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In this paper we study quasipmobability distribution and phase distibution for coherent
stites, squeered states, and Kerr states in one-mode interacting Fock space.
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1. INTRODUCTION

To deal with fluctuating fields we introduce adistribution forthe complex field
amplitude in classical coherence theory. By integrating over the strength of the field
we then obtain the phase distibution. But 1o define a Hermitian phase operator
in the gquantum mechanical description of phase goes back o the work of Dirac
( 1927). Dirac defined a phase operator by a polar decomposition of the annihilation
operator. Therealter, Susskind and Glogower ( 1964), Camruthers and Nieto ( 1968),
Pegg and Barnett (1989), and Shapiro and Shepard ( 1991) contrbuted significanty.
Dirac’s phase operator was modified by Susskind and Glogower 1o a one-sided
unitary operaton. Nevertheless, their phase operator has been vsed in gquantum
optics extensively. Phase measurement statistics was miroduced by Shapiro and
Shepard through gquantum estimation theory (Helsrom, 1976).

Keeping the ideas of Susskind and Glogower in mind we describe here a
phase operator ininteracting Fock space (Accardi and Boeejko, 1998) and study
phase distribution of coherent states, squeezed states (Das, 2002), and Kerr states.

The work is organized as follows. In Section 2, we give preliminaries and
notations. In Section 3, we mirodoce Kerr states in mteracting Fock space. In
Section 4, we describe coherent state representation of Kerr state. In Section 3,
we caleulate quasiprobability diswibution of squeezed states and Kern states. In
Section 6, we give o description of phase distribution that we would like to associate
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to a given density operator. In Section 7, we give a few illustrative examples. In
fact, we describe how the phase distribution will look like when we take coherent
states, squeezed states, and Kerr states in interacting Fock space. And finally in
Section 8 we give a conclusion.

2. PRELIMINARIES AND NOTATIONS

As g vector space one-mode interacting Fock space [(C) is defined by

r(@) = @Cin) (1)

n=(}
where Cln} is called the n-particle subspace. The different n-particle subspaces
are orthogonal, that is, the sum in (1) is orthogonal. The norm of the vector |n} is
given by
in |} =k, (21

where {3, 110, The norm introduced in (2) makes () a Hilbert space.
An arbitrary vector f in I{C) is given by

f=cold) +e1|l} +c212) + -+ culn) + ... (3)

with || | = (0% lealAa) ' (o0
We now consider the following actions on [NC):

atln) =In+1}

an + 1) = —|n} 4y

a’ is called the creation operator and s adjoint a is called the annifilation
operator. To define the annihilation operator we have taken the convention
0/0=10.

We observe that

L

inlny={atin—1Ln={n—1an) = m—l,n—1}=--- (5
n—1
and
)"JI )"u'l—| )LI )L,,..
fmp? = ——.2=... = == (6)
)"u'l—| )'-ul—l )'-(i )Li?
By (2) we observe from (6) that by = 1.
The commutation relation takes the form
ANt Ay
la,at] = — (7
Ay Aoy

where N is the number operator defined by Nin} = n|n}.
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3. GENERATION OF KERR STATE
The Kerr vectors in I{C) are defined by

Py lo) = Egru‘ui:r"u—nﬁr "

where f, € I'(C) is a coherent vector given by (6), ¥ is & constant, and a™a is
defined by

A,
ataln) = —'Fn}
i—1
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where
S SV R
rff.=wrfa;?}"ffrf!m...hﬂ.. ¥ a0

The photon number distnbution

Po=|in | 5 = Iguh

for the Kerr state is identical to that of the coherent state because the probability
amplitude g, and r, differ only by a phase factor.

4. COHERENT STATE REPRESENTATION

To obtain the coherent state representation of Kerr state . we try to caleulate
the matnx element ( f,. @ ). which contains all important information about the
state dX

The matrix element is obtained by the following method. We utilize the com-
pleteness relation of coherent state in U{C)

! :f dp(@) fu)fal
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where
dple) = vilaf)aila*)r dr do

withe = re' and o(x) is some weight function,
Mow,

(farr #5) = (far, Ufa)
= f dpt@r) (fun Ul fu M fu | f)
:f dpte) (furs f) o Uf)

where [J = E'i' yarterfata—1 :l_

Mow,
; _ 2,172 1, —1,2 = (o e )
(fas o) = Wllal) Py al) ; =

and
= &+

o Ufu) = w10 a2 Y

=L}

)"JI
Hence we have

(fas o) Cfrs U fi) = Wil PV 'l Py (a2

= @) @) (@@ gy
XWZ,;, e . R
Thus,
(fur 8X) = f @) (e £ (s Ufu)

