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Linkage mapping of quantitative trait loci in humans: an overview
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SUMMARY

In this article, we provide an overview of the different statistical procedures that have been

developed for linkage mapping of quantitative trait loci. We outline the model assumptions, the data

requirements and the underlyving tests for linkage for the different methods.

INTRODUCTION

Many quantitative traits such as blood pres-
sure and body mass index (BMI) are known to be
determined primarily, though not exclusively, by
inherited genetic factors. 11 is thus of considerable
importance to identify chromosomal locations of
the genes that control a quantitative character.
Linkage analysis (Ott, 1999), which deals with
the detection of linkage and estimation of re-
combination fractions among the loc controlling
a qualitative /quantitative character and marker
loci whose positions are known a priond, is widely
used for localization of genes. Although statistical
methodologies for mapping genes determining
dichotomous qualitative characters in humans
are well-developed, the development of such
methodologies, especially those that are stat-
istically and computationally efficient, for human
gquantitative traits is an active area of current
research in human geneties. It has been empha-
sized that many traits that have traditionally
been treated as qualitative are inherently quan-
titative in nature,

Although the idea of mapping quantitative
trait loci (QTL mapping) can be traced back to
Rax (1923), who studied the nature of association
of seed size with seed-coat patterm and pigmen-
tation in beans, the recent development of dense
maps of highly polymorphic DNA markers in

plants and animals has resulted in a resurgence of
interest in QTL mapping. Statistical linkage
relies on the nature and extent of co-inheritance

of alleles at the trait and marker loci. For many

plants and animals experimental crosses can be
set up such that the trait locus genotype of an
offspring can be unambiguously inferved. This
simplifies the statistical investigation of co-
inheritance of alleles at the trait and marker loci.
However, itis not possible to set up experimental
erosses for humans. Moreover, for experimental
organizms, traits are often Mendelian in nature
which facilitates the knowledge of trait genco-
tvpes. On the other hand, most human quan-
titative traits follow a complex mode of inherit-
ance. Hence, QTL mapping in humans is stat-
istically more difficult than in experimental
plants and animals. In this article, we provide an
overview, albeit non-exhaustive, of the different
statistical procedures that have been developed

for linkage mapping of (TLs

MODELLING A QUANTITATIVE TRAIT

A guantitative trait (V) can be modelled in a
general way as V= (/4 K, where (/ and K are the
genetic and environmental contributions to the
phenoty pe, respectively. While this general form
of the model can be used in anexplomtory way to

provide some broad statistical inferences about
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the quantitative trait, such as heretability of the
trait, for making specific inferences or for QTL
mapping, it is necessary to formulate a more
detailed model. (Mten models are formulated on
the basis of exploratory data analyvses.

A quantitative trait may be determined, in
addition to an environmental com ponent whose
expectation is usually assumed to be zero, by one
or more loci, each biallelie or multiallelie, linked
or unlinked. There may be dominance effects at
various loel, and unlinked loci may also interact
epistatically in the determination of the trait
values,

For a quantitative trait that is determined by
a single biallelic locus, a general model is:
Vidd, ~ filpot). Yidya, ~ folp,. o3)

Y|ayw, ~ fil gy, o3), where 4, and a; are the two

andd

alleles at the locus, and f. f, and f, are general
probability distribution funetions with means g5
and varances ois. [T allelic effects are additive,
that is, there is no dominance, then g, = 2, 5, =
a+ 4 and g, =24, where 2 and § are the allelic
effects of 4, and a,, respectively. In the presence
of a dominance effect, &, g, =22, p, = a+ 44
and g, = 24, Even these specified forms of the
model are statistically too complicated for QTL
mapping. Therefore, the popularstatistical model
is: Y|4, 4, ~ fila, o), ¥Y|da ~ fild %) and
Yiaa, ~ fil—a, o). A detailed discussion on
modelling of quantitative traits is available in
Faleoner & Mackay (1996). Often f). f, and f, are

assumed to be N ().

