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ABSTRACT

Elevated salinity, acoelerated eutrophi cation, blooms of Avian botulism and dmmatic water quality fluctuation
are supposed to be the key factors for massive die-off of Tilapia (prey) and Pelican {predator) in the Salton
sed, We modify the model of Chattopadhyay and Bairagi [ Ecological Modelling {36 (2001 ), pp. 103-112]
with anassumption that the growth rate of susceptible fish population is very high and study the dynamics of
the system by introducing a delay factor in the predator response function. It is observed that the otherwise
stable system exhibit a stable limit cyele solution when the lag factor attains its critical value, It is also
ohserved that there is a high possibility of an epidemic out break in the fish as well as in the Pelican
population if the predation process is delayed by a considerable amount of time. Numerical simulations for
1 hypaothetical set of pammeter values are presemed to illustrate the anal ytical findings.

Kevwords: Avian botulism, susceptible Tilapia, infected Tilapia, Pelican, time delay, Hopf-
bifurcation.

l. INTRODUCTION

The Salton Sea has become a dangerous habitat of wild migratory birds. Each year,
millions of birds are paralyzed or they die after exposure o g toxin produced by the
botlism bacterium. Avian bowlism is most likely to oceur due o elevated salinity of
the water, accelerated eutrophication, algal blooms, reduced dissolved oxygen and
dramatic water gquality fluctuation. In the Salion Sea, the level of dissolved salt is
around 43 ppt (parts per thousand) whereas the nommal salinity of the sea water is
around 35 ppt. Colorado River while travelling through Impenal and Coachella Valley
picks up salt and nutrient and eventwally drains i the Salton Sea. Moreover, the
Salton Sea has no outet and hence the salt and nutrient remain in the lake, continue to
increase year after year, causing massive algal blooms in the Sea. These algae die
almost as quickly as they grow. When they die, oxygen is pulled from the sea water to
help the algae decay cavsing oxygen depletion in the Sea water. This usually happens
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dunng the late summer when there 1s litde dissolved oxygen in the water, which 15 a
suitable medium for the botulism bactera to grow and produce toxin [1, 2].

There are four types of sport fish in the Salton Sea, namely, Tilapia (Qreochimmis
mossambicus ), Corvina (Cynoscion xanthuluy ), Croaker (Bairdiella icisting) and Sargo
(Anivopremus davidvoni). Out of these four types of fish, Tilapia is the most abundant in
the Salton Sea, probably because of its stunning reproduction rate. It is well known that
Tilapia is infected by aviviio class of bacteria, which is very common in salt water fish.
Due to this vivrio infection, millions of Tilapia die every year The Tilapia which are
infected by the disease develop some oxygen free portions in their body, and these are a
zood habitat for bowlism. As fish affected with vivrio tend to ot from the inside out
while it is alive. Frank Shipley, Director of Northwest Biological Science Center in
Seattle, remarked that the Tilapia, while dying of vivrio infections, would also
harbouring fatal doses of botulism when they are eaten alive by the Pelican. As the fish
struggle in its death it tends to rise 1o the surface of the sea and it becomes more
vulnerable as well as atractive to fish-cating birds, like Pelican [3]. Thus, a unigue
mteraction oceurs between the Pelican and sick Tilapia with botulism in their ossues and
serves as a source for toxication of birds that feed upon them. Also vivrio is passed from
one infected fish o another susceptible fish; the more fish that are in the sea, the more
chance that a large number of them will become affected by the disease. This causes
terrible bird mortality events at the Salton Sea. It has been observed that over 14,000
water birds, mostly white Pelican, died during the summer of 1996, The similar events
also happened in 1992 and 1994 when 15,000 and 20,000 Eared Grebs (waterbirds ) died.
This imply that infection spreads from fish to Pelican with catastrophic consequences.

