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Multispectral Image Segmentation Using the
Rough-Set-Initialized EM Algorithm

Sankar K. Pal, Fellow, IEEE and Pabitra Mitra, Student Member, IEEE,

Abstract—The problem of segmentation of multispectral
satellite images s addressed. An integration of rough-set-theo-
retic knowledge extraction, the Expectation Maximization (EM)
algorithm, and minimal spanning tree (MST) clustering is de-
scribed. EM provides the statistical model of the data and handles
the associated measurement and representation uncertainties.
Rough-set theory helps in faster convergence and in avoiding
the local minima problem, thereby enhancing the performance
of EM. For rough-set-theoretic rule generation, each hand is
discretized using fuzzy-correlation-based gray-level thresholding.
MST enables determination of nonconvex clusters. Since this is
applied on Gaussians, determined by granules, rather than on
the original data points, time required is very low. These features
are demonstrated on two IRS-1A four-band images. Comparison
with related methods is made in terms of computation time and
a cluster quality measure.

Index Terms—Clustering, granular computing, minimal span-
ning tree, mixture modeling, rough knowledge encoding.

L. INTRODUCTION

S EGMENTATION is a process of partitioning an image
space into some nonoverlapping meaningful homogeneous
regions. The success of an image analysis system depends on
the quality of segmentation. Two broad approaches o segmen-
tation of remolely sensed images are gray-level thresholding
and pixel classification. In thresholding [1], one nes o get a
set of thresholds {4575, .00 Fy ) such that all pixels with gray
values in the range T, T 1)) constitute the sth region type. On
the other hand, in pixel classification, homogeneous regions are
determined by clustering the feawre space of multiple image
bands. Both thresholding and pisel classificaion algorithms
may be either local (e, context dependent) or global (e,
blind o the positon of a pixel). The muoluspectral nature of
most remote sensing images makes pixel classification the
natural choice for segmentation.

Stanisucal methods are widely used in unsupervised pixel
classification framework because of their capability of handling
uncertainties adsing from both measurement error and the pres-
ence of mixed pixels. In most stabstcal approaches, an image
is modeled as a “random field” [2] consisting of collections of
two random vanables ¥ (30 es and A (X .zs. The
first one takes values in the feld of “classes,” while the second
one deals with the field of “measurements” or “observations.”
The problem of segmentation is to estimate Y from Y. A
general method of statistical clustering is o represent the
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probability density function of the data as a mixture model,
which asserts that the data are a combination of & individual
component densities (commonly Gaussians), comesponding
to & clusters. The task is w identify, given the data, a set of k
populations in it and provide a model (density distrbution) for
each of the populations. The Expectation Maximization (EM)
algorithm is an effective and popular echnique for estimating
the mixture model parameters. It iteratively refines an initial
cluster model wo betier fit the data and terminates at a solution
that 1s locally optimal for the underlying clustering critenon
[3]. An advantage of EM is that it is capable for handling
uncertainties due w mixed pixels and helps in designing
multivalued recognition systems.
The EM algorithm has the following limitations.

* Number of clusters needs 1o be known.

* Solution depends strongly on initial conditions.

* It can only model convex clusters.
The first limitation 1s a senous handicap in satellite image pro-
cessing, since in real images the number of classes is frequently
difficult 1o determine a priori. To overcome the second, sev-
eral methods for determining “good™ iitial parameters for EM
have been suggested, manly based on subsampling, voting, and
two-stage clustering [4]. However, most of these methods have
high computational requirement and/or are sensilive 10 noise.
The stochastic EM (SEM) algorithm [3] for segmentation of im-
ages 15 another attempt in this direction that provides an upper
bound on the number of classes, robustness o initialization, and
fast convergence.

Rough-set theory [6] provides an effective means for analysis
of data by synthesizing or constructing approximations (upper
and lower) of set concepts from the acquired data. The key no-
tions here are those of “information granule™ and “reducts.” The
information granule formalizes the concept of finile-precision
representation of objects in real-hife sitwations, and reducts nep-
resent the core of an nformation system (both in terms of ob-
jects and features) in a granular universe. An important use of
rough-set theory and granular computing has been in generating
logical rules for classification and association [7]. These logical
rules correspond to different important regions of the feature
space, which represent data clusters.

