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Abstract

Sodar provides round-the-clock information about the atmospheric boundary laver (4 BL). However, computer-based
extraction of relevant ABL information from sodar data calls for techniques of image processing to remove the inherent
noise. Kalman filter is emploved as an alternative methodology to extract the ABL. Thus, it becomes possible to bypass the
time-consuming image processing steps, making it faster for real time interpretation of atmospheric conditions from ABL.
The technique compares well with the performance of the image processing technique.
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1. Introduction

Sound madar or sodar is a ground-based sensor
which sends acoustic wave upwards. The wave gets
backscattered from different heights in the lower at-
mosphere, where the refractive index changes due to
mversion of temperature profile. The received signal
is recorded by an instrument round the clock, thus
generating valuable information about the tempera-
re inversion in the lower atmosphere at different
hours. This mformaton forms the basis of Atmo-
spheric Boundary Layer (ABL).

Computer-based interpretation of these data involve
treatment of these data as an image, with time and
height being the two axes and intensity of backscat-
tered signal from a given height at a cenain time being

plotted along the third axis. A lot of image process-
ing ({P) is involved before one can extract the ABL
boundary from a given sodar-image. This 15 mainly
due to the different noise sources that contaminate the
acoustic wave, a major lmitation of sodar [16]. In
short, & major part of the time 15 spent in use of 1P
techniques to achieve this preprocessing, thus mak-
ing online interpretation slow and inefficient. Hence,
there 15 a requirement for algorthms with faster time
complexity in this domain.

Kalman filter { KF) was presented in the year 1960
[11] as an estimation tool. It is a set of mathemati-
cal equations that provides a recursive computational
solution of the least-squares method [1]. The filter 1s
useful for estimations of past, present, and even future
states [22]. KF has been widely used [6] for estima-
tion of meteorological parameters as well as prediction
of weather conditions. KF can work better than con-
ventional 1P filters for removing noise in atmospheric
HTHEES,
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In the present work, a KF based scheme has been
successfully designed to extract the ABL information
from sodar data. An overview of KF s presented in
Sectnon 2. A review of different technigues of sodar
data preprocessing are discussed in Section 2. The
scope of applying Kalman filter techniques ( KFT) in
the present scheme are discussed in detail m Section
3. Results and comparative performance with 1P based
technigues are presented in Section 4 to establish the
relevance of the work.

2. Preliminaries

This section is intended to provide the necessary
theoretical background before presenting the estima-
tion scheme. The mathematical equations mvolved
in conventonal KF 15 presented. This is followed
by a brief survey of the work done in the area of
sodar-image processing.

2.1, Kalman filter algorithm

The system 15 modelled here as a linear, dis-
crete, stochastic sequence described by the following
cquations:

X=X +BU + W, Zy=HX + V. (1)

where, X7 15 the state vector, £ the measurement vee-
tor, @ the state transition matrix, My the measurement
matrix, Wy the process noise vector, Fy the measure-
ment noise veetor, 8 the control sensitvity matrix and
L/ the control vector.

The stochastic disturbance vectors W, and ¥y are
treated as zero mean Gaussian noise sequences with
the following propertics:

E[W, W =0y, E[V:VT] =Ry, 2)

where (O and R; are plant and measurement noise
covanances, respectively. The KF equations are given
in the following chan:

Kalman equations for forecast

In this context, K 5 the Kalman gain and 1y =25 —
Hi X (=) is called the measurement residual.

22 Sodar data preprocessing

The potential of using acoustic sounder system for
study of boundary layer in meteorology was pointed
out clearly durng the eady perdod of its develop-
ment. Since then attempts have been made o work
out a methodology of applying acoustic sounder so as
to obtain essential mformation about the ABL. Most
of the eady approaches were manual and expert de-
pendent. The experts have to go through the volumi-
nous echogram data before concluding the dynamies
of lower atmosphere.

The repetitive nature of pattems on sodar-images
become necessary and useful to predict suitable
techniques for computer analysis and interpreta-
tion. This approach requires a classification scheme
for sodar-patterns. Eadier researchers have reported
several sodar-pattern  classification  schemes, eg.
Thomson et al. [19] gave a sodar-pattern classifica-
tion scheme based on the stability of thenmodynamic
stratification; Clark et al. [5] have studied the diver-
sity of the sodar-pattems and proposed a numerical
classification  scheme; Germa  [10]  indexed the
sodar structure with respect to microwave fading;
MNaipmg et al. [15] suggested a few ideas for
analysis  of the sodar-patterns using  statistical
charactenstics.