Chatwpadhyay and Arino [4] proposed a three species eco-epidemiological model,
namely, sound prey (susceptible), infected prey (infective), and their predator. Making
an assumption on the growth rate of the susceptible prey population, they converted
the three-dimensional model o a two-dimensional one and studied the local stabality,
extinction and Hopf-bifurcation in a two-dimensional system. By applying a Poincare
map, they observed the connection between the reduced and the orngimal system.
Chattopadhyay and Baimgn [5] proposed and analysed a three-dimensional eco-
epidemiological model, consisting of a susceptible fish population, an infected fish
population and their predator; the Pelican population. They studied the local stability,
elobal stability and persistence of the system around the positive interior equilibrinm.
They observed that if the level of the search rate of the predator is low, the system
around the positive intenor equilibrium 1s stable. But the instability sets in with the
increase of the search rate level of the predator. Sarkar et al. [6] modified the model of
Chattopadhyay and Bairagi [ 5] by inroducing an additive colour noise in the infected
Tilapia population and swdied the dynamical behaviour of the system. They also
concluded that for the persistence of the Tilapia and Pelican in the Salton Sea,
reduction of the Tilapia population in considerable amount is required and hence a
suitable harvesting strategy should be mplemented.
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Delay models are much more realistic, as i eality tme delay occurs in almost
every situation. Time delay (discrete or distributed) factor have been incorporated into
different biological sitwations by several authors [7-10]. Generally, delay differential
equations exhibit much more complicated dynamics than ordinary differential
equations, since the stability of the steady state depends on the delay factor and delay-
induced oscillations could occur via instability. It is already mentioned that the
massive death of the Pelican population occurs due to predation of infected fish. But
the predation process 18 nol instantaneous as there 1s a tme delay between the events
of getting the infection and coming closer 1o the surface of the sea by the infected fish.
Hence, tomake the model biologicaly more plavsible, this time delay factor should be
included in the predator response function.

In this work, we first simplify the eco-epidemiological model proposed by
Chattopadhyay and Bairagi [5] by making an assumption on the growth rate of
susceptible fish as done by Chattopadhyay and Arino [1] and studied the existence and
stability around the positive interior equilibrium of the system. Then we introduce a
discrete time delay (7) into the predator response function. Conditions for which the
delay induced system enters into Hopi-bifurcation are studied. Numencal solutions
for a hypothetical set of parameter values are presented to justify the analytical
findings.

The organization of the paper is as follows: Section 2 deals with the basic
model and some basic results. In Section 3, we present the delay-induced eco-
epidemiological model. The stability analysis of the system for > 0 is studied in
Section 4. Finally a discussion is presented in Section 5.

2. THE MATHEMATICAL MODEL

2.1. The Basic Ecological Assumptions
We have two populations:

1. The fish, Tilapia, whose population is denoted by N([N] = number of Tilapia per
unit designated area).

2.. The bird, whose population is denoted by P([P| = number of birds per unit
designated area).

The following assumptions are made for formulating the basic differential equations.

(Al): In the absence of a bactedal infection, the fish population grows according o a

logistic fashion with carrying capacity K(K € B, ). with an intrinsic birth rate

constant #{r € B, ) such that
dN wl1 N 8
F 7l ~F L (1
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(A2): In the presence of a bacterial infection, we assume that the wotal fish population
N is divided into two classes, namely, the susceptible fish population, denoted by S,
and the infected fish population, denoted by I Therefore, al any tdme ¢ the total
number of fish population is

N(t) = 8(0 + K{1. (2)
(A3): We assume that only the susceptible fish population, S, is capable to reproduce
itsell 1o logistic law [Equation (1)] and the infective fish population, I, dies before
having the capability of reproducing. However, the infective fish, I, sull contributes
with § to the population growth towards the carrving capacily.

(A4): The mode of disease ransmission follows the simple law of mass action.
Therefore, the evolution equation for the susceptible fish population, 8§, according to
Equation (1) and assumptions { A3) and (A4), can be wrillen as

L h rS(l - ﬂ) s (3)
dt K )

where A{A € B is the rate of transmission (or force of infection).

