =
L2, ,ngx € X} be a fuzey set defined on X, B=
Luglv Wy, i = 1,2, .. ng;v; € ¥} be a fuzzy set defined
on ¥, and C = {pciviVyvi.i=1L2....nei5 €L be a
furzy set defined on Z.

For rules with two clauses in the antecedent, we propose
the network architecture, as shown in Fig. 2. The net has
three layers, input layer, one hidden layer, and then the
output layer. The input layver has ny + ny nodes divided
into two logical groups, the first group has n, nodes and
the second group has ng nodes. These nodes actoally
represent the two mput fuzey sets A and B We will call
them group {4 and group fx. The individual nodes will
be referred as 1y Jy,.ody Iy g e IH Second layer
has ny-ng nodes Iugu_ally partitioned into Ry ETOUPS,
cach group contains ng nodes. We call these groups
as group Hy, group H,, ... and group H, . The indi-
vidual nodes are mcogmezed as H  H L H
Hy Hyocni By 5ot Hy Hy sl o The thind layer
or the outpul l.iynl.r has ne nodes Lo represent the outpul
furzy set. The output  nodes  ame  referenced  as
O, Oy InFg. 2, ny =3, ng =2 and np = 3. The
three groups of nodes in the second layer are indicated by
three different shades. The connections between layers are
made as described later:

1. The ith node of group £, in the imput layer is connected o

Output layer

These connection weights
represent the relation I

5"| Hidden layer

Input layer

Fig. 2. Architecture of COIN for mules with two clauses in the antecedent.
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all the ng nodes of group H; in the hidden layer.
Symbolically, each of the nodes I, 0 i= 1.2.....ny 15
connected to nodes H . j= 1.2, ... 0

2. The jth node of group fﬂ. in the input layer is connected 1o
the jth node of every group, group Hy to group H, . 1
cach of the nodes Iy: j= 1.2, ....n5 158 L'[}ﬂ[!u_LDd Lo
nodes B, i=1,2,... '::__5.

3. Each node in the hidden layer is connected o every node

oy

(sf; Wy — 1) Z Zpr{—f.‘f Wi

Hvl'?k i=l j=

between the nodes H".- and Oy, amd

ny o Mg
bl _z.fuw,ﬂ exp(—sl; W)
P s s _ (24)
Z Zu&p{’ sl Wi
=1 j=l1

Alter some algebraie manipulation we get

nyoong

ZZ Wi expl —sl; W

=1 j= ) fz_'_:l}l

o JJJ."I “J‘Ik cxpf—“'.'ﬂng'k}
r-'“uk bt

Z Z-L‘xpf & Wie)

i=1 j=I

in the output layer, Le. each of the nodes Hi; i=
1.2, ony; 7= 1.2, .. ng 15 connected to the nodes O
k=1,2,....00

4. The strength of the connections from the input layer Lo
the hidden layer are all set to unity (= 1).

. The activation function of the nodes i the hidden layer
is a T-norm. For example, if it 15 the ‘min’ function,
then it selects the minimum of the inputs and pass it
as output. This layer actually computes the relation A
AND B, The number of outputs from the hidden layer
I8 1y Hg.

6. The activation function of the nodes in the output layer is

the soft-max as described cardier.

7. The number of connections between the hidden and the
output layer s nyngn-. These connection weights
actually represent the relation R=AXxBx (. The
connection strengths in this layer are learned using
gradient ;Lil:s-l_'um technigue. We model these weights by
expl— Kjg ) so that it remains positive and less than one
after training, as described carlier.

tn

The connection weights between the hidden and the
output layer are updated by gradient descent technigue,
which is briefly described later.

Let E be the instantaneous error function for some inpul
{A;. B, for notational simplicity we drop the index i, Then
WE Can write

E= Y (o, — nY, (22
k=1

where o is the actual output of the node &y and #; is the
expected output of that node, k= 1,2, ....n
Thus, we get

dE iy
i =2, — 1) fr L

. . (23)
oW oWy,

Here, W{I-k=f|:xpf—w]-‘l-k}l}l: i the connection weight

The weight updating continues all there s no signi-
ficant change in weights between two successive update
cycles.

