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Abstraci—We present a method for sampling feature vectors in
large {e.g., 2000 x 5000 > 16 bit) images that finds subsets of pixel
locations which represent « “regions” in the image. Samples are
accepted by the chi-square (v”) or divergence hypothesis test. A
framework that captures the idea of efficient extension of image
processing algorithms from the samples to the rest of the popu-
lation is given. Computationally expensive (in time and/or space)
image operators (e.g., neural networks (NNs) or clustering models)
are trained on the sample, and then extended noniteratively to the
rest of the population. We illustrate the general method wsing fuzzy
c-means (FCM) clustering to segment Indian satellite images. (On
average, the new method can achieve about 99% accuracy (rel-
ative to running the literal algorithm) using roughly 24 % of the
image for training. This amounts to an average savings of 76% in
CPU time. We also compare our method to its closest relative in the
group of schemes used to accelerate FCM: our method averages a
speedup of about 4.2, whereas the multistage random sampling ap-
proach achieves an average acceleration of L63.

Index Terms—Accelerated fuzzy c-means (AFCM), algorithmic
extensibility, complexity reduction in large images, image sam-
pling.

I INTRODUCTION

ET ' = [fi;];. ; be a digital image with intensity value
Fuyatpixel {i. iy, fiy e G =40 1. .... L—1} Thetime
and space complexily associated with processing F (filtering,
segmentation, edge detection, ete. ) increases with £, J or [ We
call (I, J, L) the complexity tripfe associated with I
Ten years ago, an 8-bit image with 65 536 pixels, ({. J. L)
= (256, 256, 256), was considered “large,” and presented time
and space problems 1o the computers of the eady 1990s. Today
“large™ images typically have complexity triples on the order of
(2000, 5000, 65 536), which is the complexity triple for many of
the images in the digital database for screening mammaography
{DDSM) 1] As a second example, images taken by the Indian
remote-sensing satellite (IRS-1A, IRS-1B) contain 2500 scan
lings with 2520 pixels per scan line. Each image requires 6 MB
of memory (assuming each pixel requires 1 byte). Normally, for
each scene there are four spectral bands resulting in four images,
each of size 6 MB. Therefore, cach frame consists of 24 MB of
data. Segmentation of such an image into regions is oflen very
useful. However, when fuzey c-means (FCM)-type clustering
algorithms are used, for example, if there are five classes then
the memory required for just one partiion matrix (assuming a
4-byte representation of reals) will be approximately fix 5= 4 =
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1200 MB. (Not all segmentation algorithms maintain partilion
matrices. )

DDSM images seem big today (so big that printing or dis-
playing asingleimage at full resolutionis almost impossible), but
technological advances will soon “shrink™ them o reasonable
proportions, just as (256, 256, 256) images are manageable now.
However, new lechnology also whets the appetite for new sensors
which will produce concomitantly larger and larger complexity
triples. The technology cyele will probably continue to limit
“large image” processing at full resolution i near real-time
speeds for the next few decades. Processing of large data sets
such as these cannot be done in a reasonable tme. Hence, there
is continuing need for methods that effectively “reduce” the
complexity triple of large images. Evenwhen large images can be
brought into memory, the computations o process such images
can be very high. This creates a bottleneck even for “near-real-
time” applications, such as online weld-defect detection and
control of the welding process for fixing the defects [2], [3].

Processing of very large databases, paricularly for data-
mining applications, poses many other practical problems. For
example, in applications such as document categonzation, it 15
desirable wo apply clustering to huge data sets (lerabytes of data).
Usually, such data sets cannot be brought into main memory for
processing, and hence, the use of objective function driven clus-
tering algonthms ke fuzzy c-means (FCM ) s either very time-
consurming or impossible o wse. For such applications, many
heuristic algonthms have been developed, which usoally make
one pass (or very few passes) through the data [5[11]. Nong
of the algorithms in [5]-[11] optimize an objective function.

In [53], Fayyad and Smyth provide a nice discussion of the
problems faced while processing massive data sets. They sug-
gested an iterative scheme where they first generate 8 random
sample & from the entire data set .. Next, they construct a
maodel M= (apply a probabilistic clustering algorithm) for 5.
Then, they apply Mg w the entire data X and find the residual
points It from X, which do not fit any of the clusters with a
high probability. If £ is reasonably large, then clustering can be
performed on it again, or else a sample from ff can be selected
and the entire process can be repeated. The terminal number of
clusters may be greater than the mitial number of ¢lusters, and
the scheme involves various choices such as imitial sample size,
threshold wo decide on high membership, ete.

Ganti er al. [9] considered clustering of large databases in
“distance space” where the distance between two objects can
be oblained by satisfying the triangle inequality. This method is
not suitable when we want o compute cluster centronds (as we
do when object data are represented by p-dimensional vectors).
The authors in [9] propose two algonthms, namely, BUBBLE
and BUBBLE-FM. In BUBBLE, the database 1s scanned only
once and cach object s msered into one of the evolving clusters
maintained as leaf nodes of a height balanced tree. BUBBLE



supports cluster sphitting when the distance between a new ob-
ject and the closest cluster exceeds a threshold. To direct a new
object, BUBBLE computes the distance between the new ob-
ject and all sample objects at all mternal nodes encountered on
its way 1o a leal node. To avoid this tme-consuming process,
these authors use the fast map (FM) algorithm of Faloutsos and
Lin [10] in BUBBLE-FM algorithm.

Recently, Domingos and Hulten [12] proposed a statistical
method that can be vsed o simulate clusters moa large data
sel using the crisp f-means algorthm based on samples. The
method is based on using the Hoeffding bound [13] on the ermror
i estimating the mean of a mndom vanable based on » indepen-
dent observations. Here, the emror is defined as the deviation of
the computed mean from the true mean that would be obtained
if an infinite number of observations were used. The method
can find the number of examples that should be used to attain a
desired bound on the error. This interesting method can be used
with any data setonce the bound 1s worked out, but the procedun:
given in [12] is applicable only to the crisp k-means algorithm.

The problem that we are dealing with is a litde different from
the problem in [ 12], and a bound similar to the one given forersp
f-means is yet 1o be worked out. We deal with problems associ-
ated with processing large images, and hence, owr problem must
recognize and account for the spatial component associated with
feature vectors extracted from an image. We present a general
methodology for reducing both the time and space complexity
of certain (but not all) image processing algorithms. Our method
15 also sample-based, but once the sample 15 selected, 1t can be
used with any learning scheme (including f-means). This aspect
of our method makes it attractive, as different types of caleula-
tons can de done on the selected sample; 1.e., the sample ob-
tained is independent of the processing that will be applied o it

Our method is useful today, and will continue o be useful
as I, and L increase. The basic idea begins with statistical
hypothesis testing on random samples drawn from £ Simple
statistical tests such as the chi-square { ¥7) or divergence test are
used to assess the appropriateness of a sample. A sample that
passes the test is processed, and the results are then “extended”
to the rest of the image.

The remainder of this paper is organized as follows . Section 11
discusses feature extraction and our image sampling method.
Section 111 defines the class of extensible algorithms for which
our method is useful. Section 1V is a case study of the applica-
tion of image sampling and algorithmic extension for image seg-
mentation by FCM clustering. Section V discusses the tradeoff
between saved ume and lost accuracy when using extensible
algonthms. Section VI contains computatonal examples using
satellite images that illustme our new approach o complexity
reducton. Finally, conclusions are given in Section VIL

II. FEATURE EXTRACTION AND IMAGE SAMPLING

This section discusses feature extraction from two-dimen-
sional images (or sets of them), and sampling methods for sets
of feature vectors in images.

