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Abstract

Waves that occur at the surface of a falling film of thin power-law fluid on a vertical plane are investigated.
Using the method of integral relations an evolution equation is derived for two types of waves equation which are
possible under long wave approximation. This equation reveals the presence of both kinematic and dynamic wave
processes which may either act together or singularly dominate the wave field depending on the order of different
parameters. It is shown that, at a small flow rate, kinematic waves dominate the flow field and the energy is ac-
quired from the mean flow during the interaction of the waves, while, for high flow rate, inertial waves dominate
and the energy comes from the kinematic waves. It is also found that this exchange of energy between kinematic
and mertial waves strongly depends on the power-law index n. Linear stability analysis predicts the contribution
of different terms in the wave mechanism. Further, it is found that the surface tension plays a double role: for a
kinematic wave process, it exerts dissipative eflects so that a finite amplitude case may be established, but for a
dynamic wave process it yields dispersion. Further, it is shown that the non-Newtonian character »# plays a vital role
in controllmg the role of the term that contains surface tension in the above processes.

Keywords: Power-law fuid film; Waves on falling film:; Stability of power-law fluid film

1. Introduction

Wave motion in a thin film can be observed when the rain water overflows the eaves trough, flows
down a window pane, or when one hoses down during cleaning the windscreen of a car. The dynamics
of thin film waves has received much attention from various industries due to its dramatic effect on
transport rate of mass [1], heat [2,3] and momentum [4] in designing distillation and adsorption columns,
evaporators, condensers, nuclear reactor emergency cooling system, ete. Knowledge of film waves is
necessary in connection with the modern precision coating of photographic emulsions, magnetic material,
protective paints, flow of molten metal/lava, etc. Study on the wave evolution on a falling film started
with the pioneering expernment by Kapitza [5] and Kapitza and Kapitza [6]. Up to date works on this
fascinating problem can be seen by the review works of Fulford [7], Lin and Wang [8], Chang [9]. It is
interesting to note that most of the studies on the development of waves in the thin film on the surface
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of an inclined /vertical plane assumed the fuid to be Newtonian. These results of Newtonian fluid cannot
completely describe the rheological behavior of the non-Newtonian fluid. Further, it is known that most of
the fluids used in industry are basically non-Newtonian. Many mathematical models have been proposed
to describe the characteristics of simple non-Newtonian fluids by several authors viz. Rajagopal [10],
Malek et al. [11] and others. Malek et al. [12,13] studied the different models along with the existence
of regularity of the solutions and the stability of the rest state for non-Newtonian fluids. Although
the above references do not deal with the film flow down an inclined/vertical plane, they do discuss
many important general issues concerning the non-Newtonian fluids. Some studies on linear stability of
non-Newtonian liquid film flow were made by Gupta [14] considering a second-order fluid; by Liu and
Mei [15] a Bingham fluid, Lai [16] for an Oldroyd-B fluid and Hwang et al. [17] and Berezin et al.
[1&8] for power-law model. Using Benney's [19] approach, Dandapat and Gupta [20] studied the stability
of a falling film of an incompressible second-order fluid with respect to two-dimensional disturbances of
small but finite amplitude. They found that in the presence of surface tension the stability of How of the
falling film is supercritically stable and an initially growing monochromatic wave reaches an equilibrium
state of finite amplitude. Further, they found that the equilibrium amplitude first increases with the elastic
parameter M(say) of the fluid, reaches a maximum and then decreases with increase in M. In a recent
study Dandapat and Gupta [21] have shown the existence and the role of the solitary wave in the finite
amplitude instability of a layer of a second-order fluid flowing down an inclined plane. Ng and Mei
[22] studied the roll waves on a layer of mud modelled as a power-law fluid Howing down an inclined
plane. They found through linearized instability that the growth rate of unstable disturbances increases
monotonically with the wave number; this prevented them from predicting any preferred wavelength for
the roll wave. Further, they observed that the existence of long roll waves depends on the power-law
index even if the corresponding uniform How is stable. It is to be pointed out here that Ng and Mei
[22] have neglected the surface tension term in their analysis. It is well known that the wawvelength,
amplitudes and their relation with the flow rate are of primary importance for the design of process
devices. For a better understanding of a physical phenomenon it is therefore desimble to investigate the
types of waves that occur under various conditions.

2, Mathematical formulation of the problem

Consider a two-dimensional laminar flow of a thin layer of a power-law fluid on a vertical plane. A
co-ordinate system is defined with the x-axis along the direction of gravity and the z-axis normal to the
plane (Fig. ).