To learn rules with N clavses in the antecedent vie If x| is
Ay and xa is A and. .xy is Ay then b is B, the network can
be easily extended aguin with just one hidden layer. The
hidden layer will compute x, is A, and x2 is A, and...x
ix Ay and output layer will compule the inferred conclusion.
Let 7y be the number of quantization level of x;, i.e. the fuzzy
set A; s represented by a vector of size ny. S0 the mput layer
will have Z‘,"" i 1; = N, nodes. Let us denote the input layer
nodes by I, i=1,... N j=1,...n. MNodes [Ij;, j=
l.....n; represent the qu_y set A;. The hidden layer will
have NV, = [_|:"_,1':J nodes. Let us denote the hidden layer

modes by My ; 0 L=Ll..n; b=1l...m . iy=
L ...y, Here, the hidden node H, ;, is connected 1o

nodes {,-JI_: J=1..N of the input layer. All comnection
weights between the mput and the hidden layver are set w
unity { =1). Each hidden layer node uses 8 T-norm on the
set of inputs received by the node. Thus, the hidden layer
outputs cormespond to the relational representation of the ante-
cedent clavse. The output layer has Ny nodes, where N 1s the
number of guantizaton level of the output domain. The
hidden and the output layer are completely comnected and
these connections represent the relatonal representaton of
the entire rule. The activation functions of the hidden and
the output layers remain the same as that of the previous
case.

We have tested our proposed scheme on rules with one
clause in the antecedent and also two clauses in the ante-
cedent, and got gquite satisfactory results.

3. Evaluation of the network

In order to evaluate the performance of net, we used
several indices including even the difference of fuzey
entropy (Pal & Beedek, 1994). Here, we mention only two
indices, Avg (average distance) and Max (maximum
distance) as used by Keller et al. (1992a) and Pal et al.
(1998).
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inputs in {a), (h) and {e).

Average distance (Avg): Let B={bh;} be the vector
representing the desired (target) output and B' = (b} be
the output produced by the net.

Then Avg = 3%, |b; — bj|/m, where m is the number of
elements in the universe on which B is defined.

Macimum distance (Max): Max 15 defined as Max =
mux‘,-”bj — B[}

Note that Keller et al. computed Max and Avg with
respect o B, when the network was set for the relation ff
x i A Then v is B. Butl in the present mvestigation, we
propose o compute them as distances from the target
fuzey setin the training data. In other words, for the training
data (A, B, we compute Avg and Max vsing the pair
(B, B.) is the conclusion suggested by the net when A;
wis the mput. The wea s extendible to antecedent with
multiple clauses in a straight forward manner.

4. Daia for learning

First, we discuss how data can be
antecedents with single clause. Tuning K
an important issue, what would be the raining data!
Suppose we want o leam if x5 LOW then v is HIGH. As
a first choice what comes to our mind 15 to use the data
corresponding to the pair (LOW, HIGH). Let X be the vector
containing the membership values comesponding o LOW
and ¥ be the same for HIGH. Now when X is given as an
input to the net, suppose the network produces an output
vector ¥ We can now learn K. so that ¥ — ny! i%
ML M.

gencrated  for
(or K ) raises

This is not a good choice as the net may leam the relation
Ifx is LOW Then v is HIGH quite well, but the net may be so
much biased to this relation that it may fail to realize the
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right kind of generalization and the reasoning network
might behave like an ordinary muolti-layer perceptron, i.e.
approximate the input—output mapping (using 8 inferencing
paradigm) loosing is reasoning ability. We generate the
traiming data using the same concept as in Pal and Pal
(1999} and Pal et al. (1998).

Our objective 15 not just w leam the relaton [f x is A Then
v ix 8. The net should keam in such a manner that when the
input is A', the net should produce a B, so that the
similarity/dissimilarity between A and A is reflected
between B and B'. Moreover, when the input 15 NOT A,
the output should be least specific e, the UNKNOWN,
Therefore, the tmining set should contain at least (A, B)
and (NOT A, UNKENOWN). In addivon, it can also include
pairs like (A', B'). For example, in case of if x is LOW then v
is HIGH, we can generate training data using the following
Cises:

Ifx is VERY LOW Then v is VERY HIGH

Ifx is MORE OR LESS LOW Then v is MORE OR LESS
HIGH

ffx is NOT LOW Then v is UNKNOWN

Thus, to make the net leam Jf x is LOW Then v is HIGH
we train it using these four sets of tmining vectors (LOW,
HIGH), (VERY LOW, VERY HIGH), (MORE (OR LESS
LOW, MORE OR LESS HIGH), (NOT LOW, UNENOWN).
These four are very natural choices for (LOW, HIGH)
relation. Some other distorted cases like fI_GW", HI(FH"}I
may also be added 1o the set. One can, of course, argue
against the use of (VERY LOW, VERY HIGH) as this may
cause the system make a conclusion which 1s more specific
than HIGH. But this is not important in the present case. Our
intention is o justfy that we can always have some reason-
able and consistent training data.

