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A New Scheme for Fuzzy Rule-Based System
Identification and Its Application to Self-Tuning
Fuzzy Controllers
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Abstract—There are many important issues that need to be re-
solved for identification of a fuzzy rule-based system using clus-
tering. We address three such important issues: 1) deciding on the
proper domainis) of clustering; 2) deciding on the number of rules;
and 3) getting an initial estimate of parameters of the fuzzy sys-
tems. We justify that one should start with separate clustering of
X (input) and ¥ {output). We propose ascheme to establish corre-
spondence hetween the clusters obtained in X and ¥. The corre-
spondence dictates whether further splitting/merging of clusters is
needed or not. If X and 1" do not exhibit strong cluster substruc-
tures, then again clustering of X* (input data augmented by the
output data) exploiting the results of separate clustering of X and
¥, and of the correspondence scheme is recommended. We justify
that wsual cluster validity indices are not suitable for finding the
number of rules, and the proposed scheme does not use any cluster
validity index. Three methods are suggested to get the initial es-
timate of membership functions (MFs). The proposed scheme is
used to identify the rule base needed to realize a self-tuning fuzzy
P'l-type controller and its performance is found to be guite satis-
factory.

Index Terms—Fuzzy clustering, fuzzy rule  extraction,

self-tuning controller, system identification.

I. INTRODUCTION

IVEN A SET of mput—output data, there have been sev-
G eral attempts to identify a rule-based system o charac-
teriee the relanon between the input and output by various clus-
tering methods [3]-[ 12]. Let the set of p-dimensional input vec-
tors be X = [x),.... %] < H" and the associated set of g-di-

mensional outpul vectors be ¥ = {¥.....¥,} < R The

seL with input—output vectors taken together will be denoted by
; £ R o ;

Ar=udaphies T e e 7 = 1... ., n}. Sugeno and

‘¥ C R
Yasukawa [3] used the fuzzy c-means (FCM) algorithm [2] and
clustered Y. The membership values of the input clusters were
obtained by projecting the membership values of the extracted
clusters on the mput axes. They approximated these clusters
by wrapezoidal fuzzy sets and vsed a heuristic method 1o adjust
the parameters of the trapezoidal membership functions (MFs).
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Yoshinart et al. [4] cluster X * using fuzzy o-linear vaneties [2]
where each cluster 15 mterpreted as a mulodimensional local
linear relationship. After clustering, given an input vector %;
P, the predicted output ¥; = K from the model is obtained
usmg a two-step procedure. Sm oand deFigoeredo [15] wsed
FCM for clustering and suggested w use the Xie-Beni index
[16] for selecting the number of clusters. Each cluster obtained
from X* is represented by a Takagi-Sugeno (TS) type rule
[25]. Yager and Filev [5] vsed the mountain clustering method
(MCM)on X" The optimal number of clusters is chosen based
on a wser-defined threshold on the mountain potential. They
used the height method [17] of defuzzification with the Mam-
dami—Assilian (MA) model [24]. Nakamon and Royke [ 18] clas-
sified the variables involved in rule extraction inw three cate-
gories: 1) objective variables or output variables; 2) explanatory
varighlesor the vanables used in the consequent functions of the
TS model; and 3) conditional vanables or the vanables used in
defining the premises. For clustering, they used the objective
variables and a subset of explanatory and conditional variables
chosen carefully. The authors used a hyperellipsoidal erspclus-
tering algorithm, which dynamically determines the number of
clusters based on several user-defined parameters. Each cluster
is then translated into a TS rule with linear function for the con-
sequents, and if the TS model is not satisfactory, they use the
MA model.

Babuska and Kaynak [8] cluster X7 using Gustafson—Kesel's
[20] fuzey c-means (GKFCM) algorithm with a large value of «
i the number of clusters) for TS modeling. Then the compatible
cluster merging critenia [21] 15 used o merge compatible clus-
ters. After this, GKFCM is again run with the reduced number
of clusters. The process is repeated until no more clusters can
be merged. The fuzey partition thus obtained is used w0 generate
MFs for the antecedent vanables. Finally, the consequent pa-
rameters are estimalted using the least square technigue. Kaynak
et al. [9] and Babuska er al. [22] discuss methods for system
optimization through removal and merging of fuzzy sets ex-
tracted by clusterng of A using a measure of similarity be-
tween fuzey sets. Runkler and Palm [11] defined aregular fuzey
system as a fuzzy system with complete rule base defined with
equispaced unimodal MFs and the first-order TS consequents.
Here a consequent represents a known physical model for the
system and its parameters are identified clustering X" using the
regular fuzey c-elliptotypes {FCE) algorithm [2], [11]. Delgado
et al. [12] presented several methods for fuzey modeling that
use clustering. The first method clusters X" with FCM. Each
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cluster is transformed into a rule of the form By, - Ifx is A, then
gis Hyole = 1.2 .. c. The membership values of fuzzy sets
Ap and H,, are defined by the FCM membership formula [2]
with vi = v} and v; = vi, respectively where v, = {vivi?
15 the centrond of the Eth cluster in X and +; s the centroid of
the tth cluster used in the FCM membership formula. For the TS
model, the Fth rule takes the form By e is Ao then g is v
Sm and deFigueiredo [ 15] also vsed the same multidimensional
FCM MFs for computing the firing swength, but they used the
FCM formula defined using v} € 974 It requires to get an ap-
proximate value of the output ¥ before the firing strength of any
rule can be computed. These approximate values (different for
different rules) are obtained from the consequent functions. The
rules are then wrillen using information produced by both clus-
tering of X and X. Delgado ef al. [12] also proposed 1o cluster
Y and ¥ separately to generate fuzzy sets A, ..., A, foran-
tecedents and £y ..., 1, for the consequents. This resulls in
1 op rules of the form If e is A; then g is H,. A certainty value
ey 18 associated with each rule. This scheme may result in more
rules than required. In [ 12] several cluster validity indices [13],
[16], [23] are used to get a good choice for the number of clus-
ters (rules). Finally, they optimized the sysiem with respect o
rms emror using genetic algonithms (GA).