The governing equations are
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where w, v, p and p are the longitudinal, transverse velocity components, density and the pressure,
respectively. Here 7;; is the stress tensor defined by

TJ:.I' = EHM[EDHDH ]‘“_ ; ’_JDJ:.H 1:4:|
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Fig. 1. Sketch of the problem.

where
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denotes the strain-rate tensor, u, is the viscosity coefficient of dimension [ML~'T"~%] and n is the
power-law index which is positive. #n = | represents a Newtonian Auid with constant dynamic coefficient
of viscosity y, while # <1 and =1 correspond to the case of pseudoplastic (shear-thinning) and dilatant
{shear-thickening) fluids, respectively.
The boundary conditions are

u=0 v=0atz=0, (6]
a2 i
Tis [l— (ﬂ)] —{r_“—r:]la =0 atz=h, (7]
and
—1 —3/2
o z o o 2 i i 3
=Pt el ) = War- 0] |V +m=c— |14+ | — atz="rh,
cx cx clx o cx

(8)

where o is the surface tension, py is the atmospheric pressure and # is the deflection from the mean
'ij-'pth .;’I'“.
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Fig. 2. Velocity profiles for different values of n. Thin, dotted and thick lines correspond o n = 12,1, 04, respectively.

The kinematic condition at the free surface is
a,=_'T+u;'—T at z=h. (9)
[

The basic velocity [w(z),0] in the steady flow down the plane is

A e
{1+2njﬁﬂll_(1_h;) ] (10)

C(1+n) o

To obtain Eq. { 10 we have used Eqs. (4) and (3) in the momentum equation and the no-slip condition
u(0)=10 and the condition of zero shear stress at the free surface = = fy which is the undisturbed layer
thickness. Here, i1y is the depth-averaged characteristic velocity defined by
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WVadation of the steady uniform flow with z/hy defined in (10) is plotted in Fig. 2. It is clear from the
figure that the power-law index » has a strong effect on the shape of the velocity profile. The steady
discharge rate per unit width is

|
BT n g {14
== (l+2n) (p,.) o (12)

We assume the charactenstic longitudinal length scale to be fy whose order may be considered the same
as the wavelength 4y and the mean film thickness #y as the length scale in the transverse direction. We
define the dimensionless quantities as

x =", (hz)=mhih",z2%), 1= (E‘r—ﬂ) t*, u=ggu", v= (?) g™, p—pﬁgﬂp“,,
[ [
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Using (13} in {1)—(3) and in (6)—(9), after dropping the asterisk we obtain
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where Re is the Reynolds number
Re=

W is the Weber number
T
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for long wave length approximation. Using the dimensionless form of (4) and (35) in {14)—(20)

under usual boundary-layer approximations for long-wave expansions, we obtain
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The boundary conditions are

u=v=0 atz=0, (24

::—:—-D at z=#h, (25)

p= pﬂ—szg:::?;; at z=h, (26)
and the kinematic condition is

%+u%;u atz=A#h {(27)

The z-momentum equation (23) and the normal stress boundary condition (26) are used to eliminate
dp/dx in Eq. (22) and the resulting system reduces to

u, +1.=0, (28)
e+ s+ ot = —— [ 2222Y (1 4 @ W) + (e} (29)
) X :_}:RE n > XY 'z z k]

u=0=p atz=10, (30)
w.=0 atz=h(x1), (31)
B+ uh,=v atz=h(x,1), (32)

here the subscripts denote the derivative of the respective variables ¢, x and =.
Integrating (28 and (29) with respect to = from 0 to &, we get

fy+ g, =10, (33)
¢y 1 f1+2nY 3 qy
o+ () et (52 formnan- (8]

where the flow rate per unit film width is

qu[lud:, (35)

and the shape factor f is defined as

2(1+2n)
= wrdz= 1 36

C hﬁzﬂﬁ (2+ 3n) (36)
For shear-thinning fluids, 0 <n < 1, the range of fi is 1 < ff < ?. & is defined as the depth-averaged
velocity

I
'ﬁ:h"f udz=2, G7)
|:" h

It is to be noted here that the momentum integral method has been used by earlier researchers in
connection with the boundary layer theory of Schlichting [23] and on stability theory starting from Kapitza
[5] in connection with the wave film. Although used later by Maurin and Sorokin [24], Alekseenko et al.
[25], Jurman and McCready [26] and others, Shkadov [27] used first for vertical fluid film for Newtonian
fluid.
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3. Derivation of two-wave equation

To study the slightly non-linear waves, let us assume that
h=1+H(xt), g=1+0{xr) HQO<], (38)

where H and @ are dimensionless perturbations of the film thickness and How rate, respectively. Sub-
stituting (38) into (33) and (34) and retaining the terms up to second order fuctuations, the continuity
and momentum equations reduce to

H, + 0, =0, 39)

1l +2n

1 a I+
) [(1+ 2m)H —nQ + & WH,]/(eRe) = F’;E ( PN ) H?