=+

)™t iy tm

ar=L(0,s=(

Xf f_rm(ﬂu}{&u}"fm}’"

[= &) N )
o i i & !
=Y} wllaP) 2y (lo Py 2T e R RS D

=i}

where we have utilized the fact [~ dx o(x)x" = % (Das, 2002).
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5. QUASIPROBABILITY DISTRIBUTION

The guasiprobability distribution, known as the ¢ function, is the diagonal
matrix elements of the density operator in a pure coherent state
(a|pla)

3

Qo) =

(17
We now calculate the quasiprobability distribution for the following states:
5.1. Sqgueezed Siates

For the squeezed states f (Das, 2002),

e 1 -2 5
f}i.)i.)i. ceeh n—14" )'-)'-_)'-_---)"_JI—
e [ZE&EE" bt S } P e PO E

s (hahake - - Aau—t Pho = Akade - A
we lake the density operator Lo be
p=I1 1S, a=laje® (19)
and calculate the quasiprobability distribution O{e’) as

1
() = —(fs, pf2)
T

1
= —(fos |FHF 1 fe)
13

Lo i
= —|(fers FII°
T
1 | X 2 )'-|)'-:|)'-i"')'-:'.l|—l a1
i dn_n Eal 2 il n2.—12
H|§a 2 izlalﬁ"'lb.—:l};.ﬁ L2
% e B | o
2 1AAS =" " Adg—| )™
o™ 20
) [E,a; fl-’lw‘«'-'“lza.-l}zl_:,l ! (20)
5.2, Kerr States
For the Kerr states ¢ (9),
=
(I}ﬁ = Effui’ﬂ} (211
=i}

where
gn = W(lay 2L Y (22)




s

we lake the density operator o be

B = |¢:J‘I{¢: |, o = Eaif,ﬁ‘u

and calculate the quasiprobability distribution Qo) as

Q(a)

— (s |85} (95 | fr)
~|(fer 8
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A e L e Bl |
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]. = i) 5 31
= ‘Z Wlla )™ (e’ Y
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6. PHASE DISTRIBUTION

To obtain phase distribution we consider first the phase operator

where fg = Zﬂ,, |m}.

Mow,

X by i
P = ( s 1 i +ﬂ'ﬂ) i
An Aw—i
and try 1o find the solution of the following eigenvalue equation
Pfs = Bfg
a0 —1;2
A4 A ) ’

dy — +a'a dln
E ( Av  An-i }
a0 X 1 —-1;2 |

dy ( i O +ﬂ"ﬂ) ln—1}
=1 Ay Ay n—1
ac e
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Zﬂ,, A ( b £ S M ﬂ‘ﬂ) In—1}%
=1 )"JI—| )L.“J )L.’\'—I
e —12
)"ull ( )"ull )"ull —1 )"Jl—l) AeL

i — + n—1

Z )"JI— | )"JI— | )Lal—l )Lal—_’ E }

i)

a0 % i —142
Y s 1“ (—r') |n}
5 (;L,.H)'fli ;

Gyt | =4 n
w=() )L'"

2

(23)

24)

25)

(26)
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Bfs = fa,n) @7

a=l}

From (23)—(27) we see that a, satisfies the following difference equation:

1,2
LS| ()'1'_"") =,|Hﬂ.l|

NG
dyq| = Jﬁ ( )L+I ) fy

That 1=

and so0 on.
Thus,
1
S N W
ay = f’ (}_—) ap = (A I’Eﬂu
0
Hence
=+ =
fo=2 aun) =apy_ p" ()" 2In)
a=i) n=i}
We take ay = 1 and A = |8] &7,
Then

o

fo =2 ¢"0)"1B"In)

=i}
Henceforth, we shall denote this vector as

=+

_,fh - Zfun‘i‘m-“}—h'ltﬂrl.["}

a=i}

where 00 = 8 = 27 and call fz a phase vector in I'(C).
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Nommn of the phase vector is given by

=
||fﬁ||2 it Z eulﬂeu.rrﬂiln}—I_.'j()'-m}l_.'-giﬁgnﬂr{” E H‘I}
wr =Ll
i Z —fﬁiz"l,, s Z Eﬁg?al{x_
=0 a=l)
(if 18] < 1).
The phase vectors are complete. We can show that
1 A
f= 2__[ f dvix, &) fall fal (28)
T Jx Jo
where
diix, #) = dpix)dd (29}