The preceding discussion shows that different researchers
have used different domains of clustering, different clustering
algorithms, and different cluster validity indices 1o decide on
the number of rules. Our search through the literature revealed
that there are several 1ssues which need o be addressed before
a clustering-based rule extraction schemes can be effectively
used. Here, we address only three important issues: where to
cluster, how to decide on the number of rules (note that we do
not say number of clusters but the number of rles), and how
tor get an mitial estimate of MFs. We justify that usual cluster
validity indices may not be useful (preferably be avoided) to
decide on the number of rules. We also justify that separate
clustering of X and ¥ is preferable when ¥ and Y exhibit
distinet cluster substructures; otherwise, separate clustering of
A and Y ofollowed by clustering in X* with the information
gathered in the preceding step (separate clustering of X and Y7)
would be required. The separate clustering of X and 1 raises
another problem, namely, how o establish a cormespondence
between clusters found in X and 17 We provide a solution 1o
this problem and hence, the problem of deciding on the number
of rules. Three different schemes have been suggested to get the
initial estimate of the peak (the point at which the membership
vitlue is 1) of a triangular ME. Finally, the proposed method-
ology is illustrated to identify the rules required for updating
the multiplicative gain factor (o) of a self-tuning fuzzy PI
controller (STEPIC) [26]. In this regard, two different strategies
have been vsed o generate the data. Our simulation exercise
with several processes showed quite satisfactory performance
of the proposed schemes. We emphasize, although our scheme
is demonstrated for identification of a mle base required for
tuning of the output scaling factor {SF) of STFPIC [26], the
proposed methodology 1s quite general in nature and may be
successfully applied to other system identification problems.
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II. 1550UES RELATING TO SYSTEM IDENTIFICATION

Following Pal eral. [ 1], we enumerate the ssoes first and then
we propose solutions 1o a few of them, and finally use them to
extract rules for the gain adjustment of STFPIC [26]. There are
at least six questions, as mised o [1], that must be answered 1o
fully exploit the features of exploratory data analysis for rule
extraction. We list these questions next.

Criven the data set X, can we just use some clustering algo-
rithm? O, first of all, do we need to find whether cluster sub-
structures arve present in the data ov not If there is no cluster
structure, can or should we still use clustering ?

The existence of cluster substructures in X or ¥ orA* can
be assured using a cluster tendency assessment technigue [ 19].
We do not pursue this issue further in this investigation. If we
decide to cluster, the next question 18 what iy the proper domain
Jor clustering ? Is it enongh to cluster in only one of the three
possible domains, or do we need more than one domain?

When v} is associated with a good cluster, it is taken as a
signal that if |[x,  +¥|| issmall, 3,  +¥|| is also small. This
roughly indicates that such a cluster represents a locally contin-
uous or even smooth input—output relation. In this case the éth
cluster is translated into a fuzey rule of the form

MA models [24]: Ifx is CLOSE tov? theny is CLOSE to \-'f" 3
TS models [25]: If x is CLOSE to v¥ then ¥ — w;(x0.

Usually the antecedent parl, If x is CLOSE to v, 15 wrillen as
a conjunction of p atomic clauses: If & is CLOSE to v)) and
if @y ix CLOSE toowl, .. and if e, is CLOSE to 1.;;-‘11. The func-
tion w;ix) in the TS case primarily models the behavior of the
input—output relation in the neighborhood of v, When clus-
tering is performed in X alone, there are several methods for
partiioning the output data. For example, if a crisp clusiering
algorithm is used, points in ¥ associated to a cluster in X are
expected to form acluster in 19 (assuming a smooth relation be-
tween X and Y. This association enables us 1o wile rules using
the centroids { v} } of the erisp clusters in the output domain. In
a similar manner rules can be generated when ¥ is clustered,
and the centers {v} | are obtained as centroids of the associated
crisp clusters in X, When a fuzey clustering algorithm is used
one can simply transfer each membership from clusters in X {or
17) o the corresponding points in the other domain ¥ {or ).

The third imponant question that needs 1o be answered is the
choice of a clustering model: What clustering mode ! should be
used for defining the initial strucre?

A good answer o this question depends on the inpul—output
data and the information we want Lo use in subsequent steps of
system identification (81). If membership values from the clus-
tering algorithm are required to estimate the MFEs imvolved in the
rules, we need a fuzey clustering algorithm. If we expect the data
Lo exhibat, say, hyperspherical structures then a model like the
FCM may be a good choice. On the other hand, if the data pos-
sess ellipsordal strucwres (including linear structure as aspecial
limiting case), then FCE [11] may be appropnate. For multidi-
mensional data, it is difficult o guess the type of clusters that
the data might have in advance—this makes the problem more
difficult.
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Choosing the right number of clusters (i.e., number of mles),
e 2 =l ¢ = v, is the next major issue faced by sysiem identi-
fiers. Thus, what validity indices are useful for determining the
best number of rules ? Should one or a vote of several be used?
Can assumptions about the data, if available, be nsed to guide
the selection of a validity index or some new validity index is
reguired !

The conventional cluster valdity indices that are designed o
assess poodness of clusters extracted from a data set may not
be useful for deciding on the desired number of rules. We shall
elaborate this ssue later and propose some schemes W solve the
problem.

Once we find the “optimal” number of clusters and an asso-
ciated c-partition of the data, the next important issue is How to
estimate the pavameters of the MFs and conseguent functions.
How should we transfer the MF associated with a p-dimensional
vector to ity one-dimensional components; showld we use LSE
extimate or some other schemes ?

Whether the clusters are found in Y, ¥, or X7, their centroids
and membership values can be projected onto the domain of
each inputfoutput vadable. If a crisp clustering algorithm such
as the MOM [5]-[ 7] is used, then MF (reed g, the Eth fuzey set on
the ith input feature) for CLOSE o 7, must be defined about
the projected centers. If a fuzey clusiering algorithm is used,
then estimates of the MFs {reegz b, and also of {wogz } where
mregy, 18 the kth fuzey set on the 7th output feature ( for the MA
model), can be oblained by several methods vsing the clustering
results. One may also assume that all MFs belong 1o some par-
tcular family such as Gaussian, triangular, or trapezoidal. Use
of furzy clustering algorithms often helps o guess the desired
shapes of MFs. Once parametric forms are defined, their param-
eterscan be estimated vsing technigues such as gradient descent,
LSE, ete. For the TS model, the functional form for the {u;]} s
assumed and its parameters are often estimated using LSE, gra-
dient descent, or GA.

Cluster-based 51 should produce good rules. However, each
of the five issues mised here has no definitive answer, so any
system produced by this approach can be inadequate for many
reasons. Therefore, system validation is a very imporant step
in 81 and this becomes the next issue: How should the svstem
be tested? Iy it enough to consider the square ermr? How do
we measire the robustness of the svstem ? How do we assess the
generalization ability of the identified system?

III. THE PROPOSED SCHEME

If a cluster tendency assessment technigue signals existence
of good substructure in the data, then it may be easier to find
an “optimal” number of mles. However, irrespective of whether
the imput—output data have cluster substructure or not, it 1s al-
wiys possible o partiion it into a number of hyperspherical
subsets and each such subsetl can be converted into a rle. If
the data indeed have hyperspherical clusters, then the number
of rules (subsets) would be smaller compared to the case when
the data do not have any cluster substructure. For example, if
the mput—output relation 1s hinear, the data will not exhibit any
cluster structure, yetit can be partitioned into a number of small
hyperspherical clusters o generate a set of rules to identify such

linear systems. Clustering algonthms that seek hyperspherical
clusters like the FCM can make such partitions easily. Hence,
in this investigation, we do not check for cluster tendency and
use the FCM algorithm for rule extraction.