0, + B0, — H,) - (
—2nHQ, - 2[00, — (1 = 2n)HQ, — OH, + (1 — n)HH,]
+ ( I J;zn) [mil = nJQ2 +(1 +2nj;;3w.fff{m]/{s Re). (40)

2

Egs. (39) and (40) can be expressed in a single equation for the film height disturbance H by differ-
entiating Eq. (40) with respect to x and eliminating O and its derivative according to the procedure
described below:

I. To eliminate the linear derivative of {0 use Eq. (39) and
2. for the non-linear terms, approximation methods of quasistationary process are to be used.

Alekseenko et al. [28] have used this method for a vertical film. In this method the basic assumption used
in conformation with the experimental observation that the wave generally evolves in shape rather slowly
with the downstream distance. Following Alekseenko et al. [28], we assume the system of co-ordinate
moving with velocity ¢, which allows the co-ordinate transformation (f,x) — (£, =x — ct). It is further
assumed that the phase velocity ¢ is approximately constant for quasistationary waves in the interval As.
Under this transformation Eq. (39) gives

H, — cH; + Q:=0. (41)

The wave profile in a moving co-ordinate system is deformed slightly in the quasistationary process; this
approximates Eq. (41) as eff: = from which the following relations are obtained:

O=cH, (42)
¢ ¢
a- e e

After using rule (i) and substituting relations (42) and (43) where needed in Eq. (33), we get

4 e @ n o e AWA LA\ EJ :
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Fig. 3. Variation of wave velocities ¢y, o and ¢p with n. Thick, thin and dotted lines correspond 0 o, o and o3, respectively.

where

241 nd ca=BVE—P (45)

L=

are the respective charmcteristic wave velocities. It is clear from Fig. 3, that ¢, decreases from a very
large value to an asymptotic value 2 as » increases, whereas ¢(¢,) increases(decreases ) with » but their
(¢, ca) variation with » is very slow compared to that of .

It should be noted here that weakly nonlinear waves are small in curvature; therefore, the contribution
from the higher order derivatives of the quadratic terms on the right hand side of (44) is very small and
hence may be neglected. Therefore Eq. (44) consists of two-wave structure which reveals that two-wave
processes occur simultaneously on thin liquid film. They are according to [29] (i) Kinematic waves: this
is the lower order wave with characteristic velocity ¢y. This wave is non-dispersive and is expected to
be a low frequency disturbance. This wave is responsible for the transport of fluids. It is clear from Fig.
3 that the kinematic wave velocity ¢y strongly depends on the power-law index n. (ii) Dynamic waves:
These are higher order waves with characteristic velocities approximated by ¢; and c;. These waves are
dispersive, their speeds in genemal consist of fluid inertia, gravity, surface tension and power-law index
n. No net transport of the fluid is associated with the motion of these types of waves. On the other
hand, these waves may be called inertial waves, since Eq. (44) has appeared due to the inertial term of
the Navier—Stokes equation.

4, Case-I: small flow rate: Re ~ 1, We ~ 1/&

Inspecting the non-linear wave equation (44), it can be seen that the Kinematic waves, associated
with the first order terms derivative, dominate the wave field for Re ~ | and are described in the first
approximation by the differential equation of the first order

i d
(ﬁ +L'“E) H=0
In this limit kinematic waves are expected to dominate the wave field. Following Alekseenko et al.
[20], the time derivative of higher order terms is replaced by —ey(7/dx) in Eq. (44) and neglecting the
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non-linear quadratic terms we get
H, + eoH, + % (l-i-LG ) (e —coMea —ep)Hy + %sﬂ.’fxm =0 (46)
A linear stability analysis of Eq. (46) by assuming that the perturbation is of the form

H = dexp[i(ki — wi].
where o =, + ;) is the complex wave speed and & is the amplitude assumed to be real, with x = &f
and ¢ =&f. Equating real and imaginary parts we get

w, =cok,
and
~ Re no Y, s W,
oy = -&' (142}}) {L“—Zﬁm+ﬁjﬂ — _H-A 5 {4?)
This gives the phase velocity
c=u,k =cq= 1 +2H._,
n

independent of the wave number &, implying non-dispersive waves. [t should be pointed out here that
the phase velocity ¢y will be larger for pseudoplastic (n<1) fluids than for both Newtonian (n=1)
and dilatant (#=1) Auids. Further, Eq. (47) shows that e is different from zero and has two terms of
which the first term is always positive in the entire range of Re, yields the energy pumping into the
perturbations and results in instability while the second term, which is due to surface tension, is always
negative implying dissipation of the perturbation.