Computer techniques have been extensively used
for automatic analysis of sodar-patterns since 1980s.
Foken et al. [9] have done some pioneenng work of
classifying various convective and inversion type of
sodar-patterns into 2-digit code compatible with com-
puter pattern recognition. According to them, the ba-
sic patterns are known to be divided into vertical and
horzontal types.

Project state ahead

Project error covariance ahead

Riii(=) = X U+)+BU  Ppy(—) = BPy(+)T + O

Kalman equations {or analysis

Compute £
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Update estimate Xy(+)
Xl—1+ K [Z,.;: — HelX (- 1.|]

Update covarance Py(+)
(f — K H )P(—)




A. Mukherjee et al | Signal Processing 82 {2002 ) 17631771 1765

For automatic classification of sodar-pattern Chaud-
huri et al. [3.4] have developed some basic concepts.
They observed that the shape of the ABL patterns in
the sodar-images can be determined from the bound-
aries. Therefore, a true demarcation line or bound-
ary between the sodar-patterm and the background in
the sodar-image needs to be identified. This bound-
ary is an important requirement for recognition of
sodar-patterns {and sub-patterns).

The quality of sodar-image and the boundary of
sodar-patterns are often degraded and broken due
o various man-made and environmental noises and
mereases the difficulty in mterpretation. Standard
IP technmiques do not seem to remove these noises
adequately. Researchers have worked on different
pre-processing schemes to enhance the quality of the
pattems in the sodar-images [8,20,21]. Unfortunately,
such approach is true for specific cases where the
presence of noises in sodar-images i1s marginal. But
in practical situations, one cannot guarantee such
cases, as sodar-patterns are often degraded in the
sodar-images due to noise. Therefore, to minimise
the effects of these noises, image pre-processing is
required. Pre-processing is very uselul in a variety
of situations, since it helps to suppress information
that 15 not relevant to specific image processing or
analysis task.

Researchers have experimented extensively with
the existing techniques for enhancing desired fea-
res by using wide vanety of sodar-images [7,14].
Varous image enhancement algorithms have been
suggested for use in sequence with proper tuning
suitable specifically for sodar-images [2]. However,
the 1P based algorithms are generally slow and hence
there 15 a need for faster and more bust scheme for
ABL extraction.

3. Design of proposed scheme

In this section, the scheme for ABL extraction from
sodar signals based on KF is discussed in detail. The
discussion 15 covered in four parts. The model of
different sodar-patterns is covered first. The KF equa-
tions involved in the present estimation scheme are
presented next. The time and space complexity of
the algorithm is analysed for real time estimation of
ABL and compared with [P based algorthms. Finally,

schemes for tuning the parameters for real time oper-
ation are discussed.

3. Model of the sodar patierns

Proper application of KF requires a mathematical
model of the plant. In the present scheme transition
of ABL heights is considered as the plant. Hence, the
interest here lies in expressing the consequent height
as a function of the currently available heights. The
knowledge about ABL pattems is relied upon for this
purpose [3].

Sodar-patterns can be divided into two major cate-
gones, inversion and plume structures. The gradients
of these structures vary both diurnally and seasonally.
In case of inversion structures, the height rises i the
morning and falls in the afiemoon with progress of
time with a low gradient. Plume structures occur dur-
ing the middle of the day and are indicative of high
conveetion in lower atmosphere. The gradient is steep
and the height altemates quite frequently. The gradi-
ent is steepest at noon. Fig. 1{a) and (b) show typical
inversion and plume structures, respectively. Table 1
shows typical values for the slope of sodar-pattems
under different conditions.

Now let iy be the ABL height at the time instant
k. The subsequent height g can be expressed in
terms of Ay as a change of slope in unit time. The
direction of change is decided on the basis of the trend
obtamed from Ay and & . The state transition model
can therefore be expressed as shown in Eq. (3).

if ko= hyy
by =hg +tand

else ()
by =hy — tanil,

3.2 Filter equations in preseni conlexi

The previous ABL heights are considered to be the
basis available for estimating the subsequent ones.
With respect to the KF equation (1) and the system
model obtained in Eq. (3), the following analogy can
be established.