A. Deciding on the Clustering Domains

There are five possibilities:

1) clustering of X and then imposing the cluster structure

obtained n & o ¥

2) clustering of 37 and imposing the cluster structure in 37 1o

A

3) clustering of X+

4) clustering separately X and 37 and then establishing a

correspondence between the clusters in Y and Y7

5) any combination of two or three of the previous cases.

If we cluster X and transfer that structure 1o Y, we may not
get the actual substructure present in Y. Similady, if we cluster
Y only, then we may not extract the actual substructures present
in X . Onthe other hand, if we cluster A *, we may fail to extract
the substrucures present in either of X and ¥ Let us elaborate
this.

Suppose each feature in ¥ liesin [0, 1] and for X, each fea-
ture value lies inosay [200, 500]. In such a case, the distance
between a pair of vectors in 3™ say of(x7, x7 ) will primarily be
governed by di%;. %50 where x7 © RN and x; © BT, Thus
the clustenng algorithm will primanly extmcet the substructures
present in Y. Similarly, we can think of data seis where the
clustering algorithm will essentially exiract the clusters in ¥ al-
though the algorithm mns on X7, Note that global normaliza-
tion of A may not solve this problem, as the relative contribu-
tion of the x part and the y part will remain the same. Moreover,
we should not normalize each feature separately, as then we will
lose the actwal structure (the shape of the clusters) presentin the
data.

We emphasize here that existence of very clear cluster sub-
structures in one of the three possible domains X, 17, or X7
does not necessarly imply that the system is identifiable by
exploratory data analysis. Use of clustering must be done cau-
tiously. Consider the scatter diagram of a data set in Fig. 1{a).
We assume that both input and output are one-dimensional and
Fig. 1(a) gives the scatter plot of X7 X has four distinet clus-
ters. [Nwe cluster .Y, we will lose two of the clusters, while clus-
tering only ¥ will also result in loss of two other clusters. This
suggests that for this data set, clustering of X would possibly
be the right chowee. But this again, although it appears beter
than the previous two cases, is nol quite satisfactory. We will
zel four clusters, but when membership values of clusters 1 and
2 are projected on, say. the ¢ axis, we will get two MFs over
almaost the same domain of the y axis, and projecting clusters
3 and 4 we again get two MFs practcally over the same area
of the y axis. Similar is the case for projection on the @ axis.
Considering X and Y separately, it is clear that two member-
ship functions for each of X and ¥ would be enough. For the
given example, it thus appears that neither clustering of X, 1
nor ¥ ° only can produce the desirable results, although the best
cluster substructures can be extracted clustering X7, One can
argue that such data sets are not very relevant for our purpose
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Fig. 1. {a) Scatter plot of an input—output data set. (h) The system has been
sampled at the points marked with4 . {c) Scatter plot of the sampled points.

because for such data sets, points from the same area are mapped
to two widely separated places suggesting lack of continuity of
the functon and possibly no rule-based system will be able 1o
identif'y such a system completely. This anificial data set has
been created o emphasize the point that the presence of good
clusters does not necessarly mean that the undedying system
can be identified. However, such data sets are possible even
for identifiable systems. For example, consider the single-input
single-output system in Fig. 1(b). An almost uniform sampling
of the input = can pick up the points marked by — Fg. lic)
shows the scatter plot of the sampled points. Cleardy, all argu-
ments given for Fig. 1(a) are equally applicable o Fig. 1ic). In
this case, although there 1s a system, the raiming data are such
that the extracted fuzzy mules will appear inconsistent. Thus, the

473

existence of nice cluster structure does not necessarily mean that
translation of the clusters into mules will result in a mle base 1o
model the system. One possible way 1o sereen oul such data sets
is to check for the consistency of the extracted rules. We do not
consider this wsue further and n this investigation we assumde
that the data sets under consideration are such that fuzzy rules
can model the underlying system.

Based on the preceding discussion, 1t appears that the best
choice left is to cluster X and Y separately and then establish
a correspondence between the clusters. Separate clustering of
A and ¥ s logical also because i this case the substructures
present in both X and ¥ will be extracted. The correspondence
between the clusters obtained from the two domains may not
(and vsually will not) be one to one. A particular input cluster
may correspond o more than one output cluster and vice versa.
However, we shall elaborate later that for some cases after sep-
arate clustering of X and 37, clustering of X" using the infor-
mation obtained from separate clustering of X and ¥ would be
MECESSATY.

B. Extraction of Rules

We decided o cluster X and ¥ separately. But how many
clusters to look for? Unlike most attempts, we do not use con-
ventional cluster validity index as it 1s not appropriate here. We
tllustrate this with an example. Consider a data set that has three
reasonably separated clusters and the volume of each cluster s
quite large. In this case, any cluster validity index will suggest
¢ = 3, but with only three rules, it is almost impossible o de-
scrbe the behavior of the data with reasonable accuracy. First,
since three clusters are quite separated, only one rule will be
used to describe the data points ina cluster, but one rule may not
be adequate 1o model the variation of the data within a cluster
For the sake of argument, one may stretch the MFs so that all
three rules are fired for every input point. But in that case, the
identified system would be oo coarse 1o be of any use, because
the clusters are well separated and each cluster has significant
variation within itself. We now present the proposed scheme.

Let < be any clustering algorithm (here, 21 = FCM) that
we use o cluster separately both A and ¥ . Let 2] and 2 be
the number of clusters in X and ¥, respectively. 1 and 2 can
be heuristically chosen based on the expected number of rules.
MNote that this expectation does not have to be accurate. In fact,
one can safely assume <1 = ¢2 = 10 for almost all applica-
tions, The reason 1s that with ] = 2 = 10 we can have, if
dictated by the data, 10 = 10 100 rules, which should be
more than enough for most of the system identification task.
Thus the guideline may be, if there is no reason Lo expect more
than 100 rules, one can safely start with 1 = 2 = 10. The
proposed scheme 15 such that it will not matter much if =1 (or
2 18 a little more or less than the ideal number of clusters re-
quired for .X and Y. Let w;y v be the membership value of
xr £ X C M roclsterii = 1.0 el and wip.y be the
membership value of ¥y, € ¥ C R w cluster ¢,¢ = 1,..., 2.
If a hard clustering algorithm is used, it is easy to identify the
physical clusters. Let the hard clusiers obtained from Y be de-
noted by X Xs.. .., X, and the clusters from ¥ be denoted
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TABLE I
MaATRIX
) ¥ Y; ¥y Ys

Xy 50 3
X 30| 45 3
A 5 22
Ay 4 33
X; 7 2 [ 51

by ¥, Y. .., ¥ I6a fuzzy clustering algorithm, such as the
FCM, is used then we can generate the hard clusters as follows:

Xi={x/u € X C R iy = waxfugnx )}
e e |

and
Yi=lyu/¥e €Y C Rty = max[wgeyr 11,
i
g et

We now generate a correspondence table O = [Cr] oy 000 of
size 1 ¥ 2 such that O, gives the number of data points X,
{xp ¥pi? for which x; & X; and ¥y € Y. Algorithm Gen-

erate_ Correspondence _Matriv gives the computational steps.