Flow instability is determined by the condition e =0 and ¢y =0 gives the neutral state. For neutral
perturbation we have two relations

k=0,

and

II |—u
I,|1 1+2n) Re (48)

ky =1/ - .
A \.u' n ( n W
This gives two branches of the neutral curve and the flow instability takes place in between them. The

wave number of the wave with maximum growth can be obtained from the relation de;/dk =0 and it
oives

f l—n
e o (IR e 49
l;'H.ur E.II 2 e W 1.,-"{2_’ 'l: :I
where ky is given by relation (48b). It should be pointed out here that in Fig. 4, the flow instability
takes place between the regions bounded by the curves defined in Egs. (48a) and (48b). Further, it is
clear that this unstable region increases with the decrease of n. It is clear from Fig. 4 that the flow
becomes unstable at Re=0 for all n.

5. Case-1I: high flow rate:

We shall study the type of waves that dominate in the high flow rate implied in the range of large
Reynolds number, Re~ 1/&*= 1. In this range dynamic or inertial waves have a controlling power
over the kinematic waves. Different limiting cases are considered depending on the relative order of
the parameter W.
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Fig. 4. Variation of neutral curves (Eq. (48)) with Re/W for different values of the power-law index n. The horizontal axis
Re/W coincides with the curve & =0, Thin, dotted and thick lines denote o= 1.2, | and 0.4, respectively.

51 Case-(i): Re~ 1/, W~ 1/

Under this limit, Eq. (44) will be guided by the dynamic or inertial wave field. Keeping the leading
order terms we have

(0, + o1 N d +cad )H =0, (30}
The equivalent forms of the above equation are
i d
—4o— | H=0, 51
(:7I+Llrfx) G
i ¢
(Emajn_a (52)

describing the propagation of the travelling waves in the mean How direction with velocities ¢y and ¢,
oiven in (45) above. It is clear from Eqs. (51), (52) and (45) that the wave described by (51) moves
taster than the mean flow whereas the wave represented by (52) moves slower than it. Factorization
of the classical wave equation shows two waves moving in opposite directions with the same velocity.
The same result may be obtained if system (51)—(32) is transformed through the system of coordinates
moving with velocity (¢ +¢:)/2 and it yields

H | (e1—c)oH

= =0,
il 2 i
Fﬁ e — o) 0H ~0
il 2 ae -

where £ =x — (c) + 2 }i/2.

Following the procedure described above, the time derivatives in Eq. (44) are replaced by the relation
A/t = — e f/dx, except for, naturally, the operator 7/dt 4+ ¢,(&/7x). The time scale ¢, is chosen because
it corresponds to the wave in the direction of shear and should be the primary disturbance. The linear
equation after integrating once with respect to x gives

_ : 1420\ (ep —cy) 1 L+20\" 1 #W
u,+L.H_T—n( ~ ){CI_”J@H— i) @ e Re e =0 (53)
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Fig. 5. Variation of phase velocity ¢ with powerlaw index n for different values of Wk /Re (Eq. (55)). Thin, dotted and thick
lines correspond to WS /Re =001, 0.1 and 1, respectively.

To obtain (53 ), we have assumed that the amplitude of thickness perturbation § ~ & and we have retained

the terms up to Oie).
To obtain the dispersive relation of Eq. (53), we assume that the perturbation is of the form

H = dexp[i(ki — wi].

where 4, w and & have their usual meaning as defined earlier and we have used x =&f and =zl
Substituting into Eq. (33 ), we get

- | 4+ 20" W 1 3
DeRImT " Re (¢ — ¢2)
and
- L+20%" (g — ) |
wes(57) Gorm S
The phase speed becomes
14+20" W 1 ;
=c S — . T 55
¢ “+( " ) 7 —— {2