We emphasize here that the above set of four vectors is
needed just to learn the relation Ifx is LOW Then v is HIGH.

It does not imply that the netis also traimed for the relation ff

xix VERY LOW Then vis VERY HIGH or If x is MORE OR
LESS LOW Then vy is MORE QR LESS HIGH. Because 1o
learn the relation (VERY LOW, VERY HIGH), the traming
selmay contain (LOW, HIGH), (VERY LOW, VERY HIGH),
(MORE OR LESS LOW, MORE OR LESS HIGH) and must
contain (NOT VERY LOW, UNENOWN).

5. Results and discussion
5.4, Results with single clanse

Here, we ose the same membership functions with the
same quantization levels as in Pal et al. (1998), 1.e. each
fuzzy set 1s gquantized into 21 levels. In order 1o leam the
relation (LOW, HIGH), we vsed four rules ( LOW, HIGH),
(VERY LOW, VERY HIGH), (MORE OR LESS LOW,
MORE OR LESS HIGH) and (NOT LOW, UNKNOWN)
for training. The input membership functions used for train-

Tuable 1
[vifferent input fuzzy sets wsed for training

Labh 1 3 3 ) 9 1n 13 15 7 19 |

LO L0 0467 033 00 00 00 00 00 00 000 00
L1 L0 067 033 00 00 00 00 00 00 00 a0
L2 L0 08 050 00 00 00 00 00 00 00 00
ML L0 082 057 00 00 00 00 00 00 000 00
VLo L0 045 001 a0 00 00 00 000 a0 00 00
ML 0 033 067 L0 L0 L0 L0 1.0 1.0 1.0 L0
HI 00 00 00 00 00 00 020 040 060 080 L0

Tuhle 2
The target outputs for inputs in Tahle |

Lab 1 3 3 K 9 11 13 15 17 19 21

LO 000 000 000 000 000 000 020 040 060 081 1O
L1 000 000 000 000 o0 000 020 040 060 080 L0
L2 000 000 000 000 000 000 020 040 060 081 10
ML 000 000 000 000 000 000 045 063 077 08 L0
VLo 000 000 000 000 000 000 004 006 036 Oed L0
NL L0 10 Lo 10 L0 1.0 L0 1.0 Lo 1.0 Lo

ing are depicted in Fig. 3(a)—(c) and the comesponding
different output membership functions are shown in Fig.
3(d). The membership functions comesponding w Fig.
Ja)—(c) are included in Table 1. Table 2 shows the target
outputs (corresponding to Fig. 30d)) for all input conditions
depicted in Table 1. It should be noted that we have
generated two distorted versions of LOW (LO), named as
L1 and L2, which are shown separately, L1 in Fig. 3(b) and
L2, Fig. 3ic). However, the targe t outputs for all three inputs
(i.e. LO, L1 and L2) are the same, HIGH. All outputs are
shown in Fig. 3(d).

MNote that, all the membership functions discussed earlier
are defined using 21 equispaced points on the respective
domains of discourse. However, in the tabular representa-
tiom of the membership funcions, we show only 11 points
{every alternate points of the actual data used). We
emphasize that for all our computation and graphical repre-
sentation, we use 21 points, but for clarity of presentation in
the tables to follow, we show only 11 points.

In order to stant the learning process we need o initialize
the connection weights wy o equivalently we need Lo
initialize Kj;. We use two schemes named Scheme [ and
Scheme I0.