(AS5): The disease spreads among the prey populaton only and 15 not genetically
inherited. The infected population does not recover or become immune. The predator
ibird) population preys mostly on infected fish population. Also the predator eats a
small fraction 5 = 0, of the susceptible fish population. The death rate of infected prey
inot due o predation) is denoted by plp € By ). The natural death rate of predator
population is denoted by e(e € R, ) and the rate of death due to predation of infected
prey is denoted by (v € R, ).

2.2, The Basic Mathematical Model
From the above assumptions we can now make the following differential equations:

S 1(1 _.‘:’+f) B M;;_?jm,.‘:?}:“
a) + .5

£ Ly miP
df a—+ 1
dP = gip H 5P

dr a+I o +5

—pud (4]

dP

as our model. Here d = ¢ + 1715 the total death rate of predator population and my, m
are the search rates, 8(< m) is the conversion factor and @« are the half saturation
coefficients. To account for the stability of the marine ecosystem of multi-species
fisheries, Holling type 1 or Holling type 111 is more appropriate than that of a crude
Lotka-Volterra predational form [11].
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Since the prey population is infected by a (lethal) disease, infected preys are
weakened and become easier W predate, while susceptible preys easily escape and
predation becomes difficult. Considering this fact, we assume in the subsequent part
of this paper that 5 = 0, that is to say that the predator eats only infected prey, thus

Egaution (4) becomes
) = r.‘:'(l o ﬂ) — MS
K

dt

al miP :
= MS§ — — (5)

dr a—+ 1

dP e +—dp

dt  a+1

Equation (5) has to be analyzed with the following initial conditions:
S(0) =0, K0) = 0,P(0) = 0.

2.3. Some Basic Resulis

We observe that the right hand-side of Eguation (5) is a smooth function of the
vanables (5, L P)oand the parameters, as long as these quantlics are non-negative, so
local existence and uniqueness properties hold m the positive quadrant.

From the third equation of Equation (5), it follows that P = 0 is an invariant sub
set, that is, P =0 if and only if P{r) =0 for some . Thus P{f) = 0 for all ¢ if
P{0) = 0. The same argument follows for the second equation of Equation (5).

So, either § = 0 in which case the first equation of Equation (3) reduces to a pure
logistic law verified by §, and P is going 1o zero asymptotically; or, f{t) = 0 for all 1.
Summing up the first two equations of Equaiton (3), one obtains

d{.‘§+fj=r‘; 1_.‘:’+I _mlP
K a+ 1

il
drt “

from which one can see that
{.‘;+.l’:||::.r|:;:| < K.=}'|::S +I:|“:| < K, _ﬁ'.l‘i’f >y

and (5 + 1){r) is asymptotically < K.

We should notice that positivity of § is not guaranteed and, in fact, if we assume
that 8{0) = O and {0} = K then we have 5(r) < 0 forr = 0 small. This inadequacy is
of course entailed by the assumed dependence of the logistic part of the equation upon
8 + I. There is no problem, however, if § + 7 < K. One can also comrect the problem
by putting (1 —(‘;(—":I  instead of (1 — %] This means that the logistic part of the
equation is just counting births and there is no birth if the wtal population exceeds the
CArTYING capacily.
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Throughout the paper, we will assume that S(0) + 7{0) < K. We can also relax the
above assumption and allow S{0) + I{0) 1o exceed K, that is,
; i L .
S(0) + 1(0) < K + }I )<k
With these latter conditions on the initial values, we have
S+ <K+5. 1<K
for all ¢ = 0.

In this case, we first show that 7(r) < K for all ¢ = 0. In fact, if these were not true,
and for some ty = (), we have I{fy) = K, we will have at the same time S(ry) < 5,
therefore, 34 < 0.