It is clear from (55) that the surface tension yields dispersion in this case. Again, it is that term which
becomes prominent due to kinematic waves which is responsible for the low frequency energy pumping
resulting in instability of the film flow at high Reynolds number since o =0, A geneml comment on
the wave process described by Eq. (44) can be made as follows: (i) The lower order (kinematic) waves
obtain energy from the mean flow through the wave mechanism of higher order and regulate the process
with small Reynolds number. (ii) The higher order (dynamic) waves dominate the mechanism with high
Reynolds number and obtain energy due to kinematic wave process. (i) The surface tension plays a
double role: in the first case, it exerts dissipative effects or in other words it helps in stabilizing the flow,
so that a finite amplitude case may be established, but for the later case it yields dispersion. To study the
non-Newtonian effects if one observes Fig. 3, then it will be evident that phase speed ¢ increases with »
as long as Wi?/Re < 0.1. At this range, ¢ increases more or less linearly with n, but for Wk?/Re >0.1,
¢ first decreases and then increases with n. It is obvious that ¢ increases with Wk*/Re.
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5.2 Case-(ii): Re~ /&8, W ~ 1/

At this order the approximate Eq. (44) will reduce to the form
1+ En)" £W

— Hp =10 56
1 (6)

(& +erd W + ead WH + (
In order to get dispersive relation for (36), we assume
H = dexp[i(ki — wi].

where o =, + iy ) is the complex wave speed, the amplitude & is real; with x = &f and ¢ =&7 the final
relation becomes

1 +2ny' W
(T 2 —_ — -— - —
af — 2Pwk + Pk ( = ) ek =0. (57)

Equating real and imaginary parts, we have

(o, — fk) =0, (58)

rek!=0. (59)

a? — o — 2Pk + k2 — (I +2ﬂ)“ i

It can be shown that o, = i will lead to a contradiction that c; is real, hence
oy =10,

and

|I n
1+2 W
o, = fik ik\fﬁ’- ~f+ (%) Rek

The phase speed becomes

242 VEAED [ 1243 (1YW R
S I Py S & g P +E( n )( P ) Re' | -

e (60)

For & ~ 10, it can be shown that
B SR 15 ol G, TR NS B SR " (N I
= —k ~ 10 = |
2 " " Re 7 " "

for all practical values of n. Hence, by neglecting the unity in the radical expression of (60), one can
get

:.-zﬁ:l:kv"(l—i_zn)“w (61)

n Re’

For a Newtonian fluid (n= 1), Eq. (61 ) reduces to

ce=12+k/3IW/Re,
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Fig. 6. Variation of the phase speed ¢ with power-law index n (Eq. (61)). Taking Wik*/Re =0.5.

which coincides with Eq. (36) of Alekseenko et al. [20]. It is evident from Fig. 6 that the phase speed
¢ changes with n.

6. Case-11I: moderate low rate: Re ~ lle, W ~ 1/e*

Under the above approximation, the linearized form of Eq. (44) reduces to

: s & Re wi Ngs e i W
(0, + o MH + - (l +2n) (d, + o0, 0d, + ead WH 4 - = -H, =0 (62)
To study the stability of this film flow on the basis of two-wave equation (62 ), introduce the time varying
perturbations of the film height

H = 6 explik(% — cf) + A0]. (63)

Here f=x/e, f=1t/e, k is the real wave number, ¢ is the real part of the phase velocity and 7 is the
temporal growth (the imaginary part of the frequency ). Using (63) in (62), we have, after equating real
and imaginary parts of the dispersion relation, that

; nfl+2nY e—ey

Re= -2 s . 64
B ) o sl
; RN 2 . 2 Re W,

A+ (l+2r}) [ —(c* =28+ W] = + -HJL ={. (63)

Elimination of 2 from (65) by using (64) gives a quadratic relation with respect to (k Re)® as

3
(kRe)'— (15, ) ng lle — e = enl(kRe)’

() (=5) (25 )
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1 1 2 16Hl
bt s

Fig. 7. Variation of dispersion curve for different values of n keeping W /Re' =0001. Thick, dotted and thin lines represent
n= 12, | and 0.8, respectively.