Scheme I We initialize K using the trining data. Let R,
i=1,....N be N rules or relations that are to be keamed.
Then define

N
R= [rloe = | J R (26)
i=]
Since wy = uxpf—.‘f,;,-}" = 1y, we sel
f |
K;= Illug— i, j. 20

V
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Tahle 3
The output fuzzy sets obtained by the soft—max COIN with s = — 1

Lub | 3 5 1 9 I 13 15 17 19 21
Before tining

Ly 015 .15 .15 015 015 0.15 0.3 .57 .73 (1.86 na7
L1 .25 .25 .25 .25 0.25 .25 0136 .56 0.72 .85 0ne7
Lz (.28 (.28 (.28 (.28 .28 028 .36 .56 0.7l .54 056
ML .31 .31 .31 .31 .31 .31 0.37 .55 .71 084 86
VL 005 5 005 005 s 0.5 .35 .58 .74 087 099
NL 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 14
Afier hwning

Loy (.(X) (LK) (LK) (LX) (11K (1LiX) .16 (1.3 .56 .78 14
L1 .06 111K 1.1K1 .0K) LK .06 018 0.3 .56 078 10
Lz i il il i i . 0.x .51 0.7l .86 14
ML .01 ol (L1 i1 .0 . (L35 .53 .70 .86 10
VL (LK LX) L0 LK) (LI .00 .0 .16 0.3 .64 14
ML 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 14

Thus, in Scheme I COIN with the mitial rule matrix will
simulate the usual COL but with soft-max. We can expect
this as a4 good initahzaton of the net. In all simulation
results reported  we used product w implement  the
implication operator and max o realize the union operator,
in Eq. (26).

Scheme 11 In this scheme, we randomly inittialize r; and
hence Kj;. We use the random number generator to oblain
uniformly disributed values over [0,1] as the initial vy and
from there we generate Ky using Eq. (27). Obviously, such
an imitialization will produce, before training, resulls quite
far from the desired one.

With a view to leam the relation If x is LOW Then v is
HIGH, we used the following four rules to obtain the initial
R: (LOW, HIGH), (VERY LOW, VERY HIGH), (MORE
OR LESS LOW, MORE OR LESS HIGH) and (NOT LOW,
UNKNOWN).

The output fuzey sets (conclusions) computed by the net
before tuning are shown in Table 3. Here, we find that the
output produced by the net is not very good. Table 3 depicts
the output fuzzy sets obtained after tuning of K for 30 0040
iterations. Comparison of these tables with the targeted
fuzey sets (see Table 2) shows that after tuning of K we
get a very good match between the targeted output and
caleulated output. In this case, we used s = — 1), and we
find that the total square emor computed by Eq. (14) came
down from 4.33 (before tuning) to 0013 {after wning).

Each of the six Fig. 4(a)—(f) displays desired output and
the output produced by the COIN and max—prod COL for
one of the six cases (Table 4). In each case, we find that
conventional COl is the worst and COIN produces the best
result making an excellent match with the desired one.

These points are further highlighted in Table 5. which
summarizes the pedformance of COIN. Table 5 depicts
that both Max and Avg are the least for COIN after tuning
and in fact these two indices exhibit very low values
suggesting very good match between the desired and the

computed conclusions. Obviously, before tuning the indices
are gquite high. For the present imitalieaton (without
tuning), COIN with soft-max approximates the usoal COL

For the sake of comparison, we have also implemented
the usual max—min COL Note that this 15 not realized by
COIN. The results are included in Table 4. They are not
quite satisfactory (columns 8 and 9 of Table 5). In fact
max—min appears worse compared o max-prod.

In Pal and Pal (1999), COIN with single antecedent
clavse has been extensively lested for different s and also
compared with nets of Pal et al. (1998). Performance of
COIN s found o be gquite consistent and satisfactory. More-
over, COIN was found to outperform the net by Pal et al
(1998).

So far, using COIN, we found avery good performance of
the proposed net when the imbal B owas caleulated using
Eq. (26). To see its robustness with respect to mitialization,
we initialized B using Scheme 110 We have expenmented
with several such random R and obtained good results. We
report here only one typical mesult. Table 6 shows the
initialization used. Since Scheme 1T uses random initializa-
tion, in Tablke 6, we show the complete relation used, so that
readers can replicate the results (Table 6 shows the actual
values rounded to two digits). The outputs obtained by
COIN before tuning of K are shown in Table 7, and we
find that the outputs are, as expected, pretty bad. Table 7
depicts the outputs obtained afier tuning of K using soft—
max COIN for 30 000 iterations. Comparing Table 2 with
Table 7. we find a very good match between desired and the
compuled outputs although we started with a very bad mitial
R.