A. Features and Featuwre Extraction
The complexity triple (I, J, L) is associated with a single
channel { » .f image ! with £ gray levels. Many sensors pro-
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duce suites of timages, F = [ #), Fu, o Fp), that are collo-
caled in time and space, and then (f, J, L) is associated with
cach of the Fjs For example, a typical magnetic wesonance
image (MRI) has £ = 3 gray values associated with spatial
location (1, §1: spin latice relaxation time (1], transverse
relaxation time {2}, and proton density (ps). Let £, =
(TL; T%;. py) € 61 2d £ L1 £ j = J. We call
f; a piselbased intensity vector associated with {v, 73 Many
sensors produce multispectral images. For example, satellite im-
ages can have as many as ! = 15 channels; in general, T;; € G,

lmage processing algorithms often use pixel inu:n.‘-:.iLy. values
(i) or vectors (L), However, many techniques depend
on information possessed by features extracted from [V {or
F). Haralick and Shapiro [14] provide an encyclopedic de-
scription of many features used for various image processing
operations.  Specifically, we may extracl a featwre vector
iy oy
location (4, y)in £ or F. %;; might be built from f;; alone; or
from £ and intensity vectorsin a spatial neighborhood of (i, 7).
For example, if £, (T1,,, T, pi;), we can simply take
%xi; = Ti; € GF. If we define my; and sd;; as. respectively, the
average and standard deviation of 21,12, or g,y over some
neighborhood of (4, 4}, x;; could be x;; = [y, sedis) © RE
orit could be x;; = (1, T2, pig, myy, ,ari_,;l] e 0w 2,
el

When x;; £ R 1s extructed from F using £ and some af
its neighbors, xg; s a window-basedfeature vector, If (7, 5] is
regarded as a 1 = 1 window, then f3; and §;; are special cases
of x;,. In the discussions that follow, we assume that each pixel
in I (or ') is equipped with a feature vector x; (possibly ex-
cluding border rows and columns of the image). We denote the
feature vectors {x,, |} as X, Ignoring border effects, we assume
|X| = {F. 50 X and ¥ are in one-wo-one correspondence. Be-
cause of this, we sometimes refer to Y as “the image,” even
though it is really a representation of I7 or It

fis vay ey £ R¥ associated with spatial

B. Image Sampling

We want a sample X; of X so that the corresponding set
of pixels £, adequately represents the spatial distribution of
eray values on [T, Since there is a one-lo-one correspondence
between £ and A, and our sample should capture the spatial
characteristics of £, the selection of X can be done by finding
a sample ;= F using hypothesis tests.

An image #' can be partiioned into a set of « “homogeneous™
segments, I7, Fo, L P BN =ave 251 F =
Foand |F; =y {37 ng = £ [15]. Each segment £; con-
tains a set of pixels that (hopefully) represents a “meaningful”™
part of the image, and the pixel values in each segment usu-
ally fall within a small range of gray values. In other words,
appropriately chosen ranges of gray values correspond o dif-
ferent meaningful spatial segments of the image. We emphasize
that our image sampling scheme is not intended for, nor is it
restricted Lo, any particular application such as image segmen-
tation. Therefore, the choice of ¢ is not an issue here, and we
will notdiscuss it. However, the concept of image segmentation
provides some insight into the image sampling method, so we
will explain how the samples can be selected if the right value
of ¢ and the actual ¢ segments are known. Then we show how
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to extend the same sampling concepl o the case when neither
nor the actual segments are known.

If we know F;,owe can draw a sample £ ; from £ sothat the
gray level distribution over I',_; statistically matches that of I,
This may be done by comparing the histogram of gray values
over I, with that of I;. Let 7% and I, , be the probability
distributions of gray values over I and [, ;. respectively. If I3
and F, , match statistically, then we can take F, = U:_ Foo
as a representative sample of I

In most cases, neither ¢ nor the F:5 are known, but this does
nol pose a problem. We impose some pseudosegments on 17 by
dividing [0, £ 1] into + cells, {5} 2 = ¢ < L. Although
the number ¢ of segments in the patlem recognilion sense 15 not
known, itis always possible o get a reasonable upper bound for
7 Le., we can always choose a r = . For example, in the case
of MR or CT images of a brain, the possible number of tissue
Lypes is seven oreight (if there is a tumor); similarly, for satellite
images, it is not difficult 1o get a conservative estimate of the
number of land-cover types. Let my; be the count (frequency) of
gray levels in image #' cormesponding to cell €3, 3 m, =
IJ andlet g, = F, ;|/N = N;/N = sample probability of a
gray value falling in cell 5; % = 37 | ¥;. The partitioning
of the gray scale imposes a partiion on £/, F' — 45, ..., 5.5
S £ ¢ Vi, 8NS5 =¢. i # 4, and | J_| 5 = [ If a sample
F, of size W is drawn, and £ is a good representative of £,
then every segment 5, will be well represented in the sample,
and A/ will be approximately equal to /00 ¥ Neat,
we test the “goodness” of fit between g — {gp — /N
.2, ....vtandp={p,=wm/dt;e=1,2, ..., v} Oncea
representative sample of pixels £} is accepted, we identify the
corresponding sel of feature vectors X associated with pixels
in F,.

Some questions stll remain o be answered. What value of v
should be wsed? Should each cell have equal width? A related
question is: Why not use v o7 A final question is: How do we
test the match between the two probability distributions, p and
i 7 Usnally, the number of meaningful segments in an image o
is between two and ten. If the meaningful segments are known,
we can consider each segment as a strata, and use a separate
test of hypothesis on each segment 1o ensure that it is faith-
fully represented i the sample. However, neither ¢ nor the «
segments are known. Therefore, we need o test the hypothesis
on a sample drawn from the entire image. Consequently, the use
of even » = 10 cells o partition & may be oo coarse Lo caplurde
the desired level of spatial detail of the image in the sample.
The value of r will impact the level of spatial detail that is sup-
ported by the sample. A high value of v usually includes more
points in the sample, which provides better results but increases
the computational cost. This tradeoft decision must be made by
the designer. The best results, in terms of agreement between
the parameters estimated from £, and those from &', can be ex-
pected with » = L. Howewer, when £.1s large, this can be a
disadvantage. For example, a 16-bit image has T — 65 536, but
for practical purposes, taking ¥ = 236 should be fine, as 256
segments are much more than the number of meaningful seg-
ments expected noan mage.

We want o relate the sampling 1o the spanal distribution of
eray values over different segments of the image, because the

distinguished characterstics (features) of different segments are
functions of the spatial distributions of gray values. For ex-
ample, two binary textures having exactly the same gray level
histograms may look completely different due o different spa-
tial distmibutions of gray values over the pixels. This s the reason
for selecting random samples from the image instead of from
the histogram. We discuss problems that we can encounter if
we choose the samples from the histogram. Let there be just
four gray levels: 1, 2, 3, and 4, with frequencies n- = LOD0,
ny = 20000; vz = 30000; and vy = 40000, respectvely.
Now selection of one pixel with gray value 1, two pixels with
eray value 2, three pixels with gray value 3, and four pixels with
eray value 4 will be enough to satisfy a goodness-of-fit test such
as the divergence test. The 3 test demands the minimum cell
frequency to be five [16], [ 17]. Therefore, selection of 5, 10, 15,
and 20 pixels with gray levels 1, 2, 3, and 4, respectively, would
be enough to satisfy the y? test. However, such a sample cannot
represent the information content of any nontrivial image. The
mmportant point s that an image 15 not characterized by just 1s
eray values, but also by the coordinates at which different gray
values occur

We represent the characteristics of a pixel by a feature
vector, where the feature values are computed based on the
neighboring pixels (for a single- or multi-channel image), or the
feature values consist of corresponding pixel values of images
of different channels (for & multi-channel image). Therefore,
the spatial locations of the selected pixels along with their
gray values are very important. Moreover, we need a faithiul
representation of each meaningful (unknown) segment of the
image in the sample. Therefore, the sampling scheme should
have pixels from each meaningful segment. Consequently,
the sampling should be ted o the spatal distribution of gray
values. This is similar in spirt o a stratified sampling scheme,
but in stratified sampling, the different stratas are known. What
we do know 1s that each strata wspally corresponds 0 a range
of gray levels which is associated with a spatial region on the
image plane. Therefore, if we draw samples spatially and the
gray level distribution in the sample closely matches the gray
level distribution over the entire image, then we expect the
sample to adequately represent each meaningful segment in
the image. Therefore, we define an initial thresholdeg., 1%,
for the number of samples. Thus, in the 4-level image example
discussed above, we will first select 1000 pisels. If the selected
pixels are not uniformly distributed over the spatiaf lattice, the
goodness-of-fit st may not be satisfied, so we will increase the
number of samples. Regarding cell width, an unbiased choice
would be 1o use equal widths (except for boundary cells, which
could be different). However, the observed data may dictate
pooling, which creates unequal widths, even though we itend
Lo have (and start with) equal width cells.