In this paper, we exploit the above charmcierstics of the
rough-set-theoretic logical rules to oblain an imbal approximi-
tion of Gaussian mixture model parameters. The crude mixture
model, after refinement through EM, leads o accurate clusters.
Here, rough-set theory offers a fast and robust (noise-insensi-
tve) solution o the minalization, besides reducing the local
minima problem of iterative refinement clustering. Also, the
problem of choosing the number of mixtures is circumvented,
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Fig. 1. Block diagram of the proposed clustering algorithm.

since the number of Gaussian components o be used is
automatically decided by rough-set theory.

The problem of modeling nonconvex clusters 15 addressed by
constructing a minimal spanning tree (MST) with each Gaussian
component as nodes and Mahalanobis distance between them
as edege weights. Since MST clustering is performed on the
Gavssian models rather than the individual data points and smee
the number of models is much less than the data points, the
computational time requirement is significantly small. A block
diagram of the integrated segmentation methodology is shown
in Fig. 1. Discretization of the feature space, for the purpose
of rough-set rule generation, is performed by gray-level thresh-
olding of the image bands individually.

Experiments were performed on two four-band IRS-1A
satellite images. Companson is made both in terms of a
cluster quahity index [1] and computational time, in order 1o
demonstrate the effect of the individual components.

II. MIXTURE MODEL aND EM ALGORITHM

The mxture model approximates the data distribution by fit-
ting & component density functions fu, b = 1.....%& o a
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dataset £ having e pattems and o feawres. Let . © Y be a
pattern; the mixture model probability density function evalu-
ated atx is

4

pla) =S we el ). (1)

h=1

The weights iy, represent the fraction of data points belonging
to model &, and they sum Lo ong fE; s = 1), The functions
Suirlanis ke L.k, are the component density functions
modeling the points of the hth cluster. i, represents the specific
parameters used 1o compute the value of fi,. We use Gaussian
distribution as the choice for component density function. The
quality of a given set of parameters @ = [y, o, M) 0 =
L...., &}, is determined by the log-likelihood LJ8) of the data,
given the mixture model. The EM begms with an initial estima-
tion of & and iteratively updates it such that L] is nonde-
creasing. We outhine the EM algonthm in the Appendix.

II. ROUGH SETS

We present some prelimimanes of mough-set theory that are
relevant to this paper. For detals one may refer o [6] and [7].

An information svstem is a pair & = {T7, 4}, where UM is a
nonempty finite set called the wniverse, and A is 8 nonemply
finite set of arrributes. An atribule a4 can be regarded as a func-
ton from the domain €7 o some value set V.

With every subset of attributes /¢ C A, one can easily asso-
ciate an equivalence relation Iz on U7: Tz i,y € I for
every o C Boalw) = aiyi]. Then fy =1, 5 /s

We now define the notions relevant 1o knowledge reduction.
The aimis toobtain redocible but essential parts of the knowl-
edge encoded by the given information system; these would
constitute reducts of the sysiem. Reducts have been nicely
characterized in [7] by discemibility matrices and discernibility
Junctions, Consider T7 a0 o fand A e e |
in the information system & = {7, 4%, By the discernibility
matrix, M) of & means an w5 matrx such that

g = 1w & Arale) #Fale ]} (2)
A discernibility function fs isa function of m Boolean variables

ety corresponding o the attribules oy, ., 5, TESPEC-
tively, and defined as follows:

i Ty . W T TR e MR e D
(3)
where \.-“-:_'f:,-_;] is the disjunction of all variables « with i« & e
Itisseenin [7] that {e;, .. .. ey, } 1sa reductin & if and only if

i - A, 18 4 prime implhicant {constituent of the disjunctive
normal form) of fz.

IV. ROUGH SET INITIALIZATION OF EM PARAMETERS
A. Discwetization of Feature Space
Discretization of the feature space 15 performed by gray-level
thresholding of the individual band images. Thus, each attribute
iband) now takes on valuesin{ 1.2, ..., N + 1} where ¥ is the
number of threshold levels for that band. The fuzzy correlation
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(e pie ), defined in the Appendix) between a fuzzy represen-
tation of an image (14 ) and its nearest lwo-lone version (jis) is
used. For details of the above method, one may refer to [8]. We
have considered correlation as a measure of thresholding, since
it is found recently to provide good segmentation in less com-
putational time compared o similar methods [ 1], However, any
other gray-level thresholding technigue may be used.