Algarithm Generate_Correspondence Matrix
Begin

1 | o ai— i i SRR H [ 1 (" Gy e
fork — 1 ton

D= armmax fvaax | o= argwmas [va )

Ol = S + 1
endfor
EndAlgorithm

Thus, the {{. mith entry of the wble €7 gives the number of
occurrences for which a data point in cluster X of X has is
associated output data point in cluster ¥, of ¥ Therefore, if
vl = 2 = the right number of clusters and if the clustering
algorithm has extracted the correct clusters, then in £ we may
have exactly one nonzero entry in ¢ach row and column mdi-
cating the comespondence. This 15 a very deal situation and 15
not likely o happen in practice. In reality, we can have more
complex situations that 15 illustrated with an example. Let el =
d,ud = 3. Table [ shows the matrix O,

From Table I, it is clear that cluster X, s strongly related
to only cluster Y7 because neither the row X nor the column
¥ has any other significant frequency. The three points of X))
that go o ¥, and the five points from Y and seven points
from .Y that go to ¥ can be ignored compared to 50. For
M, the situation 1s a bit more complex. The imput cluster Yo
exhibits g strong relation with two output clusters 35 and ¥,
Again, the three points from Xy that correspond 1o ¥ can
be 1gnored—possibly they comespond o some overlapped
regions. X» indicates that X has been under clustered, ie.,
o1 should have been more than 5. 50 we have w sphit Xo 1o
two subclusters, say, Xo; and ¥oa, so that Yo corresponds
to ¥y and Xzr corresponds to ¥5. Ao and Yoo usually will

TABLE 11
MATREE € 1N TARLE | AFTER SPLITTING OF ROWS AND COLUMNS
¥ Ys ¥y Yy Fog | Y
X 30 3
Xy 30 3
Az 45
Xy 3 33
Xy 4 33
Xs 7 2 51

correspond 1o two adjacent regions m N that are mapped Lo
two different areas in ¥, This can happen in many situations
including relations like a step function. X is cleady related o
Yoo Ay 18 strongly related wo ¥;, hence one would be tempted
to assume that (X, ¥ corresponds 1o a good rule. This is
not true. Note that, the column for v; has another very high
frequency comesponding to input cluster ¥;. Thus two input
clusters X4 and X3 both correspond Lo the same output cluster
Y. There could be two possible reasons. Fist, Yomight have
been under clustered; the value of ©2 should have been 2 = &,
Hence, we should split cluster Y5 into ¥, and Y5, with 33
and 55 points, respectively. Second, 101s also possible that two
different regions of input space are mapped Lo the same output
area. In this case, splitting of ¥ 15 nol ecommended because
15, and Y are o close to form teo different closters. To
distinguish between the two cases we proceed as follows. Let
the centroids of ¥5; and ¥5; be v¥, and vZ,, respectively. If
|[¥ — %&,|| = =, then splitting of the output cluster Y5 is not
needed. Here £ 15 a small posiive quantity which can be taken as
10% of the average width of a MFE. For example, if we have, say
g MFs defined on the domain of length £ then s = (L) =001
If we split Xo and ¥, we get a new comespondence table,
as shown Table II. In Table W, if we ignore the smaller fre-
quencies, the matnx C7 attams the deal sitwation where there
is 4 one-to-one correspondence between clusters in X and
¥, Table 1T results i osix rules based on the following cluster
FHJ..IFSZ [_Y'_. 1"—1:|, [Xz]_._ 17_.1}.. |:.1Lr-‘_>2. }:gj {X;{. }:l:I: {X-'_. 1":';_1 ::',. and
{5 Yaall

In order to implement this scheme, we need o choose a
threshold & on the frequencies. IFC; ;= 6, then only we assume
the association between X; and Y; as strong enough to form
a rule. A schematic description of the algorithm for extracting
the clusters forming the rules s @ven next.

Algarithm Cluster _Forming _Rules
Begin
Wi, < #ithendy = U ¥i= 12 .nly
forv — 1 1ol
fori = 1 toc2
If 4 only one nonzem entry in the s th row and 7 th column
then the cluster pair (%, 3% forms a rule with v3 and
v as the centroids for defining MFs;
Else If the tth row has 4i; nonzem entries then split X into
s sub-clusters X:, Kooy Ko inerease ol by ;L)
and break loop on j;
Else If the jth column has . nonzero entries then

temporanly split ¥, o 2 ; sub-clusters V0. Vi, .. L



urrease o2 by 1w, — 1]
compute w3, 1 = 1.2 .. n,
compute i, = [[vH —wE [T =12, 00 Em
Find ) rine — T o il )
Ifadyr o 2 thenreplace Y e and Yo by Yo, = 40,0 L E 0
according ly adjust 2
The process is repeated till no pair of subclusters is left
with of,-,..- <7 £ and loop on ¢ is broken:
endfor
endfor
Every nomzero entry of €7 is then translated imo a ule.
EndAlgorithm

C. Formation of Membership Functions

The next task 1s to find an inital estimate of the centronds of
each cluster. If there is no spliting of clusters, then for every
€% = 6, we use v and v¥ to define the peaks of the initial
triangular MFs. But when clusters are split, we recompute the
centroids as follows. Let " be the set of points comresponding
to the (¥ jith entry of 7. We compute
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| £
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When a fuzzy clustering algonthm is used, we can compute v;
and ‘l-_’z‘-' as
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Here, 1,5 18 the membership of x; (or of 3 ;. as the case may be).