For the goodness-of-fit test, we make the following assump-
Lions.

« 115 a random sample of v independent and identically
distributed observations (spatial locations). Each observa-
tion 15 chametenzed by s gray value.

* The gray values associated with these locations can be
classified into v nonoverlapping categories that exhaust
all classification possibilites. That is, the categories are



mutually exclusive and exhavstive. The number of gray
values falling into a given category is called the observed
[freguency of the calegory.

We want the random sample £, drawn from £ 1o reflect its
characteristics [ 18]. Thus, we st the goodness-of-fit between
the observed (based on £} ) and expected (based on F) frequen-
cies for the v categories. This can be done by testing the fol-
lowving hypothesis:

Hyo the sample has been drawn from a population that fol-
lows the distribution of gray values in {7,

against:

T the sample has not been drawn from a population that

follows the distribution of gray values in .

Agreement between the observed and expected frequencies
can be measured using the x7 test for goodness-of-fit or the
divergence between two probability diswribubons [17], [ 19]. We
briefly describe these two Lest statistes.

Chi-Square (12 ): The chi-square test statistic (42 ) measures
the agreement (or disagreement) between sets of observed (0}
and expected ( £} frequencies. This statistic is computed as

s o 0= EF
K=Y (1)
i=1 B

Divergence: The divergence between two probability distn-
butions ¢ (obtained from the sample I of N independent ob-
servations ) and p (representing the populaton &) measures the
difficulty of discriminating between the two distributions. Let
po=pepnomdo 0= P g G Tk =
Y 1. Here, p — population probability of the %th
cell = K /ddF = wp /40 and gy, = sample probability of the
Etheell = O /% = N AN The divergence is computed as

.
Fipoay =N Y ey — o) lowlpi faih, (2)

i=1

Note that S(p, ) = 0, with equality if and only if p; = g,
i=12 ...,

For large samples, ¥ or J{p. ¢} is distibuted approximately
as v 2 with v — 1 degrees of freedom (DOF), Thus, if the com-
puted value of % or Ji{p, 1 is equal to or greater than the tab-
ulated value of v2 for » — 1 DOF at the significance level o, we
reject the null hypothesis at that sigmificance level

The application of ¥* to a sample of size ¥ can be called
“adequate” in most practical applications provided none of the
expected frequencies is oo small. When the expected frequency
of a particular category is less than five, then that category is
pooled with an adjacent category [16], [17]. Pooling i1s camied
out until the minimum frequency requirement 15 met. When cat-
egones are pooled, we muost recompute the DOF based on the
new number of categories. Thus, the number of DOF for the y”
and divergence tests may differ for the same F.

The 3y# wests the significance of the discrepancy between the
observed and expected frequencies. Thus, the basic objective
is 10 check whether the fit is open W suspicion. Let e be the
probability that y” shall exceed any specified value. Then, for
the computed value of %7, if « is between 0.1 and 0.9, there is
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no reason o suspect the hypothesis [20]. For such tests, very
low values of %7 {ee = (L9991 do not necessarily give more
confidence about the hypothesis becanse generally this situation
arises due o the use of asymptotic formulae when the number
of DOF is large [20].

However, the present situation is a little different from the
usual test for goodness-of-fit. We want 1o get a sample P, which
is as representative as possible of the population 7. In this case,
the higher the value of o (even o > (L3HED, ie., the lower the
value of x7, the better the sample is for our purposes. Since it is
common o accept the hypothesis if o is greater than 0.05, we
may also accept the sample if the computed 2 is such that o is
greater than 0.05 (acceptance at the 5% level of significance).
For the problem at hand, a more conservative approach would
be to set the level of significance at a higher value. The higher
the value of o, the closer the distributional characteristics of £
to I'. Forexample, if I, is selected at ¢x — (0.95, then the differ-
ence between the two probabality distributions 1s neglhigible and
hence, the difference between the sets of parameters estimated
by X, (corresponding o I, ) and that by X (associated 10 I7)
15 expected o be negligible as well. Our computational expen-
ments confimm this.

II. EXTENSIBLE ALGORITHMS

In this section, we divide image processing operations mto
two families: algorithms which are gfficiently extensible from
X, w X — X,; and those which are not. Let A: R¥ — R
be an image processing algorithm. Smee X, A, and & X,
are subsets of R¥ | we can represent most (but not all) image
processing operations with functions of this form. When x;; ©
W4 is the feature vector associated with spatial location (4, 77 in
an mputimage F, v, ; — Afx;;0 1% the result associated with the
same location in an output image A[F]. produced by applying
Aweveryx € X,

Some functions used in image processing are “one-pass”
operators; that 15, A does notdepend on parameters that must be
estimated with training data before A[F)| is created. One-pass
functions are not efficiently extensible. An example of this
Lype 1s the Sobel edge operator [21]. Let x,, be the vector
(f1: f20 fa: Jao d5: Joo d2- Jun f0)b © R of inensities in
a 3 x 3 window whose center pixel is location [4, j) = &,
where the window pixels are indexed left 1o rght, then top to
bottom, (see Fig. 2, Section VI). Next, define an estimate of the
gradient vector of the underlying picture function at {4, j) 1o
be z;; R2 as follows:

AL i B'_{ia,-:'

=lfa+2fa+ f7) =L +2/2+ [fa)] (3a)
2y = Heixi)

=(fi+3fs+Ff)— (L +21H+ ) i 3b)

#) 3y & an estimate of the gradient at {#. /3 in the vertical
direction, while =z ;; 15 the same in the honzontal direc-
ton. Bquations (3a) and (3b) are compactly represented by
writing z; = Bz i where B = (/4 i) RY — 1¥ and
B, (21,45, 72¢;1 . There are infinitely many Sobel edge
detectors based on 25 [22]. The most common Sobel operator
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uses the Euclidean norm of g o estimate the magnitude of
the gradient at pixel (4, )

wiy  Nalzmy) (4)

The (Euclidean) Sobel operator A can be defined as the com-
position of B followed by N,

wii = Aa(xis) = LNzoB{x;). (5)

Applying A 1o the 9-vectors {x;; } extracted from I” results
in the Sobel edgeimage A.[#] = [4;]) <o Thresholding Ay £]
produces a standard black and white Sobel edge image.

The application of AA» to the images .Y, X, and X — X, pro-
duces theimages A2 [X]. A [AL] and Ag[X — X, ], respectively.
WFisT= J |X = {F—2)J—%2) because (3) cannot extract
Q-vectors for the border rows and columns of &, Nonetheless,
if ¥ is extracted from 17 before the application of A,, we have
Aa[X] = AR[X] U Ax[X — X,]. The time it takes to produce
A [X] by first splitting X into X U0Y — X,V is actually longer
than the time needed o compute Ay [X] directly from X ( be-
causeil takes time o create and test Y, ). Consequently, working
with subimages, as developed in Section 11 for “one-pass” func-
tions such as the Sobel operator Ay, cannot reduce (and actually
increases) their me and space complexity. This s an example
from the class of image processing operators which are nor ef-
ficiently extensible from X, o X X,

Omn the other hand, many imaging operators depend on a set
of unknown parameters, e.g., &, in some parameter space £ In
thiscase, multiple passes (usually ieratons) through A or some
other sel of training data X,,. are needed o estimate (or leam) a
“best” & < L2 before the output image can be constructed. We in-
dicate the dependence of A on & and X, by writing A{X,, : @),
Suppose we find an optimal (in some well-defined sense) set
of parameters @, and once found, the vector y = Alx; ).
x & Xy, can be calculated noniteratively. We cannot expect
that Alx; 6) = Alx: ), where & is the optimal set of pa-
rameters found when A is trmined with X* = X, 1 {x}, but it
may be the case that Afx; 07 = A{x; 0. For convenience, we
let A = A X 60 A7 = A(X: #) in what follows. I there
are several xs € A, the time saved by caleulating the ﬁ{x‘lh
nonileratively may be worth the sacrifice in accuracy due o the
approximation of A*{x) by A(xj We call A: ®RF — KT an
extensible function when

A =AY, #) depends on & = 11 (61
g requires ilerative estimation using X .. []s)]
A(x) can be calculated noniteratively
for x ¢ K., (Be)
If ¢ is optimal for X = Xy,
then Afx) = A*(x)Vx & X i6d)
In the present context, let ¥y, = Y., the data set obtamed

by sampling Y, as described in Section 1. Let 45, denote the
overall tme 1t takes to: 1) construct X, 2) estimate 8 for A
and 3) compule {..:ij x = ¥ — X.} Let 45 be the overall
time it takes to: 1) estimate @ for A*; and 2) compute A%| X
(this time can be zero, depending on A). Since there is no guar-

antee that z’i.I:'K:I = A"xiforx € X — A, we have at best
A*|X| = AX,|UA[X — X.]. Our hope is that the loss of
accuracy due o extending A to X — X, with # is balanced by
a decrease in overall CPU tme.