X height of ABL as state at time &
Zy height of ABL as measured at time &
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Fig. 1. Two test sodarimages considered for the overall results: {a) inversion, (b)) plume.

Tahle 1

Typical slope (1) of sodar-patterns in degrees under different conditions

Seasonal Diurnal condition

condition Ml ght Morning Doay Midday Afernoon Evening Might
Summer 00 30 30.0 0.0 0.0 300 50
Rainy 00 35 20.0 650 35.0 2040 2.5
Autumn 00 30 25.0 600 500 150 2.5
Winter 00 20 10.0 500 40.0 10,0 2.0
Spring 00 25 15.0 350 35.0 250 30
. system model to obtain subsequent height from pre-assigned mean and variance. Deviation from this

present state (unity )
i detenministic input (tan (1)
B unity (+1)

Hy  unity since measured variable and state vari-
able are same
Wy  process noise to be augmented to model

[ measurement noise o be inherent in the system

Hence, the system equations are as follows:

XYo=Xttanl+ W, Z,=X +F,. (4)

The process noise B, arises due to the error inherent in
modelling of sodar-pattems. While the actual pattern
is very much nonlinear, a lneanzed version is used
here. Details of ABL change are thus missed out. This
is considered to be involved in the system equations
as process noise, and is assumed to be Gaussian with

would have an adverse impact on estimation.

Measurement noise Fp ocan be attributed to the
contamination of acoustic waveform. The received
acoustic signal has a time varying Signal to Noise Ra-
tio { SNR). Sodar-image processing mvolves removal
of both multiplicative and additive noise at the imapge
level by using appropnate filters. However i KFT,
the ABL height 15 measured directly. The evolution
of ABL being a slow process, the SNR involved with
ABL may be assumed to remam constant over mme.
Hence, any extraneous disturbance affecting ABL
height measurement is expected to be addiive in na-
ture. KF is capable of removing mainly additive noise
and also multiplicative noise to some extent.

The stochastic disturbance vectors W oand ¥y
can thus be treated as zero mean Gaussian noise
sequences. The reasons for this assumption basically
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rely on the fact that the undedying process can be
modelled within these constraints. The actual situa-
tion is shown while discussing the results.

The KF equations for estimation of ABL heights
become:

Xi(—)=Xe(+) £ tan 0,

Pro(=)=Pul+) + Oy,

K = P = WP =) + By ’J_',_ (5)
X+ =X )+ K2y — Xu(—))

Pi(+)=(1 — £ WP ).

3.3 Processing fime requirements

The overall algorithm works along the following
steps:

(1) Convert image to binary form with 1 representing
information and 0 background using fixed thresh-
old.

{2) Compute column wise count of 1°s as measure-
ment of ABL heights.

{3) Run recursive KF algonthm to estimate ABL
heights from measurement.

When real time sodar data are used online as measure-

ment o estimate ABL heights, a globally fixed thresh-

old value 15 used for measurement. Therefore when a

new column 1s added every six s, ! itis passed through

this global threshold value. The number of 175 in the
resulting binary column is considered as the measured

ABL height. This is used for estimation by the KF.

Time complexity of steps 1 and 2 of the algonthm
would be linear with respect o the row-size (M) of
sodar-image for each column and for step 3 itwould be

O 1) for each column. For estimating the ABL heights

for a duration of 6 = N s, the size of sodar-image would

be M x N. Therefore, the overall time complexity of
this scheme is given by Tip=(0(M )+ (1)) = O(N )=

O = N As regards the space complexity Sy, this

scheme would store only the measured ABL height

from a single column and storing the data of entire
column becomes redundant. Therelore, S = UV ).

! An acoustic burst is transmitted upward for a period of 50 ms
and the backscattered signal is received over a period of 5955
which is the time for sound wave to return back from a height of
upto | km from the ground hase assuming velocity of sound to
be ahout 330 m/s.

Characteristics of sodar data can be exploited to fur-
ther reduce the time complexity of the measurement.
The intensities in each column can be safely assumed
to be sorted. Hence, measurement can be redefined
as searching of threshold intensity in the sorted ar-
ray, which can be achieved in lg(M) time employing
binary search. This mechanism is also capable of re-
jecting stray high intensities from upper heights.
This measurement technique will be referred to as
direct thresholding wechnique (DTT). Hence, Ty =
O(N x lgM).