Table 8 presents the different performance indices before
and after tuning of & for the initialization in Table 6.

Comparng Table 8 with Table 5, we find that even with a
very bad mandom initialization, COIN can find a good
realization of the relation B so that the computed outputs
agree very nicely with the desired ones.
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Fig. 4. (a) Comparison of outputs obtained by different methods for input set LO. (h) Comparison of outputs ohtained by different methods for input set L1
{¢) Companson of outputs obtained by different methods for inpuwt set L2, {d) Comparison of owputs obtained by different methods for input set ML,
{e) Companson of outputs obtained by differemt methods for input set VL. i) Companson of outputs obtained by different methods for input set NL.
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Tahle 4 5.2, Results with multiple clauses

Output fuzry sets obtained using the wsual (a) max-prod COL, and (h)

max—min CO Now we consider rules with antecedent having two
Yivad 3 5 B 9 13 15 17 19 7 clauses. To test our proposed scheme, we have used four

rules,

Max—prad Codf
LO 025 025 025 025 025 025 045 063 077 089 1.0 RI :.i:f..f iv LOW anel ¥ iv LOW Then z is LOW

LI 038 038 038 038 038 038 045 063 07 089 10 i ; :
L2 038 038 038 038 038 038 045 063 077 089 10 Ryt dfx is LOW and y is HIGH Then zis LOW

ML 038 038 038 038 038 038 045 063 077 089 10O Ry - If x is HIGH and y is LOW Then z is LOW

VL 05 015 015 015 015 015 045 063 077 089 L0 Ry ffx is HIGH and v is HIGH Then 7 is HIGH

NL 10 10 10 L0 10 L0 L0 L0 L0 10 10

Meax—min COF Let us denote the two antecedent clauses of the rule R; by
LO 050 050 0.50 050 050 050 0.50 063 077 089 L0 C;, and C;, . Forexample, for B, €} = xis LOWand C), =
LI 050 050 0.50 050 0.50 050 0.50 063 077 089 10 v is LOW. By f}_ﬁ we denote the complement of C,, e.g.

L2 050 050 0.50 050 050 050 050 063 077 089 1.0

ML 057 057 0.57 057 057 057 057 063 077 089 10 CI' =% is NOT LOW,

VL 033 033 0.33 033 033 033 045 063 077 089 1O Now for each rule R;, let us define a set R} containing I'U:lr
NL 10 10 10 0 10 10 0 L0 Lo rules [R; . R, .R; R} with Rj having antecedent A;,
where

Aj =C; AND C;

Tahle 5
Performance evaluation of COIN

COIN before K-uning COIM after K-tuning COl using max-pmd COl using max-min
Lab Avg Max Avg Max Avg Max Avg Max
Ly i3 L17 iz (L6 121 .25 .35 150
L1 .18 .25 . .04 0.28 (.38 01,35 050
L2 0z 0.28 4 012 0.28 (.38 (.35 050
ML 19 .31 .03 (L1 (120 (.38 0.32 057
WL 16 .43 . .06 .23 .47 .33 047
ML LAY (1L1K) (11K (100 (LK) (LK) (LK) (100