We call this scheme Strategy 1. When some clusters are sphit,
one might think that a better strategy would be o recluster X
and ¥ separately with 7 and v for further refinement of the
cluster centroids. This 1s neither required, as the mital MFEs will
be tuned, nor it 1s desirable, becanse i we recluster X and ¥,
the same correspondence may not be preserved, and we should
again generate the comrespondence table €. The process may
have to be repeated many times, and even then we may not get
the same O in two successive iterations. Consequently, we do
not cluster X and ¥ again. We recommend o use Strategy 1
when there are not many entries in € which are less than 8. In
such cases, ¥ and Y7 havedistinet clusters and the algorithm has
been able w extract that. Evenaf the underlying inpul—output re-
lation 15 not smooth or has abruptness, the identfied ruke-based
system should be adequate.
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galn updating facior

Fig. 2. Wariation of «v as a function of < and S

There could be another variant in which we recluster X with
vi = {viv)Y i = L. .., r as the initial centroid, where ¢ is
the number of inpul—output associations identified and ¥7 and
¥¥ are the centroids of the clusters that are associated and com-
puted either using (1) or (2). There are a few reasons for this.
The first one is the use of a threshold & 1o extract the clusiers (o
determine the rules). Sometumes, the data points that are ignored
by the threshold & may be important. We ignored these points
to compute ¥ and ¥%. As a result, the initial structure of the
system may not be adequate o produce a smooth response; in
fact, the extracted rules may not be complete even afler tuning.
There are two factors 1o consider: the smoothness (absence of
abruptness) of the relation that we are trying to identify and the
existence of clusters in the data. To make it clear, consider the
variation of «+ as a function of error {«] and change of error
{&c) shown in Fig. 2. (Fig. 2 will be elaborated later) o is a
multiplicative factor used for online updating of the output SF
of a fuzzy controller [26]. 1t has abrupt changes, i.e., the rela-
tion 15 not guite smooth. Now il we generate the raming data
based on uniform sampling of & and Ae, then X will not exhibit
any cluster substructure, but if the data are generated running
the process for different initial conditions then X will exhibit
cluster structures. For example, a lot of points will be generated
around the set point, ¢ == 0 and A =2 QOresulting in some cluster
substructure in X, So for the same system, inthe former case X
will not have distinet cluster substructures (this does not neces-
sarly mean that Strategy 1 will not work; in fact, we shall show
that i the current case, itdoes a good job) while in the latter case
X exhibits cluster substructure. The 51 scheme should be good
enough Lo take care of both types of data. Therefore, when X
and ¥ donot have distinet cluster structures {(which may be due
Lo improper sampling) or the underlying relation has abruptness,
we recommend clustering again (reclustering) of X* initalizing
the clustering algorthm with v, = |:.‘r'-._$vi::‘1.;i i -
where ¢« is the number of cells with <5 = #. Here, the clusters
are expected to grow around v laking into account the inter-
acton between N and Y. This, reclustering of X ° will help 1o
maintain the smoothness of the input—output relation in the ex-
tracted rules. We call this scheme Strategy 2.

In the present investigation, we propose three rypes of sym-
metrie triangular mitial MFs with equal base for both the an-
tecedent and consequent part of the rule, e, o, A and v, The
extracted fuzzy model consists of rules like T : if e is (e and
Ao 18 pptdc) then o 18 g (0. Since we are using the height



476

method of defuzzification [17], it is enough to consider the peak
1 of the consequent MF pg o). Peaks of the tnangular MFs for
antecedent and consequent of the ith rule are computed as fol-
lowws,

Type I Weighted avermage of g;'s with wiix]) as the
weight for r;, W& = 1.2, % We denote the
generted MFs as MEP L.

Type II: Weighted average of ag;'s with waix) as the

weight for wp.. ¥ = 1,2, ._n, such that
wael{ %y = (.23 Here, the points which do not
have adequate support for the cluster ¢ are ignored
for computing the peak value. We call such MFs
MI, 0 2.

Type II: Cluster centronds as extracted by the FCM algo-
rithm. This type is referred as M.,

After we obtain the peak of different linguistic values, the
nexl problem is o get an initial estimate of the base width of
each ME so that the rule base becomes complete (ie., for every
o, de pair at least one rule is fired). The first necessary step
toward achieving this is 1o ensure that the set of MFs come-
sponding o every linguistic value covers its respective domain.
The choice of the base width thus depends on the number of MFs
for a particular lingmste vanable. Sice our domain 15 —1 1o
+1, and all MFs are symmetric triangles with equal base width,
the two MFs at the extreme ends should have a reasonably high
membership grade at —1 and +1. This means the effective do-
main for the MFs should be alittle beyond 1 and | 1. We also
assume that neighboring MFs will have a significant overdap.
Taking into account all these, we compute base width of each
MF. We emphasize here that this is just an initial guess for the
base width of cach ME This choice is not at all eritical because
finally we tune them using gradient descent. Of course, a good
mnital guess will take less computation time while tuning. This
will ensure coverage of the entire domain of each input variable
i.e., e and A, but it does not guarantee compleleness of the rule
base. To enhance our confidence about the compleleness of the
rule base, we proceed as follows.

Each domain of ¢ and Aw is uniformly quantized within the
range —1, 1]. Then for every quantized pair {e, &el, the firing
strength of each rule is caleulated. Existence of at least one rule
with nonzero firing strength for every pair of ¢, Ae ensures com-
pleteness of the rule base with respect 1o the generated data. IF
the resolution of quantization is sufficiently high, then such a
condition will ensure the completeness of the le base with re-
spect wo the operating domain of the input variables. If the con-
dition of completeness is not satisfied, then the base widths of
all MFs are increased by a small percentage (10%) of ils pre-
vious value. Again, the rule completeness s checked with the
new base width and this itermative process is continued until com-
pleteness is achieved. In this way, we transform the rule base to
a complete one, which is then refined using gradient descent.

IV, IMPLEMENTATION AND RESULTS

The proposed methodology is used for identification of a self-
tuning mechanism of a fuzzy PLeontroller proposed in [26]. For
the sake of completeness, we provide a brief description of the
self-uning mechanism.

A. Self-Tuning Fuzzy PI Controller (STFFPIC)

The simplified block diagram of the STFPIC [26] is shown
in Fig. 3(a). The output SF of the controller is modified by a
self-tuning mechanism, which is shown by the dotted boundary.
All MFs for controller inputs (1e., £ and Ae) and imcremental
change in controller output (i.e., A ) are defined on the common
normalized domain [ 1, 1], whereas the MF for i is defined on
the normalized domain [, 1]. In [26], except for the wrapezoidal
MFs at the two extreme ends, we used sosceles tnangles with
equal base width, as shown in Fig. 3(b) and (). However, like
the triangular partition of Sudkamp and Hammell [28], tian-
gular MFs can also be used at the two extreme ends. Both of
these choices impose a fuzzy partition on the respective domain.
The relationships between the SFs and the mput and output vari-
ables of the STFPIC are

Fa = Tp 1, Dy Cra.-te. A= [u-('.-r',,}-&?'._w. (3)

Here, (5., Ga,, and &, are the SFs for ¢, Ae, and Ao, re-
spectively, and ea, e, and Ause are normalized guantities.
Unlike fuzzy PI controllers (FPIC), which use only ¢7,,, the ac-
tual output { A« for STFPLC is obtained by using the effec-
tive SF {¢r - €7,,), as shown in Fig. 3ia). In [26], we proposed to
compute v on-ling using a model independent fuzzy rule base
defined on < and Ac. The operation of a Pl-type FLC can be
described by

ulll = ol — 11+ Awik). i)

In (4), & is the sampling instance and Ao is the incremental
change in controller output, which is determined by the rules of
the form £ : Il &1 & and A s A8 then Sae s Al The rule
base for computing Ao is shown in Fig. 3id). For STFPIC, the
required nonlinear controller output (&*.:.;.H-rypu_;} is generated
by modifying the output of a simple FLC {Awppe) with the
updating factor o, i.c.