We have pointed out that As would ke less time on X
than on X, LU 0X  ¥.); therefore, this is an example where
ity S,y < Lo Whenever the ratio s less than one or even close
Lo one, there 1s little meril in estimating f and using it 1o ex-
tend A o & N, Onthe other hand, £y can be significantly
less than ¢ for computationally intensive As (neural networks
(NNs), clustering methods, vector quantization, ete.). For algo-
rithms of this kind, (#x /4. ) — =~ as [/, L L) — =~ 50
the loss of accuracy incurred by using A[X] for A* X| may be
more than offset by the overall reduction in CPU tme.

Since A at this point is quite general, we cannot give O
estimates of s, or {3, s0 il seems reasonable o vse the matio
(ty ity ) = taa. as a measure of the observed efficiency of
extensible image processing algorithms. Nonextensible algo-
rithms yield #,.. = 1 {as is the case for Az, the Euclidean
Sobel edge operator). Conversely, the efficiency of extending
Aw (X — &) with 8 increases as {,.. — x. We call {,,..
the acceleration factor achieved by the use of samphng and ex-
tension, and say that A is efficiently extensible if and only if its
acceleration factor is greater than one

A RP — RT is efficiently extensible <+ 4. = 1. (6e)

The questions that need to be answered regarding efficiently
extensible imaging operations are: How much time do they save?
and How bad is the approximation A[X] = A™[X]? Generally,
the answers will depend on the image o be processed and the
A to be used, as well as (I, J, L As that seem amenable to
our efficient extension method usually spend a lot of time com-
puting distances in (X »x X < (R¥ x B s0d . ofien de-
pends implicitly on p, the number of features extracted from £
Furthermore, .. can also depend on the number of classes »
as well as the ratio | X, /|X| = N¥/IJ. Therefore, in general,
taee 15 8 quite complex function, #,.. = ®{f, S Lop, Noo),of
at beast sixointegers. Exact complexily analysis may be possible
for some As, but will be impossible for most. The best one may
be able to do 1s measure the acceleration factor t., . for actual
trials, and assess the loss due w using outpul image _:;1..[1’] 1n-
stead of A* X in terms of disagreement between the two (Le.,
average error), as well as visually. This will be demonstrated in
Section V1L

Before we present our computational study, we offer some
qualitative remarks aboul efficient extensibility for large-scale
images. Our method is most approprate for operations on
images where ilerative estimation (learning) 18 necessary, and
where A can be extended to X — X, as in (6¢). Almost all clas-
sification functions represented by NNs and fuzzy systems fall
mto this category. For example, segmentation, edge detection,
and classification by any supervised keaming scheme [23]-[25]
should benefit by extension as long as the approximation in (6d)
15 acceptable. The same remark apphics 1o most unsupervised
learning models used for image processing (e.g., segmentation
and edge detection with clustering algonthms, when these are
extensible).



Generally, it will be clear from the nature of A whether sam-
pling I and extending A to X — X, is a better strategy (when
there is a choice) than finding A* with .¥ and computing A*[X]
directly. Furthermore, if #' is so large that X (and possibly
X — X, )cannot be loaded into memory, some Lype of sampling
scheme may be the only choice. Now we tum to an example of
extensibility based on segmentation with clustering.

IV. FCM AS AN EXTENSIBLE ALGORITHM
FOR IMAGE SEGMENTATION

In this section, we illustrate the scheme outhined in Sections 11
and 111 by casting the FCM clustering algorithm in this frame-
work. We use only one subscript o specify a pixel and its asso-
ciated feature vector. Given a set of feature vectors X extracted
from an image, many clustering algorithms can be used o seg-
ment & by clustering in Y [24], [26]. FCM is frequently used
for image segmentation; typical applications include medical
[27]-[29] and satellite image analysis [30], [31].

Let X Ixi. %2, ..o xxho xR be a finie
data set; ¢ {2 = ¢ < &) be the number of clusters;
Vo= Iwiwe. oo wolov; £ U be the set of cluster pro-

totypes: and L7 = Tug]e. be a fuzey e-partition of X, The
element . represents the membership of % in the ith cluster.
Fuzzy partition matrices satisfy three constraints

[
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and
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DN e B MLl (7)
f=L

We denote the set of all » x & matrices that satisfy (7) by
My.n. When wy € {0, 1} 91, & in (7). My.x reduces to
My, the crisp oo« A c-partitions of X . Each column of £f =
My.n is a crisp label vectorinthe set N, — {e. ... e} C
10,1, e = (0,0, ..., LDy, [iji . wherne the *17 occurs
at the ith address. Each column of U7 Mo s a fuzzy label
vector;, 1.8, aveclor u = (v, ..., '.'.'.r:,'.jI
isfy the first two constraints in (7). The pammeters that FCM
estimates are {7 and ¥, These are found by minimizing

o K
L0 VY =30 3 ()3 — vl (8)

i=1 k=l

whose entries sat-

where jo == 1 and the inner product induced nomm, that 1s, the
distance between . and v, 15

”x-'-' - V-‘”E’:i =[x — V!’]T*M 'ixﬁ - 1"-\‘,.:' = T'rF.'_’u" (9)

A in (9) is any p = p positive definite matrix. Fist-order neces-
sary conditions for a local extremum of J,, are well known [4].
The prototype must satisly

B3

Z ('i:.'.,-,;,.]"*x,.,,
v, = =L

i
2 [ag e
k=1
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Tostate the necessary conditions for Jage . ket fo = {71 =7 <
coidgrs  DrandXy 41,2, ..., ¢l — 1. Thus, Iy is the set
of indexes of centroids which are identical 1o some data point
w0 & gselogy = 0V & Ik and arbitrarily assign the
remaining

w4 such that Z g = 1. (11a)
Tl £
|
o n'li!k-‘l." Hiip—1;
I = g = (——')
* (E il i3 ag
T =l Tl f =l Y (11b)

The FCM algorithm consists of guessing ¥ (or [7), and then
alternating between (11) and (107 untl either ||[Faew — Lol
OF || Wnee — Vol 18 less than a user-specified termination
threshold ¢ FCM is an example of altemating optimization
(A Many other image processing operators are ACQ algo-
rithms. For example, the E-M algorithm, when used 1o estimate
the parameters of nomal mixtures, is a statistically motivated
AQ method that 15 used heavily in image processing [32]. All
AD algorthms are good candidates for efficient extension
when dealing with large images, because they vsoally require
mtensive and ierative caleulation during the tmining phase. We
mention that Beedek and Hathaway [40] have recently shown
that, under fairly mild conditions on the objective function, all
AD algorthms converge globally (from any initialization in the
constraint space). Reference [40] also contains a statement of
the local resull, which guarantees g-linear convergence for AQ
when initialized sufficiently close to a solution. The proofs of
these results can be found m [41].

Each calculation of I7 at (11) 15 a function of X, and ¥V, and
this 1s the NMuncton we will extend from X; 0 X X, . La B
be a function that assigns a fuzey label vector 1o x;, given a set
of centroids V5 ie, let B REY — N be

Bixg: V)=l ... uhk;fl"[ : (12}

The value of 2 in (12) 15 caleulated with (11 for 1 < ¢ < o,
When FCM terminates at an optimal pair {{'_‘?: V). Bix; V) =
Bix} is used to generate fuzzy label vectors for each spatial
location (pixel)in X' X,

Arranging these vectors as a matnx, e.g., 7, resulls inoa ¢ x
{44} fuzzy partition of X which, after rearrangement of the
columns of £, and vectors in Y, yields the block matrix

f:'; f"i W [-:r:'.&c s N (13}

exdJd I
The first block of 17, is the partition I’ 5 found by applying
FCM 1o .X.. The second block of . is &/, r7_ . the matrix
of memberships extended to ¥ X, using H:lx:

The matrix 7, is then used to approximate I™, which is a part
of an optimal pair (77, ¥7) for J, at (8) found by applying
FCM 1o alf of X, instead of just X ,.