Solution of Eq. (66) reduces to

I L Rej
Reky = 3 (5 ) Wrle-aXe-e)
'III W af1+2n (e —cole +eo— 28)
I:|:1|||||l+ REBH ( p ) e—ciflc—ofiec— DR (67)

From relations (64) and (67) we can find that on the neutral curve (£ =0), the phase velocity is
C=0C

which gives
k=0,

172

I —n
) Re/W)| . (68)

i l ( I+ 2n
n n

It is clear from Eq. (64) that the perturbations will decay as long as ¢>¢;. But for the growth of
perturbations the phase velocity ¢ must lie in i <¢ <g¢y. [t is clear from the Fig. 7 that as L Re increases,
the phase speed decreases continuously and reaches a minimum and then increases with £ Re. This trend
of variation between ¢ and ARe remains for different values of W/Re® in Fig. 8. A careful scrutiny of
Figs. 3 and 7 will show that the unstable range (¢ <¢y) along k. Re direction increases as the power-law
index n decreases. This result is evident in Figs. ¥ and 10, in which # the growth rate parameter increases
to reach a maximum and then decreases as LRe increases. Further, it can be seen from Fig. 9 that the
unstable area increases as n decreases.This shows that the temporal growth rate + also strongly depends
on the non-Newtonian character # of the fluid.

Hence, the fastest growing wave line will intersect the dispersion curve at the points of minimum
phase velocities. To accurately determine the chamcteristics of the fastest growing waves, let us consider
Egs. (64)—(63). We rewrite Eq. (64) as
oy — ||rJ’

c=f+ 5

(69)
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Fig. 8. Variation of dispersion curve with the parameter W/Re®, for n=12. Thin solid faint dotted, thick solid and bold doted
lines epresent W /Re' =0.1, 001, 0.001 and 00001, respectively.
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Fig. 9. Variation of temporal growth rate of a film for different values of n keeping W/Re® = 0.001. Thick, doted, and thin lines
represent for n=12, | and 0.8, respectively.

where

g=1+ (i) (l Jf:zn)"“'RE:"

Substituting (69) into (65) and differentiating the expression with respect to & and allowing for the
extremum condition d¢h/dk =0, we have

— —
A—Re_i—(;—')'(#') (%){fy— ). (70)

Finally, after substituting (69) and (70) into (63) we obtain

(e (e g
w -3\ n [ — LT+ 2m)/n)@2 +m)n) T |
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Fig. 10. Variation of tempoml growth rate of a film with the parameter W/Re®, for n= 1.2, Thin solid faint dotted, thick solid
and bold dotted lines represent W/Re® =0.1, 0.01, 0.001 and 0.0001, respectively.

The increment of the maximum growth rate for waves becomes

# (1 - En) (6 — 1)/Re. (12)

A==
n

2

By using Gaster’s relation it is possible to determine the spatial growth rate y from the temporal growth
rate as
) P
== 71
A c+kie/ik ¢ (73)
taking into account de/dk =0 for the fastest growing waves.
It may be interesting to look into the grouping Re'/W considered in studying the dispersion relation

and subsequent analysis in moderate low rate case. A close scrutiny will show that

RE] (1 + zn)ﬂlalﬂl—alﬂ'13+alh

T = { RE..-’Fi 1S PJ{&+§J|} (24 :.*

n

where

22 —u)
Fi= u,_'-' Hllll.'{pl-l-ul b'j,tf‘"_zj s ( 1 -:2'") “rl-l-uReEu

is the Film number of the fluid, which depends only on the fluid property and v, = g,/p is the kinematic
viscosity of the fuid. Hence the grouping is represented by the flow condition only.

7. Conclusion

In this section, we shall summarize some of the resulis of this study. We have analysed the waves
that occur at the surface of a vertical falling thin power-law fluid film. To do this, we have derived
an evolution equation representing two waves equations under long wave approximations. Based on the
different ranges of the physical parameters, it is shown that different types of waves are possible on the
surface of the film. Further, it is found that the result of the interaction of these different types of waves
are either the exchange of energy or dispersion among them. For example, at a small flow rate, kinematic
waves dominate the flow field and the energy is acquired from the mean How during interaction of the
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waves, while for high flow rate, inertial waves dominate and the energy comes from the kinematic waves.
It is also shown that this exchange of energy between kinematic and inertial waves strongly depends
on the non-Newtonian character n for power-law fuid. Further, in both the cases, surface tension plays
a double role: for a kinematic wave process, it exerts dissipative effects so that a finite amplitude case
may be established, but for a dynamic wave process it yields dispersion. 1t should be pointed out here
that the degree of non-Newtonian character # also plays a vital role in controlling the role of the term
that contains surface tension in the above process. We therefore, summarize on the basis of the above
analysis that the waves that occur on the surface of a vertical falling film of power-law fuid under long
wave approximation are a result of nonlinear interaction between kinematic and inertial/dynamic waves
and these wave characteristics strongly depend on the power-law index n.
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