Table 6
An initial & genermed by Scheme 11

| 2 3 4 3 Li] 7 8 9 10 1 [ 13 14 15 1] 17 I8 149 x |

032 012 034 037 049 006 011 003 045 042 030 020 009 000 033 001 0 007 031 042 043
019 045 007 013 037 03 WE 020 00 030 022 008 000 049 032 021 037 015 025 0M 0 048
04 024 036 015 013 007 038 001 043 042 046 027 041 02 036 004 027 040 041 014 026
022 040 030 024 025 011 018 036 0M 029 007 030 028 025 026 048 0.4 041 039 005 017
037 025 045 008 048 050 013 031 027 014 043 043 006 030 03 008 18 015 048 008 046
0.3 038 029 03X 002 000 e 038 03 019 000 E o 024 044 030 040 039 002 00F 048 046
0.3 001 029 043 018 03 03 032 05 06 006 004 028 030 033 001 004 020 046 OE 033
017 035 024 04 03e 0107 041 010 048 06 039 O 042 032 023 030 0 000 004 0E 005
041 009 009 032 005 03 013 00F 043 033 038 035 023 002 03 047 036 029 045 02 033
010 006 035 046 043 041 0 040 044 013 007 040 004 040 040 046 048 001 033 013 (045
0.2 010 013 017 032 0@ e 039 04 031 048 Qe 045 028 000 037 00 004 026 04 019
025 049 009 024 009 038 W 013 03 048 048 0019 045 027 06 035 046 033 025 016 035
0.5 001 049 045 019 003 044 035 03 025 007 043 022 0 0B 047 048 0E 003 033 047
045 005 039 022 033 02 007 019 049 047 025 021 001 009 036 027 003 042 046 028 038
024 008 021 04 038 002 02 029 036 I8 020 E 006 0468 035 045 003 020 005 043 050
035 028 037 03 029 046 015 003 041 020 023 041 035 047 033 001 duae 001 035 038 022
031 020 039 03 038 03 006 037 03 050 009 00 017 023 008 026 046 030 005 025 (013
006 046 006 037 050 03 019 040 017 045 001 0 029 0019 008 035 045 031 039 042 027
006 010 021 Q0 029 008 003 001 0LE 004 002 007 049 008 Oe 033 006 036 040 048 002
0.3 020 046 005 047 04 009 047 031 043 045 020 004 003 040 007 032 04 049 042 038
015 032 030 037 049 036 003 032 032 036 026 045 019 048 002 Od6 043 046 046 04T 047
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Table 7

Chrtput fuzzy sets obtained by {a) sofi—max COIN {5 = — 101 and & in Table 6, {b) soft—max OOIN {5 = — 1) after ming & for 30 000 iterations

Lah | 3 3 7 9 I 13 15 17 19 21
Safi—mar COMN (5= — 1) and R

Ly .14 0.21 (141 (IR0 135 021 013 022 017 .21 (L35
L1 .19 0.22 .40 (IR0 0134 021 [INE 022 017 .23 (L35
L2 .21 .24 (1.0 017 135 027 021 025 021 .25 .37
ML .21 .24 .40 17 035 027 0120 024 021 .15 .36
WL 0.18 .21 .41 nns 035 07 s 0120 012 L1% (1L.33
ML .39 .39 .42 .34 043 041 041 033 43 .42 .42
Saff—mar COIN (5 = — W) after mning K for 30 000 irerations

Ly (LX) (11X (11K (100 0 01010 (.20 (138 059 .79 1.1
L1 (.00 .06 .06 100 a0 0 020 1410 58 .79 1.0
L2 (L i (1K) 00 i i 03z 053 [Eili .79 1.0
ML LKA i . 001 01 i 0131 052 [EiTi 079 1.1
WL 0.0 .06 (1K) 00 (100 LR 008 017 045 .79 1.0
MNL .94 .94 0.5 11 0599 0949 099 059 0949 .99 .99

A =C;, ANDC;
A, =T, AND T,
A, =C ANDC.

1 13

To keam Ry, a reasonable set of taining data would be

Ry, =if A\, then z is LOW

R"IJ = if A",_\ then z is UNKNOWN
R\, =if A\, then z is UNKNOWN
R"h = if A"h then z is UNKNOWN

We test the net in two different ways: first, we try to learn
a single rule ;. then we try to learn all four rules Ry, R4, By
and B, in a single net.

Again to leam a single rule, we wse two different
strategies. First, we trained the net with only one rule R,
and then test the output with the four rules in the set RS I
the net has leamt the rule By ‘properdy’ then outputs for the
rules R}, R}, R}, will be close to UNKNOWN. This case
will demonstrate the generalizing ability of our net. In the
second case, while leaming the mle R, we used four rules of
the set B as training data and tested the outputs. This can
demonstrate the kaming capability of our net.

The results we have got for B are listed in Table 9. Here,
we find that the results obtained for the second case are

Tahle &
Warious performance indices when initialization is done using Scheme 11

Before K-tuning After K-tuning
Inpost Avpg Max Avg Max
Ly (.28 a5 o .05
L1 0.28 LG5 .01 .05
L2 (.28 a3 M 013
ML .35 L4 005 L.18
VL .23 a7 L4 015
NL 06l a7 .01 001

much betier than those for the first case. This 15 due o the
fact that in the first case we did not ose rules R",!, R, ",4
for learning.