At e (D] OF Ao =0 o [
(5)

where K is the proportionality constant. The gain updating
factor v is calculated wsing fuzey rules of the form H.: If
is £ and Ae is AE then o is e The rule base in Fig. 3(e) is
used for the computation of cr. This is designed in conjunction
with the rule base in Fig. 3(d). The rule base m Fig. 3(e) 1s
derived from the knowledze of control engineering with a view
to mimicking an operator’s strategy while running a plant. We
emphasize here that the determination of the rule base for o is
dependent on the controller rule base. Detailed justification for
using the rule base in Fig. 3ie) can be found in [26].

B. ldentification of the Self-Tuning Controller

The STFPIC in Fig. 3(a) uses 49 rukes o compute the gain
updating factor <, and exhibits good performances [26]. In
this section, we investigate the following: Given some data
describing the gain varation o as a function of ¢ and e, can
we exlract g set of rules to realize such a highly nonlinear
system (Fig. 23! Do we really need all 49 rules, or we can
extract a smaller set of rules using our proposed S1 approach
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Fig. 3.

(1) Block diagram af the STEPIC. () MFs of ¢ and Ac. N2 Negative, [': Positive, ZE: Zero, B: Big, ©: Medium, 5: Small. {¢) MFs of gain updating

factor (). AR Zero, Vi Very, B Big, W Medium, 5: Small. (d) Fuzey rules for computation of S (2) Fueey mles for computation of .

TABLE 11
CORRESPONDENCE MATRIX FOR UNIFORMLY SAMPLED INPUT DaTA

¥y ¥ Y ¥y Is
X 0 18 | 49 33 11
X, 86 | 10| 0 0 30
A B 10 0 ) 27
X ] 44 ) 26 32
X; o 18 | 49 50 ]

to do the same? How does the pedformance of the identified
system compare with the onginal one”

To identify the STFPIC, we need some data, e, we need a
sel of two-dimensional input vectors as X {x,... ., x.}F
#% and the associated set of one-dimensional output vectors as
Y =dwm.oooon b C Rwhere X = e deland Y = {0l
Here, we have generated data vsing two schemes: 1) by sam-
pling input variables {2, A ) uniformly and computing the value
of e Tor each sampled point, and 2) by running the process in
close loop. In our implementation, we considered ¢l = ¢2 =5
and wsed FCM algorithm [2] with e = 2. As an illustmbon,
the correspondence table O obtained for a set with 6235 points
generated by scheme 1) 15 shown m Table I As discussed ear-
lier, the number of rules o be extracted for o 15 dependent on
the threshold . For example, # = 11 leads 1o 14 rules, while

# — B gives rise 1o 17 rules. Note that the data generation using
scheme 1) does not require the process o be controlled, while
for scheme 2), we need the process o run ina close loop.

We have wested our schemes for several second-order linear
and nonlinear processes with different values of dead time (1)
and observed satsfactory results ineach case. However, here we
report results only for two of them, shown in (6) and (7) with a
single valueof £ for each. These processes ame also used i [26].

w4 — uli — LY (marginally stable)  (6)
and
i+ 0255 = alt -3 (nonlinear). (7}

Table IV showsthe comrespondence table C for the marginally
stable system in (6) when the data ( 1000 points ) are generated by
scheme 2, 1.e., by running the process in close loop. Choiee of
# = 11 results in twelve rules. The input centroid comesponding
Lo the first row of Table IV s (000006, 00001 273, Ths cleady
indicates, as explained earier, that there is a strong clusterin X
near the steady state, e, (o, de) == (0,00 Similady, Table V
depicts the comespondence For the process in (7 ) when data (800
points) are generated by scheme 2). Here again, we hind a strong
cluster around {e, el (0. 0% The second row of Table V
corresponds o the centroid (e, Ae)  (LON2ES, — (L0040,
Here, # = 11 leads to 13 rules.

—
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TABLE 1V
CORRESPONDENCE MATRIX FOR THE DATA GENERATED BY RUNNING THE
PROCESS 1N {6) 1IN CLOSE Loop

Y | ¥ ] K Y Y

X 140 [ 226 [ 314 | © 37

(s 28 1 0 39 55

X |1 0 39 | 48

X, 3 13 | 5 0 0

X 8 13 ] 5 0 0
TABLE W

CORRESPONDENCE MATRIX FOR THE DATA GENERATED BY RUNNING THE
PROCESS I8 {71 I8 CLOSE Loop

¥ ¥, ¥ ¥y ¥

X 28 78 4] 14 41
s 147 | &1 | 220 10 36
A ] & g 16 30
A 10 20 a ] (]
A L 21 0 1] 12

To demonstrate the effectiveness of our scheme, we have
used the same controller parameters and implementation
strategy as used in [26]. We consider L = (1.1 s and (1.5 5
for the processes in (6) and (7), respectuvely. Load distur-
bances for the process in (6) and (7) are respectively applied
at 55 and 40 s (Figs. 4-7). For notational convenience, the
untuned and tuned versions of the FLCs will be denoted
by (1P 1 TP LI e ) L P I e, TP e} and
(FPIC 2, THFPI o) for three different types of MFs.
We have computed a number of performance indices such
as peak overshoot (Ros), settling time [0, rise time {£.),
integral-absolute error (IAE), and integral of tme-multiplied
absolute ermor (ITAE) [27] for a detailed pedormance compar-
1som of the identified systwem and the onginal STFPIC. These
performance indices for both processes with dead time L are
provided in tabular forms. In each table mow corresponding Lo
STFPIC presents the perdommance of the onginal system. We
also provide response charactenistics for each process doe o
step set-pomt change as well as load disturbance. We report
the response charactenstcs comesponding o TTIC,., and
TEPIC e, only, as we found that their performances are
almost the same as those of FPIC,. » and TFPIC,,,.. ». and
better than those of P, _ and TITPIC, . 0 OF course,
we provide the detailed performance comparison in terms of
varous indices in tabular form for all the three types of FLCs
with the original STFPIC [26].