Conventional 1P filters remove noise reasonably
well but do not take care of particular structures in
sodar-pattern. The method adopted by Chatterjee et al.
[2] 15 a three-step filtering approach specially designed
to take into account the subtleties of sodar-images
and their charmcteristic patterns so that a continuous
ABL contour can be obtammed. This method 1s re-
ferred to as TSFM (three-step filtering method) in
subsequent discussion. Since this algorithm provides
by far the best results in this domain, complexity and
performance of this algonthm is presented for ready
comparison with KFT.

TSFM algonthm is performed in three passes:

o First pass: This pass tries to remove small gaps
between two patches of echo pixels, which may
oceur due to noise effect. This s done by consider-
ing a rectangular neighbourhood of size m =, I the
median value of its neighbourhood is greater than
or equal to the current point, then replace its g = r
neighbourhood pixels, where g << m and » < n, by
the median value.

o Second pass: The purpose of this pass is 1o
make thin features more prominent. This is done
by applying median filterng using a vertical thin
mask (of size m = n, where m < n). Thus, disconti-
nuous vertical pattems of significant lengths are
joined.

o Third pass: In this pass, the same operation as done
in the first pass is repeated o fill in any gaps that
may still be present.

It is evident that the TSFM algorithm would have

to un on moving window technique and an image

of size M = N is required each time. This requires
to accumulate few columns (N) before processing.

Thus space complexity Sgp, = O(M = N, which is

much higher compared to Sp. As regards the time

complexity Ty of the TSFM algorithm, it is much
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higher, since it involves a number of masks designed
for filtering. The size of the mask m = n becomes sig-
nificant since it s moved around the image. Hence
(M —m) = (N —n) tmes the mask is moved, each
hme repeating a computation mvolving m = n opera-
tions. Assuming p number of such passes, the overall
time complexity of the algorithm can be expressed as
Tatm =M =N xm=xnx p)

In actual implementation, for steps 1 and 3, m = 35
and n =5 and for step 2, m = 1 and n = 21 have been
used. Hence, Typy = O(71 = M x N) using m, n as
specified. Thus, a significant reduction of processing
tme 15 achieved by using the KFT instead of the
TSFM. Considening a typical half an hour data with
4m resolution, M = 256N = 300, and hence
Tin © Tam = 1 - 2272, This leaves ample time for
employing mtelligent pattern recognition algorithms
o detect sodar-pattems [13,18] which makes online
mnterpretation feasible.

34, Adapiive parameter funing

Suceessful application of the scheme in case of real
time sodar data would require proper tuning for adapt-
ing the parameters to real time conditions of acoustic
noise and physical non-linearities.

The measurement is dependent on the choice of
proper threshold value. Threshold s chosen on the
basis of the work of Otsu [17]. A fixed threshold value
of 183 has been used after considering a consider-
able number of sodar-images. Use of variable thresh-
old would involve computation and hence add to the
time complexity of measurement. Errors due to wrong
threshold selection has been countered through tuning
of measurement noise covanance.

The state wansition model discussed in Section 3.1
is fine to model weak nonlinearines. However physical
phenomena are strongly nonlinear and hence difficult
o model. Table 1 presents only a set of typical values
for the slopes w be used for state transition. However
there is continuous spatio-temporal varation of the
model. The formation of sodar pattern is governed by
heat budget of the region that involves complex phys-
ical processes like temperature, pressure, wind speed
and other dynamic factors as well as statie factors like
terrain, natre of soil ete. Information regarding the
heat budget in the concerned region can be used to
change the model slopes dynamically. This results in

a piecewise inear model (rather than the linear one)
and works better.

In real time there can be large fluctuations of mea-
surement noise statistics. The mean, assumed to be
zero, can shift due to measurement bias. Noise covan-
ance can fluctuate due to higher noise levels during
daytime, high precipitation during stonm and rain, ef-
fects of passing vehicles, ete. The values used here
are chosen through trial and error over a considerable
number of sodar images. The noise cleaning may be
improved further by using analytical model of adaptive
Kalman filter which can wne the mean and variance of
process and measurement noise with time. However
since analytical models of noise are unavailable here,
heuristics based technigues are suitable for adapting
the noise statistics. Measurement residuals are read-
ily available and can be used to make the KF design
adaptive using a furzy logic based scheme [12].