B. Generation of Rough-Set Reducts

Here we discuss the methodology for generating rough-set
reducts, which represents crude clusters in the feature space. Let
there be v sets of discretized objects in the attribute-value table
having identical attnbute values, and let ther cardinalities be
st = Lo Lel mgeong oo ong: denote the distinet
elements among vy oL Py, such that sy 5 g = -2 =
#ipz, - Let a heuristic threshold function be defined as [9]

T

L R =g

ro1 . A1
LS e fil
Th )

where This aconstant{ 0.5, say), so that all entries having fre-
quency less than itare eliminated from the table, resulting in the
reduced attribute-value table &, The value of 1r is high if most
of the ry.s are large and close o each other. The above condi-
tion oceurs when a small number of large clusters are present.
On the other hand, if the My s have wide variation among them,
then the number of clusters with smaller size increases. Accord-
mgly, "I attains a lower value automatically.

From the reduced attnbute-value table obtamned, reducts are
obtained using the methodology deseribed in Section 111 From
the reducts, one obtams a rule v, viz. I, — clusler,, where I s
the disjunctive normal form (d.n.f) of the discernibility function.

Also, define the support factor =f; for a rule r, as

o, &
H.['-l' T f:‘::'
T s,
=1
where vy . 7 = ..., p are the cardinality of the sets €; of

identical objects belonging 1o the reduced attnibute-value table.

C. Mapping Reducts o Mixture Parameters

We describe below the methodology for obtaining the mixture
maodel parameters, namely, the number of component Gaussian
density functions (&) and weights (), means (), and var-
ances (¥, ) of the components from the rough-set rules gener-
ated.

1y Number of Ganssians (k) Consiler the antecedent part
of arule ;. For each such conjunctive rule, assign a com-
ponent Gaussian. Let the number of such formulae be &;
then we consider & Gaussians.

2) Component weights () Weight of a each Gaussian is
set equal to the normalized support factor 3f; [obtained
using (5)] of the rule (v;) from which it is derdved,
sl f ZL -ali

3) Means ({1, A rule consists of conjunction of a number of
literals. The hiterals are mterval variables of pixel values
of a feawre (band). The component of the mean vector
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along that feature is set equal to the center () of the cor-
responding interval. Note that all features do not appear
in a formulae, implying those features are not necessary
Lo charactenze the corresponding cluster. The component
of the mean vector along those features that do not appear
are set Lo the mean of the entire data along those featres.

4) Variances () A diagonal covariance matrix is consid-
ered for each component Gaussian. As in means, the vari-
ance for featre j is set equal to half the width of the in-
terval corresponding to that feature appearing in the rule.
For those features not appearing in a formulae, the vari-
ance 15 set o a small random value.

V. CLUSTERING OF GAUSSIAN COMPONENTS USNG MST

I this section, we describe the methodology for obtaiming the
final clusters from the Gaussian components used 1o represent
the data. An MST-based approach is adopted for this purpose.
The MST isa graph that connects asetof ¥ points so that a com-
plete “tree” of & — 1 edges is buill (A tree is a connected graph
without eycles.) The tree is “minimal”™ when the total length of
the edges is the mimmuom necessary W connect all the points. An
MST may be construcled using either Kruskal’s or Prim’s algo-
rithm. The desired number of clusters may be obtained from an
MST by deleting the edges having weights above a threshold.
The threshold is selected from maxima of the denvative of the
edge weights.

Instead of wsing individual points, we construct an MST
whose vertices are the Gaussian components of the mixture
model, and the edge weights are the Mahalanobis distance (1)
between them. £ is defined as

132 = e M]T{l_:;(}:l | 217l (6

where i) . g and 3y 3y are the means and vadances of the pair
of Gaussians.

MNote that each cluster obtained as above 15 a mixture model
in itself. The number of its component Gaussians is equal to the
number of vertices of the corresponding subgraph. For assigning
a point () 1o acluster, the probability of belongingness of x to
each cluster (submixture models) s computed usmg (1), and the
one with the highest probability p(x] is assigned 1o o, Le., we
follow the Bayesian classification rule.

V1. EXPERIMENTAL RESULTS

Results are presented on two LRS- 1A (four-band) images. The
tmages woere taken usingthe LISS-IL scanner n the wavelength
range 0.77-0.86 pm, and it has a spatial resolution of 3625 m
#3625 m. The images are of size 512 = 512, They cover areas
around the city of Calcutta and Bombay, respectively.