EARLY METHODS

One of the most popular approaches of ana-
lvzing human linkage data is based on sib-pairs.
Some of the earliest contributions in these studies
were made by Penrose. He assessed the efliciency
of using concordant and discordant sib-pairs {in
terms of gquantitative trait values) in studyving
multifactorial disorders (Penrose, 1935). It was
shown by Penrose {(1947) based on a linkage
study between the loa for pheny lketonuria and
the presence or absence of the B allele at the ABO
locus, that the efficiency and complexity of

detection and estimation of linkage can be in-
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creased by distinguishing the two types of ident-
ical sib-pairs. Penrose (1953) extended his earlier
methods to multiple alleles using data on red-hair
and the ABO locus restricted to a single gen-
eration. An extenzive meview of Penrose’s con-
tributions and the subsequent extensions to QTL
mapping procedures using sib-pairs is presented
in Edwards {1998).

HASEMAN-ELSTON AND ITS EXTENSIONS

A popular model-free linkage method is to
utilize the inverse relationship between the dif-
ference between trait values of sib-pairs and their
marker identity-by descent (L.h.d.) scores. A pair
of related individuals shaves an allele ib.d. if that
allele has a common ancestral source. For sib-
pairs, the common ancestors are their parents.
Haseman & Elston (1972) developed a regression
approach for detecting linkage based on the
suared difference in quantitative trait values of
sib-pairs (V) and their estimated marker i.bud.
seores (). The basis of the regression is the

equation:
E(Y| ?},u“'l = +ﬂﬁalr- (1)

where there is no dominanee in the trait and g
= —2p{1l—pla*{1—20); p being the allele fre-
quency of 4, a the conditional ex pectation of the
trait given genotyvpe 4,4, and & the recom-
bination fraction between the QTL and the
marker locus. Function of @, a test for no linkage
{ie. # =10.5) is equivalent to testing =10 in
Equation (1). The test can be performed via the
usual f statistic based on the least squares
regression estimate of f

Amos & Elston (1989) extended the above
regression procedure to other relative pairs. For
each tyvpe of relative pair, the regression par-
ameter fis a different function of . However, the
test for no linkage in each case is equivalent to
testing 8 = (. Amos ef al. (1989) showed that in
the presence of dominance in the trait, the least
squares estimator of § is biased. They devived the
conditional variance of ¥ given 7, as o, + 8,7, +
7o, The test for linkage is based on the weighted

least squares estimators of §, and 9, and is more
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powerful than the original Haseman-Elston test
(1972 Olzon & Wijsman (1993) used generalised
estimating equations to combine information
from different types of relative pairs in a set of
pedigree data. The test for no linkage between
the QTL and the marker locus is equivalent to
testing 8 = (0 where # is the vector of regression
coeflicients of Vs on 7,5 corresponding to the
different types of relative pairs. The test statistic
iz of the form v :Tf"l,f;’{'h"".'ul'{ﬁ.’jf'}l"z, where ¢ is a
vector of  weights  chosen  proportional  to
P{ﬂ.l"{,l‘f‘_:l}_llﬁi. Flaton ef al. (20000 suggested that
the mean-corrected cross-product of the sib-pair
trait values carry more linkage information than
the squared sib-pair trait difference used in the
traditional Haseman—Elston set-up {(1972), and
have implemented these regression procedures in
the computer package SAGE. However, recent
studies have shown both analytically and empin-
cally that a combined least squares regression
analysis with appropriate weighting of squared
sib-pair sum and squared sib-pair difference
{Drigalenko, 1995 Xu et af. 2000 Forrest, 2001 ;
Visscher & Hopper, 2000 ) may be more powerful
the
Haseman—Elston method (1972 or that proposed
in Elston ef af. (20000). Although the Haseman—
Elston elass of regression models does not assume

in  detecting  linkage than traditional

any specific probability distribution for the trait
values, it has been found that a ¢ diztribution
approximation for the test statistic (hased on the
slope parameter) is often anti-conservative and
leads to an inflated rate of false positives, es-
pecially when the sibshipsize is lacge (Elston ef af.
2000).