4. Comparative performance results

The KFT scheme has been deseribed along with its
advantages of time and space complexity in the pre-
vious section. But it clearly depends on a favourable
comparison between the two techniques o show to
what extent the KFT can replace the TSFM. For
this a set of sodar-images consisting of different
sodar-patterns occurring in different seasons at differ-
ent tmes of day have been considered. Results for
two test images, an inversion (Fig. 1(a)) and a plume
(Fig. 1{b)) are reported. Results given in this section
are indeed favourable.

4.1, Noise rejection by Kalman filter

A measurement simulation is performed to demon-
strate the power of KF in cleaning Gaussian noise
with zero mean. ABL obtained by TSFM 15 deliber-
ately corrupted by noise and vsed as measurement for
KF. Common noise types include zero mean Gaus-
sian, random bias and random walk. Random bias and
random walk are correlated and coloured noise. The
estimation of ABL heights by KF based on this mea-
surement i1s found to reject the disturbance to a great
extent. Results for the test images Figs. 1{a) and (b)
are shown in Figs. 2{a) and (b), respectively.
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Fig. 2. Estimation by conventional Kalman filter nyjects Gaussian noise.

4.2 Nature of measurement error

The ABL heights as measured by the DTT is com-
pared with the ABL heights obtained using TSFM.
The error in height measurement can be approximated
to Gaussian distribution. The histogram of the relative
difference m ABL height for Figs. 1{a) and (b) are
shown in Figs. 3(a) and (b), respectively. This result
indicates that KFT has a great prospect in ABL esti-
mation sinee it rejects such disturbance as shown in
previous section.

The receiver of sodar signal has o accommodate the
entire range of lower atmosphere. Henee, an additional
bias 15 incorporated in the receiver for avoiding the
dead zone at lower heights. Henee, the measurement
ol ABL m KFT has a constant bias of 10-15 m which
is absent in TSFM since the mask design removes this
bias. This is tackled while obtaming the (nearly) zero
means in the histograms shown in Figs. 3(a) and (b),
respectively.

4.3 Estimation of ABL heighi

The actual estmation is performed on the set of
sodar-images. The ABL heights as measured by DTT,
the ones estimated using KFT and the ones obtained
through TSFM are all shown m the same figure for
ready comparison. Such results for Figs. 1{a) and (b)
are shown in Figs. 4{a) and (b), respectively. The

concern here 15 the difference between the estimated
ABL heights and the ABL heights obtained through
TSFM. It can be seen that the difference is nomi-
nal. In fact, the relative differences have a very small
mean and standard deviation. ABL formation is a
slow process and the sudden spikes as reported by the
TSFM is undesired. Hence, their removal by KFT is
favourable.

4.4, Discussions

Some statistics are provided in Table 2 regarding
relative difference in ABL heights among the methods
for different sodar-patterns occurnng in various sea-
sons. It can be seen that inversion structures give more
consistent results than plumes. Being a convective
process, plumes depict a more turbulent lower atmo-
sphere. The ABL heights not only fluctuate, but also
reach much larger heights than in inversion. Hence,
the relatve difference with respect to the TSFM is
higher. However, the evolution of ABL being a slow
process, this does not necessanly mean that the KFT
result is bad. In fact the estimated value s more likely
to be nearer the “true™ value, though no exact truth
can be sought.

The noise learning capability of KF has been ex-
ploited to estimate ABL height. It 1s worth mentioning
that IP techniques in a sense camry out smoothening
operation, whereas KF rejects the noise on the basis
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Tahle 2
Compamtive statistics of the ABL extraction techniques for different type of sodar-patterns

Sodar pattern DTT-KFT DTT-TSFM TSFM-KFT

Mean SD Mean SD Mean SD

Inversion 66183 15.3551 66858 172400 0.0675 52555
Bulge, depression 103047 60814 10.2667 51440 —0.03R0 R
Plume, wave 20,1526 19.1699 203683 199173 0.2157 B.091l
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of the approximately available system model. Thus 1t
is more suitable in case of atmospheric images.

5. Conclusion

The framework for designing a Kalman filter based
estimation of ABL has been discussed in this paper.
Analytical arguments are presented for justifying the
use of Kalman filierning technique as an alternative to
image processing filters in atmosphence images. Suc-
cess of the scheme therefore results in computationally
faster and robust scheme for ABL extraction. Com-
parative results substantiate the claims.
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