Here we consider the set X consisting of the points x =0, 1,2, ..., and pix)is
the measure on X which equals

fin = ..
= [ﬂ:ilu
al the point x = n and # is the Lebesgue measure on the circle.
Define the operator
I fabifsl : T(C) = T(C) (30)
by
Lfad{fol f = (fo. ) f (31)
with | = Z:‘;:“ﬂ,,in}.
Mow,
=+ -
(fo, )= e ()" 1B a,
=iy
and
(fo /Y=Y "m0, 2181 () 218" au|m)
o, =)
Hence

L[ 2
?_ff du{.r,a}u'ﬁ}{ﬁ,uzfn‘mx}me}"*-!ﬁi“’(ia.}'*'iﬁi“na.im}
=T Sy o X

L
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a

® 2 e g
T i
=
= f dp(x) ) 1B In)
X =l
i“ In) 181" ;
=i IﬁE_J“
=
= Zﬂ“ |r}
ir=(
= (32)

We use the vectors fi o associate 1o a given density operator g, a phase
distribution as follows:

1
FPlg)= ﬁ{ﬁupﬁs}

I W= |} |m}
i E Hr .'IEJI:JI—.'JT:I ( ; ) f33
2 WZ“ FIETRL W Am p«.x’)-.m )
The Pid) as defined in (33) is positive, owing Lo the positivity of p, and is
normalized
el |
f f Pidhdvix,d)=1 (34)
x Jo
where
duix,d) = duix)dd (35)
for,

2

el 4 = 1
Fld)d f-',ﬁ'}'=fﬂ' (x} 1817 E"—f
L[ﬂ o X 2 Z s 27 Jy

a, =i}

xfiﬂal—ur]dﬁ ( EH’I} E"} )

-»..f)-.m’pv}-.n
= a f 10} |n} )

= dplx 5
j::c H ”;Em (-»..f)-.n » An

— i(ﬂ ) ) =1 (36)
T \Vin V) T
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The phase distribution over the window 0 = 8 = 27 forany vector § is then
defined by

1 2
Pt = ﬁ!fﬁn I

7. EXAMPLES

We now consider some important states in the Hilbertspace U{C) and compute
their corresponding phase distributions.

7.1. Coherent States

For the coherent states f, (Das, 2002),

ac L

fo= W0y Y =) (37)

n=I(}
we Ltake the density operator 1o be
p = faklfel o= |ofe™ (38)

and caleulate the phase distnbution P8 ) as

1
P) = —(fi. pfo)
1

! :
= = (fi fu)P (39)
=JT

£ 1 |i -'I‘I‘J"—ﬂfltﬁturaialE)L“}—I_ﬂ_l’[rﬁaiz}_lj_:l!'

I-ll

7.2. Squeezed Siates
For the squeezed states f (Das, 2002),

G i [
PPN PRFET Y EEEY EFY o ahihadhs Ry
! ‘[Z*"” ugmf.---i_:,._.m.} L SR T

=iy a=()

wi lake the density operator o be

p=IfUSl, a=lale™ (41)



Quasiprobability Distribution and Phase Distribution in Interacting Fock Space 2023
and calculate the phase distribution P(#) as
Pid) : (fas pfi)
= I Ja. pfu
1 X .
=il i LFH S fe)
LI

1 2
= —Ef.ﬁu I (42)

1 " n " )"|}'-3)'-5 oie ')LEJ|—I g
= |Zf‘ =20 81 ) Yijaly?
2 | =0 ‘J"E)"hl)"h‘t”')"lu—l'\' )L_’Jl

'.'

= 2
2y (AiAads oo -hauq)” &
X[ZE“E mgﬂuaiﬁ---h“_.ﬂ;,l |

a=(}

7.3, Kerr States
For the Kemr states ¢f .

=&
®F = quln) (43)
a=H}
where
2-12% by
= (el E (44)
we lake the density operator Lo be
p=ey)os ] o=lale® (45)

and caleulate the phase distnbution P9 as
P@)= 5—(fo. o)
2n
1 ,
= j_{fﬁs E'?'f}f'?'fifﬂ}
=JT

1 : 2
= 5-(fo: 8)] (6)

-n|

s |Zeu|1ﬂ"—ﬂjiﬁiui !Jlf)'-“::l—l_,_wfi E ::I_I" E-. }',“ I‘*" ; |

Jl—ii
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8. CONCLUSION

In conclusion, we have first introduced Kerr states in the interacting Fock
space and studied quasiprobability distribution of squeezed states and Kerr states
in the space and then studied phase distdbution in the space by defining a phase
operator analogous Lo that studied by Susskind and Glogower and calculated spe-
cific phase distributions in the case of coherent states, squeezed stales, and Kerr
slales.
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