To initialize the weights between the hidden and the
output layer, we used two different schemes, Scheme 1
and Scheme 1T as descnbed eardier. Resolts for both are
reported in Table 9. For the other rules, 1.e. By 1o By also,
wi did the same experiment and got similar results.

MNest we ried to learn all four rules by a single net. In this
case, our training data set contams four rules B, K., R and
R;. The results for both kinds of inidalizations are reported
in Table 9.

A natural question comes: how does ordinary max —prod
composition performs in this case? To check that, we
implemented max—prod COL Table 10 shows the outputs
corresponding to Table 9, respectively, using the max—prod
COL Table 10 shows the results of max—prod COL for
training only one rule (here R)), in two different ways,
and Table 10 shows the results obtained while learning all
four rules. Comparing Table 9 and Table 10, we find that our
COIN demonstrates a significant improvement over the
max—prod COL This is also reflected in Table 11, which
summarize perfonmmances comesponding to different runs by
different methods. Table 11 contains the pedormmance
indices of different runs for learning single rule and for all
four rules.

Table 11 reveals that when a single rule is vsed for
training, the agreement between the computed and the
desired output for that rule s quite good for both COIL and
COIN, but for the other three cases COIN performs similar
Lo or better than the usual COL When training s done with
all the four rles, as expected COIN performs much better
than usual COL for both schemes.

Similarly, for Table 11 we find that when we try to learn
all four rules, COIN with Scheme 1 mitialization out-
performs max—prod COl and COIN  with mndom
(Scheme 1) initialization.
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Tahle 9
Output furzy sets produced by COIN when we try to leam (a) the rule K in two different ways, and (b) all four mules 8, —&, in a single net
Lah 1 3 5 7 9 1 13 15 17 19 21
Rule By in mwao differens ways
Learming is done wsing only By (Scheme | initialization)
2(k4,) .99 .67 0.33 {0 {100 (1.0 (LK 01,00 0.0 {100 0100
zIRY,) L3 L1 (LK) (LX) (LK) 1.0 1.0 .0 (.0 0100 0100
iR .03 .01 (10K (1.0¥ .10 {1.0x] (1.0 (1.0 (1.0 0100 01100
(R, (LX) (LX) (LK) (LK) (1K) 1.0 1.0 1.0 .00 000 0400
Leaming is done using onlv By (Scheme I initialization )
iRy, (.80 (a7 .33 L1 il .01 .01 .01 i1 001 001
:{RL] 0.5 (1.86 (L83 .54 .40 1.9 0.75 (1.76 (158 (180 068
zIRY,) (.78 (180 [i%.+.3 .91 [i%.1] 0.87 .92 (.86 .82 092 090
(R, (1.5 (150 092 0191 (.49 0.8 (.40 .91 (.40 041 [iF.3.
Leaming is done with all four ndes belonging to ser 8 (Scheme | initialization)
:.{Rrh i (.59 .67 .33 (.02 iz .02 .02 (.02 .z 00z 00z
(/Y (.59 .99 .59 (L58 0.9 0.9 0.9 0.9 0.9 0949 01949
z(RY,) .59 (.59 0.599 (.59 0.9 .99 0.9 0.9 094 05949 0949
zify,) 1.0 L. 1. 1.0 1.0 1.0 1.0 1.0 1.0 11 1
Leaming is done with all four ndes belonging to set B {Scheme 1 initializasion)
:{.ﬁ.’".l 1 080 (L.67 (.33 (i1 0. (i (i .11 . i 01
iR, .59 .99 .59 .99 .99 0.9 0.9 .94 0.9 0949 099
2R .59 1.9 .94 .94 0.9 0.9 .94 .94 L9 099 099
(R, (.98 (.98 (.98 (.98 (.98 .98 .98 .98 .98 098 198
All four rules B\—R, in a single ner
With Scheme | initiali zation
iRy (.59 .67 .33 (LK) (11K 1.0 1.0 1.0 1.0 0100 0400
iRa) (.59 (a7 (.33 (LK) (1K) (.00 .0 .00 0.0 0100 0100
IiRs) .59 (LT .33 (LK) (LK) 1.1 1.0 1.0 0.0 0100 0100
iRy (LX) (LK) (10K (LK) (LK) 1.0 0.2 {140 1.6 (180 098
With Scheme I initialization
ziRy) (.80 (LaT .33 (L1 il 0.0 0.1 0.1 .01 001 001
IiRa) (.80 (L&a7 .33 (.02 iz 0.0z 0.2 .02 0.0z 0Nz 0z
Z{R3) (L2 .67 .33 (.02 iz .02 .02 .02 .0z 0Nz 00z
iRy 0.0z 0.2 (.02 .02 0.z 0.0z (1.3 140 1.6 037 099
Table 10
Performance of max—prod COL while leaming (a) rule &, in two differemt ways and (b) all four rules /-8,
Lab | 3 5 T 9 Il 13 15 17 19 21
Rule B in two different wavs
Results when leaming is done with By only
iR (.98 (.53 (L.05 (LX) (LK) 1.0 0.0 0.0 1.0 01100 0100
(R (L3 101 (LK) (LK) (1K) 1.0 1.0 1.0 1.0 000 0400
zIRY,) L3 L1 (LX) (LK) (LK) .00 1.0 .00 0.0 0100 0100
iR, (1.0X1 (1.0 (10K ALY 1.0 111K (10K 1.0 1.0 0100 0100
Resules when leaming is done with all rides belonging to sef R
2iRY) .08 01.53 {108 0.5 0.5 0105 01.005 0005 005 0405 005
(R .59 (.59 .59 (.59 0.9 0.9 0.9 (.9 0.9 0949 099
iRy .59 .99 0.9 .99 .9 0.9 .49 1494 0.9 0599 099
(R L0 Lo Lo L0 ] 1.0 1.0 1.0 1.0 Lo ]
Al fowr nules R —R,
Resulis when leaming is done with all four mles
iRy (.98 (.53 (L.05 (LX) (LK) 1.0 0.0 0.0 1.0 01100 0100
IiRa) (1596 .53 (L6 (LX) (1K) 1.0 1.0 1.0 .00 0100 0400
Z(R1) .56 (.53 (.06 (.00 0.x) (1.0K) 11LIK] 0.00 KLY 000 000
iRy (LX) (1K) (LK) (LK) (LK) 1.1 0.0z .13 .41 070 0194
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methods when we learn {a) only a single rule &, (h) all four rules & -/, in a single net