For the Calcutta mmage, the gray-level thresholds obtamed
usimg the correlation-based methodology (descnbed in Sec-
ton IV-A) are band 1: {34, 47}, band 2: {20, 29}, band 3:
{24, 30}, and band 4: {31, 36}. For the Bombay image, the
corresponding values are {36, 60}, {22, 51}, {23, 68}, and
{11, 25%. Afler discretization, the atribote-valoe table is
constructed. Eight rough-set rules (for the Calcutta image)
and seven rules (for the Bombay image), cach representing a
crude cluster, 15 obtained. The rules are then mapped o imtial
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TABLE 1
COMPARATIVE PERFORMANCE OF INFFERENT CLUSTERING METHODS
FOR THE CALCUTTA IMAGE

Algarithor | NWoo of | Tades | Time
clustors iae]
Lyl 3 5.01 1720
[ ) h2h ik
M & §.a7 471
LM b h4l Kt
LR b fii2] Ti21)
EXMMST h H.44 1415
FEM & 5495 2011
Propose:! & Fav 2D

parameters of the component Gaussians and refined using
the EM algorithm. The Gaussians are then merged using the
MST-based technigue discussed in Section V; thereby resulling
in five clusters (from original eight and seven Gaussians). For
both mmages, progressive improvement wias observed from
the initial gray-level thresholding of the individual bands,
clustering using crude mixture model obtained from rough-set
rules, clusterng using the refined mixture model obtained by
EM, and finally to graph-theoretic clustering of the component
Craussians.

The pedormmance of the proposed hybrnd method is com-
pared extensively with vanous other related ones. These involve
different combinations of the individual components of the
proposed scheme, namely, mough-set mitabeaton, EM and
MST, with other related schemes, e.g., random initialization
and k-means algonthm. The algorthms compared are

1y mandomly mitialized EM and f-means algonithm (EM,

KM) (best of five independent random initializations)

2) rough-set-initialized EM and »-means (centers) algo-

rthm (REM. RKM)

3) EM initialized with the output of f-means algorithm

(KMEM)
4y EM with mndom imigalization and MST clustering
(EMMST)

5) fuzey &S-means (FKM) algorithm.

For the purpose of qualitative comparison of the segmentation
results, we have considered an index 7 [ 1], which measures the
ratio of total variation and within-cluster variation. The higher
the & value is the better is the segmentation. The detailed defini-
tion of the index & is provided in the Appendix. We also present
the total CPU tme required by these algorithms on a DEC Alpha
400-MHz workstation. It may be noted that except for the algo-
rithms involving rough sets, the number of clusters is not auto-
matically determined.

Comparative results are presented m Tables 1 and 11 Seg-
mented images of the city of Caleutia obtained by these algo-
rithms are also presented in Fig. 3, for visual inspection. For
the Bombay image, we show the segmented versions only for
the proposed method and KM algorithm having the highest and
lowest /7 values. The following conclusions can be arrived at
from the results:

1y EM versus KM: IUis observed that EM s superior 1o KM

both with random and rough-set imtalization. However,
f-means requires considerably kess time compared to EM.
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TABLE 11
COMPARATIVE PERFORMANCE OF INFFERENT CLUSTERING METHODS
FOR THE BOMBAY IMAGE

4 y;-:‘)-"Lll;r: \lu ar liees & | Line
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Ih o G0l L34
M i #5450 il
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BLn{ i 114 2Y7
EMEM v 17 itk
LadisT & 145 L7hh
KM 3 9,20 Lavuy
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Fig. 2. Convergence of log-likelihood of EM with rough-set and random
initialization.

The pedormance of fuzzy f-means (FKM) is interme-
diate between KM and EM, though s tme requirement
15 more than EM.

2y Effect of Rough-Set Initialization: Rough-set-theoretic
initalization (REM, RKM) is found to improve the &
value as well as redoce the time requirement substanbally
for both EM and KM. Rough-set-initialized EM 1s seen
to converge in much fewer steps compared 1o randomly
mitalized EM (Fg. 2). Rough-set imtialization 1s also
superior 1o KM iitialization { KMEM).

3) Contribution of MST: Use of MST adds a small compu-
tational load to the EM algonthms (EM, REM); however,
the cormesponding integrated methods (EMMST and the
proposed algorithm) show a definite increase in /3 value.

4) Integration of all the three components, (EM, rough set,
and MST) in the proposed algorithm produces the best
segmentation in terms of & value in the least computa-
tion time. This is also supported visually if we consider
Figs. 5 and 6, which demonstrate the zoomed image of
two man-made structures, viz, river bridge and airpon
strips of the Caleutta image corresponding to the pro-
posed method and KM algorithm providing the highest
and lowest £ values, respectively.