The last step needed to produce the desired segmentation of
£ is 1o “harden” each column of £, or £*. The usual (but by
no means ondyv) way o do this 15 wouse the “max-membership”
hardening rule; i.e., define h: Np, - N, as follows, Letu =



L)

; -u.(,-,:ITI £ Ny, be the fuzzy label vector for x, = Y.
i, ugp b Thus, x; is assigned
the cluster in which ithas the maximum membership value. For
example, if ¢ = i} and the membership vector for x, is vy, =
(0.4, 0.1, 0.5)T, then h(uz) = h{0.4, 0.1, 0.5) = (0, 0, 1) =
ey, 50 the pixel corresponding o ), 1sassigned w cluster 3. This
by can be used to assign a hard cluster label o each pixel in the

g 4 g

Image.
In order to get the segmented image we consider & colors (or
perhaps ¢ gray levels) equally distdbuted in {0, 1, ..., L — 1}

associated with the index set {1, 2, ..., o} Ifthe Eth pixel has
acluster label £, we replace 1ts pixel value by the dth color. For-
mally, let & = {L, Lo, ..., L) © RY be the colors, and g:
Ny = (opled = £y, 1 = @ = v Now define the function
A:R¥ — R by composition as sl = (gohoB}. Then A[X]
represents a c-region segmentation of £ that depends on the pro-
totype set V as in (10) found by FCM. When V is used, _&[I]
is the extended segmentation of 7 when V™ is used, A17[X] s
the “exact” segmentation of #'. Now we are in a position o ask:
How much time is saved by computing .—'1_-_‘:] instead of A" | X|?
and How well does A == A~ ? These are the topics of Section V.

V. TRADING ACCURACY FOR TIME

Two facts about FCM segmentation of digital images are well
established: segmentations are good, but FCM s slow. There
have been many attempts o accelerate the iterative loop defined
by (10 and (11) [31], [33]-[36]. One class of methods abandon
the search for (£, ¥*), an optimal pair for ./, on a complete
data set. One subset of this ype replaces “hiteral™ (or exact)
FCM (LECM) with an approximation to it, and uses all of X
The other type of approximation scheme in this category uses
LECM, but alters the data set processed. Our method is of this
latter type, using U7, to approximate I™ on all of X. A second
class of methods obtain {* by eventually running LECM on
the full data set, but attempt 1o reduce # by alierdng the usual
random initialization scheme.

Cannon ¢t al. proposed an approximate version of LFCM
called accelerated fuzzy -means (AFCM ), which 1s based on
lookup tables o approximate distances, and vsed it Lo segment
thematic mapper images [30], [31]. Hall et all [27] and De La
Paz eral [33] used AFCM for segmentation of MRIs. Although
AFCM has been used successfully in several applications (and
does reduce the CPU time of LFCM by as much as a factor of
107, it has some hmitations,

+ AFCM does not satisfy the necessary conditions of FCM,
and hence, AFCM iterates do not minimize any well-de-
fined objective function.

+ AFCM uses lookup ables, and it is not feasible to have
complete logarithmic and exponental (lookup) tables
stored in memory. Assumptions are used o limit table
sizes, which, in tum, reduce the accuracy of mtermediate
values vsed by AFCM.

Cheng et al. [34] present 4 method called multistage random
sampling fuzzy c-means (mrFCM). This scheme cuts down the
computation by reducing the number of feature vectors and iter-
ations used in the initializing stages of FCM caleulations. LFCM
is run on several small subsets of the data in an incremental
fashion w get a setof good initial prototypes, and then LFCM is
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applied o the whole data set. Based onempirical studies, Cheng
et al. report that mrFCM reduces CPU time on average by about
50%, but no space reduction 15 possible. Cheng er al. did not
provide a gurdeline about how 1o terminate their imcremental
Process.

Cuite mdependently, but almost at the same tme as Cheng
et al, Uma Shankar and Pal [35] proposed another mulustage
scheme for accelerating LECM they called fast fuzzy c-means
{FFCM ). FFCM first runs LFCM on a small sample S, of the
entire data set X . Let the centroids obtained on 5y be Vo, Now
&y is enhanced by a small fraction of X w get &), and LECM
15 run on S o get the set of centroids ¥, FFCM then uses ¥
{and also V) to generate the partition matrix £7%° {and £%) on
the entre data set X, Let the partition matnees generated on X
in two successive stages be denoted by T and T || respec-
tively. In FFCM, enhancement of the sample and the running of
LECM on the enhanced sample are continued until there 15 no
significant difference between U and U2 s ie., |07 — 17
is very small. FFCM runs LECM anumber of imes, but the cen-
troids are expected to improve due to the use of a bigger sample
at each step, so the number of iterations required by LFCM in
mereasingly higher stages 15 expected o decrease.

Unlike AFCM and mueFCM, FECM never runs itematively on
the whole data set, so it reduces both computational time and
storage space. However, FECM in [35] did not use a statstical
criterion o assess the quality of X, as a good representation of
A, as we proposed in Section 11 Moreover, FECM runs LECM
on different samples, while the method proposed in this paper
runs LFCM only on one sample. We distinguish FECM from the
method developed bere by calling our new technique extensifle
Jast fuzzy c-means (e FFCM).

Kamel and Selim [37] proposed two algorithms that update
cluster prototypes or membership values more frequently than
LECM. In one algorithm, the cluster centers are updated after
computing the membership values for each mput vector. The
second algorithm updates membership values afler computing
cach centroid. Kamel and Selim report that, on average, the first
algorithm is 1.23 times faster than LECM, while the second al-
gorithm is 107 tmes faster than LFCM.

Velthuizen et al. [29] proposed an algonthm called split fuzzy
c-means (SFCM), which is driven by the philosophy underlying
incremental partitioning in iterative least square clustering [38].
SFCM starts with ¢ = 1 cluster whose centroid is taken as
the mean of all data points. The splitting process is initiated by
choosing the next cluster centroid w.—; as the data point having
the maximum weighted sum of squared distance from all cen-
tronds. Thus

¢ ¢
Vepl  Xp Z{u;;.}”rlﬁ. L (Z(u;g}“rlﬁ) 14
i=1

=1

MNext, LECM is run with these ¢ — 1 cluster centroids as ini-
tial prototypes. The process 15 repeated until the desired number
of clusters is created. Velthuizen et al. observed that steps prior
to the final run of LFCM can be viewed as an elaborate initial-
ization scheme. The last run of LECM may terminate quickly,
but the total time required for SFCM may be more than minning
LECM once at the desired number of clusters; and every step of
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Fig. 1.

SECM processes all of X . Among the various methods that have
been studied o accelerate FCM, the one most similar to ours 15
mrFCM [34]. Consequently, we use mrFCM as a comparator in
the numerical experments of Section VI

VI, ALGORITHMS, PROTOCOLS, DATA SETS, AND EXPERIMENTS

Since we will compare eFFCM o ats closest melative
(mrFCM), we now give a briel description of mFCM. Cheng
et al. [34] proposed a rwo-phase algorithm. The first phase
has several stages; cach stage vses an increasing number of
feature vectors and a more stringent stopping condition. The
first stage vses randomly mmtaleed cluster prototypes while
the ith {4 = 1) stage uses the final cluster prototypes from
the [+ — 1ith swge. The second phase uses the final cluster
prototypes produced by phase 1 and runs LECM on the entire
data set.

Algorithm mrFCM

Begin Phase 1

Step L Choose: ¢, i, A, ||.||; for LECM; control paramelers
o and & termination parameters © and op; and iterate limit
4 8et A = o

Step 2. Choose cluster centers ¥y, randomly.