Fulker & (1994) the
Haseman—Elston (1972) regression equation to

Cardon extended
interval mapping. They proposed a method where
the i.bud. seores at the Hanking markers (7, and
Twe) are estimated separately using marginal
marker information and the trait i.bod. score (7,)

1 estims 4 ation:
is estimated using the equation
. A .
e = Pat i Ty TP 2T mg-

¥ is regressed on 7, and the approximate position
of the QTL is inferred based on the plot of
Alaef), where  is the regression estimator of ¥
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on . Olson (1995) suggested that in order to
obtain maximum information, the marker i.b.ad.
seotes be jointly estimated osing all available
marker data. The resultant regression equation

Wis

E(Y| ﬁm- ﬁmz} = .I"’lu‘i'ﬂ]ﬁm +.I'E‘l'.*?}n.-2-

where there i3 no dominance in the trait loci.
Fulker, Cherny & Cardon (1995) extended the
interval mapping procedure of Fulker & Cardon
(1994 to take account of information from all
marker loci simultaneously. They showed that
the power of the traditional Haseman—Elston
method (1972) can be substantially improved by
this strategy when the markers differ in their
information content. Their method has provided
a framework for multipoint i.b.d. estimation not
restricted to the elass of Haseman—Elston megres-
sion methods,

Tiward & Elston (1997) extended the tradi-
tional Haseman—Elston {(1972) procedure to the
case of two unlinked QTLs which might interact
epistatically. They showed that under a fairly
general model of epistasis, where they assumed
that the marginal genotypic effects of the QTLs
as well as those of the epistatic interactions are
additive, the expectation of ¥ is a linear function
of 0. T o f1. o and their pairwise cross-produoct
terms, where f| and f, are the probabilities that a
sib-pair shares 1 and 2 alleles Lhd., respectively.
Under a restricted set-up, Ghosh & Majumder
(2001 ) derived a regression equation for multiple
unlinked QTLs using a generalized digenic in-
teraction model {Kearsey & Pooni, 1996) and
examined the marginal effects of the different
trait and linkage parameters in mapping the

underlving QT Ls.

VARIANCE COMPONENTS

Another popular statistical approach for QTL
mapping is to dissect the genetie variation within
the quantitative trait. Although parametric in
nature (ie. the methods assume specific prob-
ability distributions for trait values), the ad-
vantage of using these methods iz that larger

sibships or entive pedigrees can be simultaneously
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analyzed. Although Goldgar (1990) developed
a variance componenis model which assumed
that several genetic factors from a chromosomal
region influence the guantitative trait, and
Schork (1993) studied its power extensively, the
basic framework for variance com ponents linkage
analysis was provided by Amos (1904).

The general variance components model is
given by

Y=p+g+6G+e,

where g is the overall mean of the quantitative
trait, ¢ i=a random effect due to a major gene with
additive varance a2 and dominance variance o,
{7 iz a random polvgenic effect with vanance of,
and ¢ i3 the non-shared environmental effect (or
random error) with variance o2, The trait values
of individuals in a pedigree are usually assumed
to be distributed as multivariate normal with
dispersion matrix F, where the variance of the
trait value of each individual is 72 + o8 4o, + ot
and the covariance between the trait values of
two individuals is given by ¢o? 4+ Acd 4 e,
where ¢ is the coeflicient of relationship between
the two individuals and A is the probability that
the two individuals share both their alleles i b.d.
at the major locus (Amos, 194). Conditioned on
ibd. seore (7)) at a marker locus, the above
covarance is given by fifl, m)ai+ g0, A)oi + ot
where @ iz the recombination fraction between
the QTLand the marker locus. The log-likelihood

of the data is given by :

1"—1 3 Lo | I'l—l 2(Y—p1) V" HY —pl),
25 2°n

where ¢ is a constant, ¥ and gl are respectively
the vector of trait values and that of the means
within a pedigree and the summation is over
independent pedigrees. The varianee components
methods use the maximum likelihood method to
estimate the parameters. The test for linkage is
equivalent to testing &% = 00 versus o = (. The
usual likelihood ratio test statistic 1= distributed
as i 3050 mixture of a p® distribution with 1 p.p.
and a y* distribution with 0 p.F. (defined as a
degenerate variable at (). The model can also

incorporate other environmental covariates.
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Almasy & Blangero (1998) developed a general
framework of multipoint 1. b.d. probability caleu-
lations using pedigrees of arbitrary sizes. The
correlations in i.bad. 2eores were shown to be a
function of the chromoszomal distances for dif
ferent relative pairs in a general pedigree. They
extended the model of Amos (1994) to incorporate
multiple QTLs. Their variance components
method considers inerease in log-likelihood of the
data with sequential addition of TLs and has
been implemented in a computer package, S(0-
LAR. The computer package GENEHUNTER 2
also includes a maximum likelihood-based van-
ance components model with a provision of fixing
the dominance variance of the undedying QTL
and/or other unlinked QTLs at wero.