We established in [26] that STFPIC provides an improved
performance over the conventional FLC. The objective here
15 o justify whether the wdentified systems (FPIC or
TTTIC, ) can provide the same level of performance as that
of the onginal one (STFPIC). In our subsequent discussion,
we say that the perdformance of FPIC, ... /UFPIC, o is good
or satsfactory only when its perdommance 15 close o that of
STFPIC. We emphasize that an dentified system 1s called
sabsfactory only with respect 1o 1ts closeness o the target
system, here STFPIC. Therefore, if for some reason or other

15

Responss

{a)

FAarpanss

a5

Fig. 4. {a) Responses of (6) for Straregy | with uniformly sampled
datn,  [— ELFPLC —— FPLC 0 TEPLC ] (B0
Responses  of (70 for Srraregy 1 with  uniformly  sampled  data,
[— 5 TFPIC - FEIC s o TEPIC 0]
TABLE W1
PERFORMANCE ANALY SIS FOR ATRATEGY | WITH UNIFORMLY SAMPLED DATA
Process FLC %o0s | tis) | tis) | ITAE | IAE
STFFIC 203 19.0 | 4.4 131.0 | 5.19
(7] FPIC o, 33 19.2 | 3.8 164 | 548
TFP]C,;-W 28 | 165 | 42 1100 | 5.36
STFFIC 252 | I7E | 5.5 1093 | 663
{7 FPJCmu 90 | 172 | 47 183.0 1 670
TFPIC, o, | 29.5 173 ] 5.3 104.3 | 6.65

FRIC o or TEPIC o shows much better performance com-
pared w STFPIC then that wiall indicate a bad/funsatisfactory
performance of our 81 scheme as it fails to rack the original
one.

1) Results for Strategy 1:

Data Generated by Uniform Sampling of v: and &c: Here,
we use f = ¥ in Table 1. After splitting the input and output
clusters as suggested by the proposed scheme desenbed in Sec-
ton H1-B we extracted 17 rules. Response charactenstics of (6)
and (7) are respectively shown in Fig. 40a) and (b), and Table V1
provides vanous peformance indices. Response characterstics
for each process show higher o= even in the case of tuned
FLC {TFPIC. ..., and are comparatively more oscillatory than
STFPIC, specially due to step set-point change. For example,
corresponding to the process in (6), the %os for FPIC, ) is
30.3 and for TEPIC . is 22.8 (Table VI). These are higher



Fig. 5. {a) Responses of (6) for Straregy 1 with data generated in
clse loop. [— STFPIC —— FPIC ... TFPIC il W)
Responses of {7) for Srrategy | with data generated in close loop.
[ STFPTC; ——FPTC oo TTPIC -

TABLE VI
PERFORMANCE ANALYSIS FOR STRATEGY 1 WITH DaTa
GENERATED 1N CLOSE Loop

Process FLC Yeos | tfs) | $(s) | ITAE ) [AE
STEPIC 2003 [ 194 | 44 | 100 | 519

FPIC 210 | 182 | 4.2 1353 | 5.80
TFPIC,p | 194 [ 164 | 4.5 0.8 | 5.4

{6) FPIC, e 66 | 188 | 4.2 1383 [ 599
TFPIC, oy | 2246 {166 | 44 a2 1513

FPIC g0 265 | I8E | 4.2 138.0 | 5.7
TFPIC, .. | 225 { 166 | 4.4 ar3 4 513
STFFIC 252 | 171 | 55 109.3 | 6.63

FPIC, .| 288 | 112 | 60 119.2 § 7.17
TFPI e | 264 | 142 [ 56 | 1097 [ 471

(7 FPIC, ., 3.0 3] a0 118.5 | 7.20
TPPIC,, § 263 | 141 | 56 1071 [ 6.66

FPIC,,; | 307 fn3{ 6o | 1172 [ 717
TFPIC, . [ 264 | 141 ] 356 1069 | 6.66

than the desired value of 203 corresponding 1o STFPIC. Simi-
larty, tp, &, ITAE and LAE of FPIC . or TEEPLC, - are close
(but not very close) wo those of STEPIC. In case of the identified
system [Fig. 4a)] the number of oscillations before the occur-
rence of load disturbance (at ¢ = 35 ) 18 found to be six, which
15 five for STEPIC. Similar performance s exhibited by the iden-
tfied system for (7) [Fig. 4(b), Table VI1]. Thus for Strategy 1,
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Fig. &,
when I =
Responses of (7) for Straregy 2 with uniformly sampled data when 6 = 5,
[~ STITIC: =TI mes - - TTTIC e ]

(1) Responses of (6) for Sreaegy 2 with uniformly sampled dat
f. [ STITIC: —— TTIC 0 - TIOTIC ). (D

TABLE VIl
PERFORMANCE ANALYSIS FOR STRATEGY 2 WiTH UNFORMLY
SAMPLED DaTa WHEN B = 5

Protess FLC %08 | tish | t(s) | ITAE ; TAE
STFPIC 203 1190 44 | 1010 5 519

FPIC 204 1192 3.9 | 1161 | 554
TFPIC.n | 202 | 166 | 44 | 1057 | 5.38

(&} FRIC 242 | 190 ] 42 | 1142 | 5.46
TEPIC 0 | 2001 | 165 | 44 | 1020 | 535
FPICawy | 237 | 19.0 ] 4.2 | 1152 | 547
TFPIC,,; | 201 | 165 | 44 | 1015 | 5.25

STFPIC 252 1171 [ 55 | 1093 | 6.63

FPICag | 346 | 173 | 49 | 1000 | 6.63
TFPIC,,, | 265 ] I7.1 | 5.5 | 1022 | 6.57

(7 FPIC . 289 1173 [ 5.3 09.2 | 6.51
TFPIC, . | 253 | 139 ) 57 | 1032 | 657
FPIC,,,, | 288 | 173§ 53 [ 9819 | 648
TEPIC e b 254 j 130 ] 56 | 1028 | 6.56

the pedformance of the identified system 15 not gquite sabsfac-
tory, though not very bad. This 1s possibly doe to the umformly
sampled data and presence of abrupmess in the System as ex-
plained i the eardier sections.