Step 3.
Fork lweo+1:

L Select A% of the £.f feature vectors without replacement
from Y. A point is selected if no point in its 8-neighborhood
isalready selected, and the number of trials is less than 210 1f
the number of trials 1s greater than 207, samples are selected
disregarding the 8-neighborhood condition. Call this set X

2 X = Ay UKL

Architectures of mrPCM and «FFCM. (a) The mrFCM scheme. (b) The eFFCM scheme.

3. Using Xy, and initial guess ¥ ., iterate LECM through

(11yand (10) ford = L, 2 4 .. ¥ until either b = 1" or
i — I = .o L

!',-'L}‘E' — I_-"E"I"r | = n. where & ;f'\] is the partilion matnx

at iteration b, and ¢y, is the swopping condition for stage k.

p=tp k¥l o)
4.Vy,  — Vi Uy, — 1%
Next, k.

End Phase I

Begin Phase IT

Step 4. Initialize LFCM with the final cluster centers (Vi _,.)
from phase 1, and iterate LFCM through (11) and (10} o ter-
mination on the whole data set X,

End Phase Il

Fig. 1{a) shows the overall flow of mFCM. nmweFCM is a
useful variation of LECM, but as the authors of meFCM point
out, three critical, user-selected parameters (o, o, and &) influ-
ence the performance of mrFCM significantly; Cheng et al. give
no guidelines for their selection. Moreover, mrFCM runs LECM
7+ 1 tmes on subsets of X, and then runs LECM on the entire
data set. Therefore, the role played by Steps 3.1-3.4 of mrECM
15 really w oensure a good initializaton of LECM. Thuos, while
mrECM may exhibit time reduction, it 15 by no means guar-
anteed. Finally, phase I1 of miFCM requires exactly the same
storage and (possibly) tme as LFCM.

IneFFCM, we run LFCM on a small but representative subset
A, of the entire data set X, Initially a random sample £ from
E having 1% of £.J points in #' is selected, with replacement.
If I} does not pass the hypothesis test, it is enhanced by adding
another A4% of #'to £y, This process of enhancing the sample
(with replacement) 1s continued until the hy pothesis test accepls
.. The sample X, corresponding to £, is then used 1o compute
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cluster prototypes V with LECM. This results in the (optimal
for X,) LECM pair {7, V. The cluster prototypes V are then
used with (12) to generate the remaining |.X X:| columns in
£/ for vectors in X — X, resulting in {7, the fuzey r-partition
of X shown in (13). The matrix I, is not part of an optimal pair
for .f,. If desired, a necessary pair {{/.". ¥} for ., can be
generated from f_}:_ by defining {7 =1 ‘., and then calculating
V. " noniteratively with £7.” and ( 10, This way, LFCM is never
applied to all of X.

When FCM terminates, take {i = {41} Since eFFCM runs
only once on a small fraction of X, the mntime storage space
required for successive estimates of {7 is much less than that
needed for estimation of L™ on X Specifically, this reduces
the storage requirement by about ¢ x {10 — &) addresses for
£ Fora 2000 % 5000 DDSM image, this reduction typically
amounts toabout 7000 addresses, each needing up 1o 32 bits.
The last step of ¢FECM computes f_}f_ once, and this space s
required whether we use eFFCM or LECM. Fig. 1(b) shows the
block architecture of eFFCM.

Algorithm eFFCM

Step L. Choose «, 2. A, ||||ere and T for LECM; and =, 1. Al
and v for eFFCM. Here, = is the number of calegores as
defined in (1) and (2). The mitial subset I8, of I contams
(0w 0P 100 pixels from £, Adis the additional percentage of
samples added at each step, and ¢ is the level of significance
for the statistical test.

Step 2. £, = (I = £.0)/ 100 draws from £ (with replacement).

Step 3. Compute v~ using (1) or J{p, g} using (2) on F,.

Step 4. Compare x* or Jip. 4} with the tabulated value of o at
(v —1) DOE If the testis significant at level «, then enhance
£y by adding an extra (A7 > £J7/100 draws (with replace-
ment) from £ to £, and go to Step 3. Otherwise go o Step
5. [For 3 %, the DOF (df) may be less than [+ — 1% if there are
categories with expected frequencies less than 5.

Step 5. Apply LECM 1o X, comesponding to £, obtaining the
pair {17, ¥

Step 6. Use the cluster prototypes { ¥ senerated at Step 5 with

{12) to caleulate I, on allof X, ie., T, = Iy, U Us .

A. Performance Comparison

It is not hard o show that LECM and all of its variants dis-
cussed m Section ¥V ohave the same asymplolic run-Ume com-
plexity; eg., Olclfpt for IS feature vectors in ¥ divided
into « fuzey subsets. Asymptotically then, there is no advan-
tage o our sampling and extension scheme over simply mun-
ning FCM on .X. However, the key word is “asymptotically.”™
Since 1.f is alwavs less than infinity, a better indication of ef-
fective speedup is to compare the number of operations used
for finite %, f, and ./ during the ilerative phase of these al-
gorithms. Comparing oNp o of I p, we see that the number
of operations per iteration done by eFFCM as compared to
LFCM stands in the ratio N/ 1./, Our experiments indicate that
(00X LT = 30% usually produces good results for (256,
256, 256) images. For higher resolution images, hike DDSM
with (I, J, L) {2000, 5000, 65336). IJ  10° 10 mil-
lion pixels in X, .Y, is likely to be much less than 30% of .X.

Even for such images, if we assume that X, is 30% of X, then
NoO0aIT S00 K pixels. Although poand ¢ “fall out” in the
comparison, each FCM construct adds, subtracts, muluplies, di-
vides, and exponentiates. Thus, we can expect CPU bme on X,
to be significantly less than CPU dme on X . Furthermore, even
though the asvmprotic complexities are equal for finile data, the
larger I, the larger we expect (5 /3 ) 1o become.

For example, if you need 500 iterations o terminate both
schemes, eFECM saves 500 (7000000 = 3.5 « LIF constructs,
each imvolving (roughly ) cp operations. For moderate problems
then, ep = 50107 = 50; so eFFCM saves something like 3.5 #
3+ WP — Of10-") operations. Even today, with 1 BIP ma-
chines, this represents a savings of several thousand seconds
iperhaps 30 min per image). Moreover, even if we stat with
identical initializations on X and X, we expect LFCM to take
significanty fewer iterations than it would take on X There-
fore, extensible algorthms should {and do) save time, but do
they also produce reasonable approximations w the undiluted
outputs obtained by running A* on ¥ ?

We compare the performance of eFFCM in four different
WHYS. i in (13) will never equal {77, where (£7%, ¥V} is an
optimal pair for J, on X, One way Lo compare Ioto U™ is
to harden the columns of both matrices with by, resulting in the
sets {hlin, (3} and {hia?il. 7 = 1, 2, ..., L./ Then, we can
compare these two sets of labels, and count the number of mis-
matches. Let

[
Buwe (0, 17"} = 3 37 It0 s - bQw . (19)
=1

Flope (13015 the number of omes f:"_,. and £ disagree. Belore
using ( 15), the rows of T™ may have to be reorganized (equiv-
alently, relabeling of the centroids in ¥*) so that comparison is
made between corresponding clusters. While &7 (or {hiu™)}H)
may itself be unsatisfactory [e.g., Thin*}} might be a segmen-
tation of £ that s deemed unacceptable], (15) 1 a valid mea-
sure of the error incurred by using A to produce I7,, and taking
Ui, = 0% K. 18 a valid measure of error when one looks at
the clustering results; i.e., the partitioning of X .

Second, we could also compute E = |V — V*||. Here, we
calculate both ¥ and ¥ *, so £ could be direetly computed. This
error is not o be confused with the same expression which ap-
pears in [12], where Vis computed, but ¥ is the “true but un-
known™ set of prototypes that crsp c-means would produce on
an infinite number of samples. £ is bounded above in [12] by an
asymptotic estimate, and it is used to control the number of sam-
ples that are actually processed. However, since T7 is uniguely
determined by the set of centroids ¥, £, .. is directly related 1o
£ and there 15 no need Lo caleulate both in our applications.

The second index of comparison is L., which compares how
time efficient the extensible algonthm is. Third, we also com-
pare FCM objective function values computed directly running
LECM on X with the objective function values computed on
Aousmg the terminal {0 \-”I obtamed by eFRCM. Finally, we
also render visual judgments about the quality of I7, asan ap-
proximation o 57,

Before we turn o the numerical expenments, we point oul
that it 1s even possible o get quahitatively better results with
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Fig. 2. Gray values over a 3 % 3 window.