We emphasize here that the variance com-
ponents methods arve dependent on the assump-
tion of a specific probability distribution (multi-
varate normal in most scenarvios) for the trait
values. If the underlving quantitative trait dis-
tribution i3 indeed normal, one would expect
these methods to be much more powerful than
distribution free methods (discussed in the next
section). However, it is often not feasible to verify
distributional and other model assumptions.
When underlying assumptions are violated, the
behaviour of parametric methods is unclear as it
could vield either a high rate of false positives or
a high rate of false negatives. For example,
leptokurtosis of trait distribution and the pres-
ence of gene-environment interaetion can lead to
inflated false positive ervor rates (Allison of al

2000).

NON-PARAMETRIC ALTERNATIVES

Statistical methods for mapping QT Ls, which
involve assumptions of specific probability distri-
butions for trait values, are often susceptible to
deviations from underlving distributional as-
sumptions. Some of the non-parametne (disti-
bution-free) methods proposed a test statistic
based on the rank correlation between the ab-
solute differences in trait values of sib-pairs and
their estimated marker i.hod. scores. Kruglvak &

Lander (1995q) proposed a Wilcoxon rank sum
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test based on ranks of squared differences in sib-
pair trait values and an indicator variable de-
pending on the marker genotyvpe. A detailed
dizeusaion on some of the diztrbution-based and
distribution-free multipoint sib-pair linkage ap-
proaches, which have been implemented in the
computer package MAPMAKER/SIBS, is pre-
sented in Kruglvak & Lander (19954). The
computer package GENEHUNTER 2 includes
the Hazeman—Elston class of regressions as well
as the different analyvtical methods of MAP-
MAKER/SIBS., Ghosh & Majumder (20000)
have developed a two-stage linkage procedure, in
which rank correlation between the squared sib-
pair trait difference and their estimated marker
L. score is used at the coarse-mapping stage
and a non-parametie regression procedure based
on kernel smoothing is implemented for fine-

mapping.

EXTREME SIE-PAIRS

tisch & Zhang (1995) observed that analysis of
extremely discordant sib-pairs (i.e. one sib has
the quantitative trait value in the upper decile of
the trait distribution, while the other has a trait
value in the lower decile) vields more power than
random sib-pairs, thereby reducing the sample
size requirements for genotyping over conven-
tional designs. However, it is often not feasible to
obitain extremely discordant sib-pairs. Moreover,
under oligogenic QTL models, where heterosy go-
sities of different loci vary widely, using ex-
tremely  discordant  sib-pairs may not be an
optimal strategy for mapping the more hetero-
evgous locl (Allison ef al. 1995). An altemative is
to include extremely concordant sibs in the
analysis (Haves & Mever, 1994 ; Zhang & Risch,
1996; Gu ef al. 1996; Guo & Rao, 1997) which
provides a compromise between the power to
detect linkage and the availability of extreme sib-

padrs.
OTHER METHODS

An interesting method for linkage analysis with
pedigree data was proposed by Heath {(1997), in

which reversible jump Markov Chain Monte Carlo
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(MOMC) methods were used to implement a
sampling scheme in which the Markov chain can
jump between parameter subspaces correspond-
ing to models with different numbers of QTLs.
Though the method involves assumption of spe-
cific probability distributions for the treait, it
avolds the problem of misspecification of the
number of QTLs. The method has been imple-
mented in a computer package, LOKL Lee &
Thomas (2000) have developed a vefined MOMC
procedure by im proving on the marker-ha ploty pe
updating algorithm.

Another approach has been motivated by the
classical LOD score statistic (Morton, 1955) using
inclusion and exclusion mapping. Page ef ol
(1998) have proposed a QLOD score statistic for
detecting linkage in QTLs, where the traditional
critical values of 3 and —2 for the underlying
sequential tests were used.