Data Generated by Running the Process in Clove
Loop: Table VII and Fig. 5(a) and (b) present the pedor-
mances of (6) and (7). For the process o (6), we used the
correspondence in Table IV with & = 11 resulting in twelve
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TABLE IX
PERFORMANCE ANALYSIS FOR STRATEGY 2 WITH UNIFORMLY
SAMPLED DaTa WHEN 6 = 11

Process | FLC | %os | t(s) | t(s) | ITAE | IAE
STFPIC | 203 | 190 | 44 | 1010 | 5.19
FPICygy | 290 | 194 | 4.0 | 1153 | 559
TFPIC, ., | 20.2 | 164 | 44 | 105.6 | 5.28

(6) FPIC,, | 232 | 196 | 43 | 1186 | 5.60
TFPIC,, | 22.6 | 167 | 43 | 1068 | 332
FPIC,: | 225 | i7.] | 44 { 119.2 | 5.6l
TFPICuss | 227 | 16.7 | 4.2 | 10746 | 5.31
STFPIC | 252 | 17.1 | 55 | 1093 | 6.6

FPICumt | 347 | V7.6 | 5.0 | 1020 | 6.77
TFPIC,p, | 256 | 174 | 55 | 1074 [ 6.76

(7) FPIC . | 200 | 178 | 5.6 | (047 | 6.84
TFP‘]C@ 207 175 5.4 1073 0.65%
FPIC,,; | 255 | 17.8 | 57 | 1049 | 6.84
TFPICays | 279 | 176 | 5.2 | 1069 | 6.61

rukes. Since the data sets are generated by munning the pro-
cesses, they are supposed o have good cluster structures,
which are not expected m the case of uniformly sampled data.
This fact 15 reflected in the results (Table VI and Fig. 5). For
the process in (6), Table VI shows that Y, £, and TAE of
THPIC e 15 much closer to those of STFPIC compared o
the earler case (Table V1) The improvement in pedormance
achieved by the data generated in close loop 15 more clearly
visible comparing Fig. 40a) and Fig. 5(a). Similar observation
can also be made from Fig. 4(b) and Fig. 5(b) for the process in
(7). Sometmes even the pedfommances of the idenufied system
become comparable o those of the onginal STFPIC [Fig. 5(h)].

2) Results for Strategy 2:

Data Generated by Uniform Sampling of ¢ and Ae: Here,
we report results for two different values of #: 1) # = & and 2)
f = 14 For # = #, we have 17 mles, whereas we get only 13
rules for & = 11, against 49 orginal rules used in STFPIC. In
both cases, pedonmances are very good; even the perfomances
with 13 rules are better than those of Strategy | with 17 rules
(Fig. 4 and Table VI).

The performance with 17 mles (# = 3} for (6) and (7) are
shown in Table VI and response characteristics are shown in
Fig. 6(a) and (b). In each case, pedommance of the identified
system 1s seen o be extremely good (e, the identified system
very closely matches the STFPIC) even without any tuning, and
for the tuned versions, it is almost identical to that of odginal
STFPIC. Thas is further established by the closeness of rowscor-
responding to FPLC - and TEPLC ... with that of STFPIC.

For & = 14, we get 13 rles and in this case, too, we observe
zood performances as exhibited by Table 1X. As expected, re-
sults are not as good as those with 17 rules under Strategy 2.
For example, we find that the %= for each FLC is little higher
than that of the onginal one (STFPIC). But the overall perfor-
mance for Strategy 2 with 13 rules (Table 1X) are much better
than those for Strategy 1 with even 17 rules (Table V1)

Data Generated by Running the Process in Close
Loop: Fig. T(a) and (b) and Table X depict the pedormance of
(6) and (7). Comparing Fig. 7(b) and Table X with Fig. 5(b)

TABLE X
PERFORMANCE ANALYSIS FOR ATRATEGY 2 WiTH Dara
GENERATED 1N CLOSE Loop

Process | FLC | %os | t(5) | t(s) | ITAE [ IAE
STFPIC | 203 | 19.0 | 44 7 1010 [ 5.19

FPICuw | 214 | 181 [ 43 [ 1319 [ 576
TEPIC, ., | 166 | 17.7 | 44 | 107.7 | 534

(6) FPICy, | 19.0 [ 182 44 | 1304 [ 576
TFPIC, | 148 [ 176 | 45 | 1058 [ 530
FPICy,, | 172 [ 182 ] 44 | 1304 [572
TFPIC.,,; | 149 | 176 | 45 | 1057 | 530

STRPIC_| 252 | 17.1] 55 | 1093 | 6.63

FPICuyy | 323 [ 139 ] 55 | 1406 [ 7.38
TFPIC,,, | 267 | 1451 56 | 1167 | 6.85

(7 FPIC,, | 304 [138] 56 | 1453 | 746
TFPIC,w | 263 [ 145 ] 56 | 1127 | 6.77
FPIC,. | 300 [139] 56 | 1424 | 741
TFPIC,» | 262 [ 145 56 | 1125 [ 677

{a)

Response
|

sl P

Beni s |
{hi
Fig. 7. {a) Responses of {6) for Srraregy 2 with data generated in
close loop. [— STTTTC;, —— FPRIC, Lo TP, L)

Responses of (7) for Srraregy 2 with diota generated in close  loop,
|[—STTTIC; —=FTTC s - oo TEDTC L.

and Table VI, we find that for the process i (7) the overall
performance of Strategy 1 and Strategy 2 are almost the same
when data are generated in close loop. An almost similar
observation [Fig. 7(a), Table X and Fig. 5(a), Table V11| also
holds for the process in (6).

To summarnee, when the data set 15 generated munning the
process, it exhibits closter structures and both Strategy 1 and



Strategy 2 are equally good to identify the system. But when the
data are generated uniformly sampling the input space, Strategy
1, as expected, does not perfonm quite well, but Strategy 2,
which takes into account the interaction between input and
output variables while clustering, can identify the sysiem quite
well.

V. CONCLUSION

After analyzing the various problems that one faces o extract
rules from numercal data, we provided answers o three impor-
tant issues: deciding on the proper domain(s) of clustering, de-
ciding on the number of rules, and getting an initial estimate
of parameters, such as MFs, of the fuzey systems. We justified
that if X and ¥ have distinet cluster substrucures then separate
clustering of X and Y would be enough, otherwise this should
be followed by reclustering of ¥ *. We also suggested a scheme
Lo establish the correspondence between the clusters obtained
from .¥ and Y. The proposed schemes have been used to extract
a rule base for computation of the gain updating factor i of a
self-tuning fuzzy Pl controller. The proposed schemes are able
to reduce the number of rules by more than 70% maintaining
almost the same level of performance.

In our schemes, the number of rules depends on the choice of
f. Ideally, # should be determined taking into account the total
number of data points V. The thresholding should be done not
on €5, but on its normalized value 7, = O3 /% Although
we sugpested some simple schemes o get an initial estimate of
the MFs, more work 15 needed to decide on more appropriate
type (not necessarily tiangular) MFs and estimation of their
parameters. Further investigation 1s also required o establish
robustness of the identified system.
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