{:’,x_ than with £77, How'! Most iterative parameter estmation al-
gonthms optimize an objective functon, and the algorithm can
zet stuck at a local extremum. FCM on the entire set ¥ will
almost surely have a more complex search space than Jf, does
on the smaller sample X .. Therefore, the chance of landing at a
“better” mimimum 1 higher with X ; (although this s not guar-
anteed). Moreover, with a small X, more runs of the param-
eter estimation algorithm with different imitial conditions can
be made leading to parameters that yield the best value of the
objective function {for FCM, it would be the best value of J, ).
Therefore, “high” approximation error in terms of (13) does not
necessarily mean that we have poor results, because £, is a
measure of relative agreement between {7, and [, Next, we
describe some numerical expenments that illustrate the weas of
sampling and extensibility.

B. Numerical Experiments

Some of our experiments use two denved Teatures: window
average and window busyeess [21]. Consider a 3 = 3 window
centered at (4, 71 with gray levels as indicated in Fig. 2.

+ The average gray level [ over the window centered at the

(. jith position of the image is

]
7=y 16
i—1
* The busyness I over the window in Fig. 215
B=4(If — fal + |fa = fal +1f = ol + 15— el

+|Ffr = fal —|fa—fo +|fr = fai| +|fa— F:
+lfo = Ll =1 = Sal +1fa = fol + fo — fol). (17)

We used eFFCM to segment two 4-band satellite images: S1-1
and S1-2 from IRS-1A [39] Figs. 3(a) and 4(a) show the input
mmages Sl-1 and 51-2, respectively. For visual clanty Figs. 3(a)
and 4a) present enhanced (histogram equalized) versions of the
mput images, but for computations we used the orginal images.
Each mmage has the complexity nple (256, 256, 256)—rcla-
tvely small images in the year 2001, Our computational exer-
cise consists of wo cases.

Casze 1: Sample selection isdone using gray levelsof band-4

(077086 pm) from 51-1; and clustering 15 per-
formed using the extracted features (£, B} in (16)
and (17). Thatis, X = R%. % = (fp. Byl £ =
)
The sample 15 selected using the same band-4 gray
levels from S1-2; and maw band-3 (062068 pan)
and band-4 gray level pixel intensity 2-vectors are
used for clustering.

Case 2:

67

Fig. 3. {a) Input satellite image SI-1. {b) Segmentation of {a) produced by
eFFCM when centmids are genemted by 9% of the data and only the divergence
test is sutisfied. () Segmentation of (1) produced by eF FCM when centroids are
generated by 200 of the data and both the diverzence and 3 * tests are satisfied.
{d) and {e) Segmentation of {a) produced by LECM and mrFCM (which are the
same).

Fig. 4.
eFFCM when centroids are generated by 18% of the datn and only the
divergence test is satisfied. (c) Segmentation of (1) produced by eFFCM when
centroids are generated by 21% of the data and both the divergence and 1%
tests are sutisfied. {d) and ()] Segmentation of {a) poduced by LECM and
mrFCM (which are the same).

{a) Input satellite image 5L {b) Segmentation of (o) prodvced by

To benchmark the performance of eFECM, weran LFCM and
mrECM on X with the same imtial cluster prototypes as used
0.495,
{ = 1% initial sample size, & = 1% incremental sample size,

for cFFCM. The computational protocols used were
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= delusters, A — L (identity matnx), and ;0 — 2 eFFCM

and LFCM are terminated vsing the condition

L Vi WE T < e = 0.000
¥ P
where ¥ is the set of cluster centers generated at iteration 7.
For mrFCM, we used the following pammeters: @ = T slages,
& = A.5% increment in sample size in every slage, ¢ =
1, and £ = 00000, Cheng et al. [34] temuinated mrBECM on
[rt— 17 =L . For the sake of a fair comparison, we lerminated
mrFCM here with the same conditions as LFCM and eFFCM.
In other words, we lerminated mrFCM with

fi
l'n,-" R

”Vrt:- — Rl % oy

where ¢ 15 varied as shown in Step 3.3, phase 1, mFCM.

Note that v, the number of calegones used o compute the
frequency distribution over A, 18 different from ¢, the number
of meaningful segments (clusters) assumed 1o be in the data. »
can be equal to the number of distinet gray valoes present in the
tmage, or the entire gray scale can be sphit mto r (+ less than the
number of distinet gray values) nonoverdapping cells. Momeover,
7 ocan vary from sample o sample.

In Table L instance (a) comesponds o the smallest sample
for which either the 42 or divergence passes F,. If in instance
(a) both the 32 and divergence are insignificant, we do not gen-
erate instance (b). However, if I, in (a) is passed by only one of
¥¥ or Jip. 4}, then we angment % in (a) by additional samples

until both v~ and Jip, ¢ become insignificant. Instance (b) cor-
responds o this case. For each case, we have tabulated results
for several sets of runs with one or two instances for each set.
In each table, column 3 s the value of the objective function
J;gn:f:"f_, ";"_\-_\ Jeomputed on the entire data set with the tlerminal
cluster prototypes generated by ¢eFFCM on the indicated sample
(stee given n column 2).

We ran LECM w termination on both A, and X using the
same initial centroids and used 7 and I7, with (15) to assess
the accuracy of eFECM relative to LFCM on X Values of £, .,
for eFECM (given as percentages) are reported in column 10 of
Table 1.

Table I depicts the results obtamed for eleven sets of runs for
case 1. A typical value of Jo at termination of LECM on X is
HollS, W= 34605, which is quite close o the values re-
ported in column 3 of Table L Set 0 reports the results when X
is selected at the 5% level of significance. For all other sets, o
wis 0095 (e, 95% level of significance ). The values in column
10 of Table 1 show that, except for set 0, there s better than 98%
agrecment between the cnsp partibons obtained by hardening
the eFFCM and LFCM partitions by maximum memberships,
even whenonly 5% of the data are used (set 8 in Table 1), For set
0 (Table I}, although we achieve a high acceleration factor, the
difference between labels assigned by FFCM and LFCM afier
hardening the partiions goes up o 11.51%.

We also achieved, without noticeable loss of pedfommance, a
tme saving of approxumately 70% and a space saving of neardy
6% . Column 11 shows values of the acceleration factor t,....
Comparing theseto (6e), we seethat eFECM is (apparently ) anef-
ficient extension of LECM. In instance 1.a, for example, eFFCM
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terminates 2.93 times faster than LFCM, both beginning with the
same mitialization. Thus, eFRCM completes the entire image in
about {100/2.93) == 31% of the ime that LECM requires.

Column 4 is the computed value of x2 for the given set. The
tabulated +* value is shown in column 5 at the DOF given in
column 6. Similady, computed and tabulated values of diver-
gence, and DOF are weported in columns 7, 8, and 9, respec-
tiviely.

Columns 12 and 13 present the results obtamed with mrFCM.
We used the same initial centroids and terminating condition for
mrFCM, eFFCM, and LECM. Since the final phase of mrFCM
runs LFCM on the entre data set, unless a very bad mitializa-
ton (VW ) isused in Step 2 of phase Lol mrBECM, the partitions
generated by LFCM and mrFCM with the same mitial centroid
V5, should not be much different. Consequently, the crsp par-
titons obtamed by hardening the LFCM and mrFCM partitions
using maximum memberships will be almost the same. This 15
indeed reflected by the low E,... values reported in column 12
of Table L. The acceleration factor for mrBECM vanes from (.93
to 2.08. Therefore, mrFCM fails 1o extend LFCM efficiently in
the sense of (6e) only once—set no. 7 of case 1. In all other
trials, mrFCM is also an efficient extension of LECM.