Aleais & Abel (1999) have developed a maxi-
mum-likelihood-hinomial method of mapping
(TLs uaing sibship data. The idea is to introduce
alatent hinary variable £ which captures linkage
information between the QTL and the marker

loweus. The hikelihood is formulated in tems of

P(M, M| Y) = SPUZ|Y)POLL, M, | 2),

where ¥ is the observed phenoty pe and M, M, are
the alleles at the marker locus. P2 ) is mod-
elled by a probit distribution and P (3, M, | Z) by
a Bernoulli distrbution. The test for linkage is
based on a likelihood ratio test of the Bernoulli

parameter = (.5,

COMPARATIVE STUDIES

There have been a few comparative studies
between the different statistical techniques for
QTL mapping in humans. Aleais & Abel (2000)
showed that larger sibships contain more linkage
information than independent sib-pairs. They
that

binomial approach, which does not require de-

also showed their maximum-likelihood-
composition of sibships into sib-pairs, s more
powerful and cost-effective compared to ex-

tremely discordant sib-pair analvses. Visscher &
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Hopper (2001 compared three sib-pair methods
in the Haseman-Elston elass of regressions and
four maximum likelihood methods under the
assumption of normality for the trait values.
They showed that the Elston et al. (20000 method
may be less powerful than both the traditional
Haseman—Elston method and a complete maxi-
mum-likelihood analvsis, especially if the sib-pair
correlation is high. Efficiencies of variance com-
ponents versus sib-pair based linkage methods
was examined by Williams & Blangero {1999),
where they observed that these have similar
perdormances with respect to unbiasedness of the
estimate of QTL location and Type T error rate;
but within the single sib-pair and sibship sam-
pling units, the variance components approach
gave consistently superior power and efficiency of
parameter estimation. However, Sham & Pureell
(2001) have highlighted the asyvmptotic equiv-
alence in power between a combined Haseman—
Elston regression based on the squared sum and
the squared difference of sib-pair trait values and

vananee L'{I!"THIIH"HL‘% analyses.

MULTIVARIATE PHENOTY P ES

Une of the major cumrent challenges in genetic
epidemiology is to unravel genetic architectures
of complex traits. Quantitative varables, poss-
ibly correlated, generally underlie com plex traits.
Many models and approaches have been devel-
oped, induding variance components (Lange &
Boehnke, 1983 ; Schork, 1993), regressive model
{Bonney ef al. 199%; Moldin & van Ferdewegh,
1995), multivanate extension of the Haseman-
Elston model {Amos of al. 1990 ; Amos & Liang,
1996) and structural equations model (Eaves of
al. 1996 Todoroy ef al. 1998) to jointly analyze
data on several correlated quantitative pheno-
tyvpes as a single multivariate phenotype. How-
ever, the power of a multivariate analysis to
detect linkage can be substantially low (Ot &
tabinowite, 1999). Data reduction technigues,
such as principal components analvsis or factor
analvais (Zlotnik ef ol 1983 ; Hasstedt efaf. 1994 ;
Boomsma, 1996 Allison & Beasley, 1998; Ottt &

= Gaosu, T Beren asp PP Masruvbper

tabinowitz, 1999) help in circumventing this
problem of reduced power. However, it iz im-
portant to realize that unless the variables in-
cluded in a principal component are significantly
correlated, inferences on linkage could be highly
misleading (Majumder ef ol 199%; Ghosh &
Majumder, 200006).

DISCITSSTON

The aim of this article was to provide an
overview of the different linkage methodologies
developed for mapping quantitative trait loci. As
mentioned in the Introduction, thiz = a non-
exhaustive =et of existing methods and we have
simply tried to highlight the varous statistical
techniques along with the undedying data re-
quirements and model assumptions.

While there is clearly no uniformly  most
powerful method for detecting linkage, certain
methods are more optimal than others under
relevant assumptions. As mentioned in a previous
section, likelihood-based varance components
methods are expected to perform better than
distribution-free methods if assumptions (like
normality) for the underlving quantitative treait
distribution are valid. Non-pammetric methods,
which are more robust to deviations from under-
Iving assumptions, can be viewed as com plemen-
tary to the distribution-based approaches. Thus,
a possible way to enhance confidence ina linkage
finding is to verify whether multiple methods,
under varving assumptions, replicate the finding
not only with the same data but also with

independent sets of data.
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