5y Computation Time: [U1s observed that the proposed algo-
rithm requires significantly less time compared to other
algorthms having comparable performance. Reduction
in time is achieved due o two factors. Rough-set ini-
tialization reduces the convergence time of the EM al-
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(h)

Fig. 3. Segmented RS image of Caleutta using (a) proposed method, (h) EM with MST (EMMST), (c) fuzey f-means algorithm{FEM), (d) rough-set-initi ali zed
EM {REM), (e) EM with f-means initialization { KMEM), (f) rough-set-initialized f-means (REM), {g) EM with random initialization (EM), and {h) &-means

with random inttialization {KM).

gorithm considerably, compared 1o random initialization.
Also, the MST, being designed on component Gaussians
rather than individual data points, add very little load to
the overall time requirement, while improving the perfor-
mance significantly.

WVIL. CONCLUSION AND DISCUSSION

The conwibution of the paper is twofold. First, rough-set
theory is used to effectively circumvent the initialization and

local minima problems of the EM algorithm. This also im-
proves the clustedng performance, as measured by the & value.
Besides, the number of clusters is automatically determined.
The second contribution lies in the development of a method-
ology integrating the merits of graph-theoretic clustering (e.g.,
having the capability of generating nonconvex clusters) and it-
erative refinement clustering (e.g., having a low computational
time requirement). At the local level, the data are modeled by
Gaussians, i.e., asa combination of convex sets, while globally
these Gaussians are partitioned using a graph-theoretic tech-
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Fig. 5. Zoomed images of a brdge on the river Ganges in Caloutta for
(a) proposed method and (h) &-means with random initialization {KM).

(1)

(b)

Fig. 6. Zoomed images of two pamllel airstrips of Caleutta airpont for
(a) proposed method and (h) &-means with random initialization {KM).

nigue, thereby enabling fast and efficient detection of the non-
convex clusters. The reduction in time is due to the ments of
granular computing. Although the methodology of integrating
rough sets, fuzzy sets, MST, and the EM algorithm has been ef-
ficiently demonstrated for segmenting remole sensing images,
the concept can be applied 1o other unsupervised classification
problems, even for mining large datasets.

1t may be noted that the role of the threshold function of (4) is
to reduce the size of the mixture model by eliminating the noisy
pattern representatives thaving lower values of 2, ) from the re-
duced atribute-value table, thereby reducing the computational
time. If no such reduction is pedformed, the computational time
increases, but the final mixture model obtained remains almost
the same, since the initial insignificant Gaussian components get
merged with the larger ones when the EM algorithm converges.

APPENDIX
EM ALGORITHM

Given a dataset £} with e patterns and « continuous features,
a stopping olerance ¢ = (), and mixture parameters B4 at itera-
tion 4, compute ¥ 1 atiteration 5 1 as follows.
Step 1) I'-Step: For pattem » £ I} Compute the member-
ship probability of  ineach cluster h = 1,... . &
wi fe e gy 500

Z u’:-'l [ )l_.:;?:' ; l-l,l :

e
iy ()

Step 2) M -Step: Update mixture model parameters.

R r'jl [

1 S 1w i)
T = o -J:l.,::"'+ A
i nlwlopn, "
e 3w r)
TE Fel
R - i 1o
32—l e — p.':fll i
1 s dd
Er i - : T Sl
2wyl

e

Stopping Criterion: If Li@) — Li®i+y < ¢ siop. Else
set j — 3+ 1 and go 1w Step 1), L8] is given by

H

Z e (] pon . ¥ )

h=1

Li®y =" log
wE L
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Fuzzy Correlation: Fuezy correlation ©0]a, ps] is defined

as [8]
ol =1 1
B a, =1l - =
AL X+ A
T T
A DD {0 = 3T {L— p WP ] 8)
=l =
with ¥) = Zf_u [fep i) — 1] Rl and Xo = Ef;-,L[EJ;.g[E:I—
78] = comstant; £ — | is the maximum gray level; and

Brd) s the frequency of the ith gray level. The mavima of the
£ ey po ) represent the threshold levels,
Index 3: 1 is defined as [1]

YN, X TAL A
g=——i= )
v }-\ rjk J'TI:.Y{_T' — T‘;}
=1 a=1
where n; is the number of points in the ith (i = |,.... &)
cluster; X;; is the feature vector of the jth pattern
if = |,....m in cluster i; X, is the mean of n; pal-

terns of the ith cluster; v is the total number of patiems; and X
is the mean value of the entire set of pattems.
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