[hata e rule tmining Four mule training
M —prod Ol COIN with COIN with M —prod (e} COIN with COIN with
Scheme | Scheme 11 Scheme | Scheme 11
initialization initialization imitialization imitialization
Avg Max Avg Muax Avg Max Avg Max Avg Mk Avg Max
Ohlv a single rule B,
er. L4 0.28 111 1L iz 020 008 (L2IK 1 1Ll iz 020
R';__. .99 1.0 099 1.0 (LIR 3z .11 .10 i i .01 1
er. .99 1.0 099 1.01 .15 028 (L110) (10 1101 (L. (.01 01
RLﬁ 1.0 1.0 111 1.0 (L 10 0.1z 10 (.0 L] LN} 0z 002
M —prod COL COIM with COIN with
Scheme | Scheme 11
initialization initialization
Avg Muax Avg Max Avg Muax
All faur ndes B—Ry in a single net
R, .04 .28 00 (L1 i 020
Ry .04 0.7 (1 il (L2 (.20
H, .04 .27 Xy} 1Ll (L3 038
Ry .08 0.27 (1 (.02 L 004

6. Conclusions

Keller et al. suggested a NN for fuzey reasoning and later
Pal et al. modified that, These networks implemented a kind
of similanty-based reasoning. Pal and Pal then proposed a
network for COL with single clause in the antecedent. In this
paper, we generalized the net so that it can deal with rules
with antecedents having multiple clauses. Given a set of
rules, the proposed architecture can realize the COL It is
well known that the outeome of COI depends on the choice
of the operator wsed for implication and also on the
inferencing scheme used. There are infinitely many choices
for the implicaton opertor. COIN avoids the problem of
choosing an appropriate implication function through nearal
learning. The system automatically finds an optimal relation
o represent 4 set of fuzzy rules. We suggested a suitable
modeling of connection weights which forced the learned
weights to lie in [, 1] Two different schemes of initaliza-
tion of the weights are proposed. Effectivencess of COIN has
been demonstrated through extensive numerical examples.
We observed that the proposed neural realization can find a
much better representation of the rules than that by usoal
compositional rules of inferencing and hence results in a
much better conclusion than the usual COL COIN s also
quite robust with respect to initialization of its weights.
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