Comparing the acceleration factors of eFECM and mrFCM
in Table 1, we see that even the lowest acceleration factor for
eFFCM (1.75) 15 nearly equal o the highest acceleration factor
(2.08) of mrFCM. For eFFCM, the highest acceleration factor is
863 (for 0, 1t1s 17.22 where X s selected at o = (0.03%), and
outof the 19 instances reported in Table 1, the acceleration factor
15 more than 2.08 for all mstances except 7.b The acceleration
factors achieved with mrFCM for case 1 (see Table ) are lower
than that reported in [34]. This may be because of the difference
in the data sets used or in the ermination conditions,

For visual assessment of the performance of eFFCM, we dis-
play in Fig. 3 a typical segmented image produced by eFFCM
corresponding 0 set 6 of case 1. Fig. 3(b) is the segmented
image produced by e FFCM when the centroids 'V oare produced
with 9% of the data points and only the divergence Lest 1s sat-
isfied, set 6.a. Fig. 3(c) is the result obtained when both the x~
and divergence tests are satisfied, set6.b Figo 3(d) 1s the result
produced by LFCM on X; and Fig. 3(e) [which coincides with
Fig. 3(d)] 1s the segmentatnon produced by meFCM. For con-

sistency, we used the same initial prototypes for all four mns.
Comparison of Fig. 3(hi-(e) shows that the segmented images
are practically identical (visually).

Table 11 depicts the results for case 2, Le., when 51-2 is used
as the mput [see Fig. 4(a)] and gray levels of band-4 are used
for sample selection. For case 2, bands (3, 4) intensity values
are used as the features. In this case, #.,.. varies from 2.33 o
8.90 for eFECM, while acceleration for mrBFCM vanes between
1.57 and 3.56. Inspection of column 10 in Table 11 reveals that
eFFCM can achieve an acceleration factor of 8.90 with less than
2% degradation in pedormance as measured by ... For this
data set, a typical value of J,, when LFCM is run on X, is
T10377.1, which 1s practically the same as those reported in
column 3, Table 11, As anillustration of segmentations produced
for case 2, we show the images for set 5, Table 1L Fig. 4(b) and
ic) displays results of ¢ FFCM for instances 5.8 and 3.b; while
Fig. 4id) and (e) represents the segmented images for LECM
and mrFCM. Again, there 15 “good " visual agreement between
the el and approximate segmentalions.

Discounting the case O trials i Table 1 (the only trals that
used o = 0,05 as the statisucal sigmblicance threshold), Tables 1
and IT have 26 eFECM (and 16 mrFCM) wests. The average siee
of X, over the 26 tnals was &N = 0.23880.0 —that 15, on av-
erage, we need about 24% of the image in order for X, 1o be ac-
ceptable at ev — 0,495, The average acceleration of eFFCM was
4.20), compared to an average of 1.63 for mrFCM. Therefore,
for an image that takes, for example, 30 min 0 segment with
LECM, we can expect completion with mrFCM in 184 min,
while eFFCM cuts the run-time to 7.14 min. On the other hand,
the average accuracy of eFECM at approximating LECM in 26
trials is .. = 0LE7%, whereas mrFCM (almost) always pro-
duces complete agreement between pixel labels reproduced by
itsell and LECM. Therefore, ina 2000 > 53000 image, we expect
about 87 00 pixel labels (m 10 million) produced by ¢FRCM
and LFCM 1o disagree. Combining these facts, it seems safe 1o
assert that eFFCM will probably be several times faster than
mrBECM, but at a cost in accuracy of perhaps 1% of the LECM
labels found by mrFCM. From this it is clear that ¢FECM and
mrECM can be combined o effect a further tradeoft between
saved tme and accuracy lost when LFCM 1s a desimble seg-
mentation method but is o costly 1o run.
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VIL CONCLUSIONS AND [S5UES FOR FURTHER RESEARCH

A. General Conclusions

There are two main contributions of this paper: 1) the use
of simple hypothesis tests, such as v or divergence, 1o select
subsets of pixels whose intensities are representative of image
regions, and whose feature vectors comprise training data for
computatonally mmtensive learning models vsed in image pro-
cessing; and 2) the inroduction of an (empircal) notion of effi-
cient extensibility of imaging operators from the raining pixels
to the rest of the image. These two ideas are applicable o “large
mmage” processing, and are designed 1o save tme and space by
running the “literal”™ learning algorithms on the training data,
and then approximating the results which a literal algonthm
might obtain on the emaining pixels m the image. This s done,
of course, at a sacrifice in accuracy (where “accuracy™ means
closeness 1o the output of the fiterafl version).

In ourproposed scheme, suppose we accept a sample oblamed
after f-steps enhancement. Therefore, the hypothesis has been
tested & 4 1 times before the sample is accepled. Of these & — 1
tests, in the first & cases, the hypothesis was rejected at the o level
of significance. A natural question is: Iy the probability that one
of these rejections s by just chance (Le., it was wrongly rejected
when it was actually true or acce prable) ? 1f we assume the prob-
ability of committing a Type-lerror as a Bernoulli process, then
the probability of committing at least one Type-lerror in F trials
isy = {1 —(1— )%, Forexample, withee — 0L05and i — 2,
~ = (LTS, Notice that ~ is greater than o+ = 0065, 1 the number
of tests 1o be performed is known beforehand then the Bonferroni
correction can be used to adjust o downwards so that the overall
chance of Type-1 error remains . However, in the present con-
texl, this comrection cannot be done (because the number of wests
Lo be perdormed 1s not known a-priori), nor iLis necessary. Iis
nol necessary because if the hypothesis is rejected by chance,
we will enhance the sample, and enlarging the sample will in
tum make a better representation of the image.

Another point worth investigating is the power of the tests
used here. Let [ be the probability of wrongly accepting a hy-
pothesis when it is false. Thus, 3 is a function of the alterna-
tive hypothesis H,. The complementary probability | — 3 is the
power of the test of hypothesis Hy against the alternative hy-
pothesis IT) [16]. To get an idea about the power of the tests, a
lot of simulations must be done taking different distributions as
alternative hypotheses. We leave this for a future work.

Since our problem is o select a sample irrespective of the
learning task, estimation of an asymptotic error rate bound as
done in [ 12] is quite difficult, because the definition of error will
depend on the leaming task. Moreover, Domingos and Hulten
[ 12] computed the loss with respect o centroids obtamed vsing
finite samples and infinite samples (10 million data points). In
our case, the population is always finite, so we can at best com-
pare the centronds prodoced by ¢FFCM on X, and FCM on
the entire X, Nonetheless, securing an asymptotic bound on
the error rate for FCM following the method in [12] for crisp
r-means is an interesting and useful idea for future research.

B. Conclusions for Acceleration of FCM

We exemplified our sampling and extension methods by ap-
plying them o a typical image processing problem—segmenta-

tion with the (literal) FCM clustering algorthm, resulting in the
new approximation echnigque eFECM. Based onour hmited ex-
periments, we find that the new method is about 2.5 times faster
than mrFCM, and 4.2 times faster than LFCM, at an average cost
in changed pixel labels of less than 1%, Our method uses, on av-
erage, aboul one-fourth of the image data during training, and
extended segmentations are (visually) indistinguishable from
their literal relatives.

To conclude, we make a few more remarks about eFFCM.

1} Unlike other multistage schemes (e.g., mFCM), eFECM
runs iterative LFCM only once, and on a relatvely small
subset of X,

2) Unlike AFCM, ¢FFCM does exact optimization of J,, for
a small subset of X,

3) The x° and divergence tests do not necessarily agree. If
cither statistic satisfies the hypothesis test, it can be as-
sumed that the sample tested is a good representative of
A s0 cither st can be used.

4) The size of X cannot be fixed prior o mn-time. The ac-
tual time and space meductions achieved by eFECM de-
pend on the distibution of gray values in & and the par-
ticular sample of I chosen. Experimentally, the size of
the selected sample s almost always less than one-third
of the size of the image, and on average reduces compu-
tation time by about 76%.

5) When X 1s too large to load in host memory, AFCM and
mrFCM cannot be used; but eFFCM will provide approx-
imate FCM clustedng in X as long as & can be mounted
in the host.

We feel that these are significant improvements 1o the utility
of FCM for LARGE images. As (f, J. L) decreases, it becomes
more and more attractive to simply un LECM on the whole
image. mrFCM can be usefully modified with our idea so that
LECM is used only twice: once on X, and then on X, with the
terminil cluster prototypes generated by LFCM on Y, as mput
to Step 5 of mrFCM. To build confidence in our method, more
simulations need to be done with images of different sizes and
complexity.
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