By Standard argument on invarint subsets, we conclude that: I{t) cannot exceed K.
Now this in turn implies that 8{¢) = O for all r = 0. Sowe can allow 5 + 1 1o exceed K
provided that it does not exceed K +5 and J < K.

Thus we have 0= 8.7 < K. It remains to show that P is ultimately bounded too.
Adding together the second equation and § times the third equation of Equation (5);
wi oblain

mP

d(f—i_T) dm m
T (A5 —p)l—=—P < AK* —min( —P),
N (S — p)I =P < MK mm{;ﬁ,dj(f+HP)_
which implies that

i}

m MK ) m o
f{fll+gP{r)f_imux( : ,Iqﬂj+§Pqﬂj).

min{ . d)
This mmplies that

3

f':|+mP':|{ AR i =0
I — it e I i
| [ W= min{ g, ) Jor o 42

if it 18 true for ¢+ = 0, and

2

I (f':l+mP':I){ AR
11 PRI, ~ I — it g T

Mitoa B0 5L @ \ min g, o)

for solutions defined up 1 400, as long as the solution is defined on positive axis. We
summarize the above results in in the next proposition.

Proposition 1: Every solution initiating in the positive octant and such that
S(0) 4+ H0) < K satisfies the same properties for all ¢ = 0 as long as it exists.
Moreover, the following inequality holds:

2

X m . B m i
I{r) + 7 Pt) = max (min{p,dj o) + > Pqﬂj)
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As a consequence, every solution with initial value in B verifying, in addition to the
condition (5 + (0] < K can be extended upto +0c.

In Equation (5), the number rrepresents the growth rate of the fish population. The
greater r, the faster the population reaches its carrying capacity. For v = oo, one can
consider that § + 7 = K and Equation (3) reduces to the following two-dimensional
system:

al ¥ miP

—=MK-1 - -

fiig \ ) a+T f

dP gip )
P —dP (6
dt a+{i 6)

The subsequent part of this paper is devoted to the study of Equation (6). The model
Equation (6) have the following equilibria on all the coordinate planes, viz, £, (0, 0],

E(2572.0), and E*(I", P*) where I' = 8% P* = 1/m{a+I') (\K —p — AI*).
Now Iln[ equation of Equation (6) can be wrillen as
df miP
=[(AK —p) - }.I|I—-
dt a4+

If A < g it follows that f{t) — 0 as t — oc and so does P. Now one can state the
following theorem:

Theorem 1: If A < {, then the trivial equilibrium £ is globally asymptotically stable.
Hence one may now assume that

(H)AK —p =0

setting ry =AK —p >0, Ky = K —§,0="2(>0&3 = 1(> 0), we get,

al - i I I P 6al
& Bl Ee (6a)
LWyl IR :I)P (6b)
dr 1+ a4

From Eguation (6a) one can deduce that lim, . sup [{1) < K;. The functional
response o predation 1s being increasing with respect o the prey state vanable. When
%Iﬁ < d, that is, A < % (in original parameters) it follows that P(t) — 0 as
t — oo and I{t) — K. Hence one can state the following theorem:

Theorem 2: If (H ) holds and A < %, then E|uli=, globally asymptotically stable.
Again we have, Ky < Ty setting K = Fli—qp One may now assume that
{(Ha) @ —d = 0. Itis known [12-14] that if {H,) .md { H1) hold then one can state the

following theorem:
i pli—d)

Theorem 3: When K* < K| < 2K,* +?| cwhen ot S s o o then
the predator p-ug}ulaLmn controls the prey p-npuldtmn at density 1 = K and settle at

density P* = ——" And when2K* ++ < K; that is, when A > %Lm

“Kialfi—d) d) *
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equilibrium (I, P*) loses itsstability and a unique and globally stable periodic solution

my1ELS i i o s ] 1 s = i (-]
exists and a Hopf-bifurcation oceur at Ky = 2K)* + & that is, when A = 7 ——

3. The Delay Model

In this section we modify the Equation (6) by incorporating a discrete time delay (1)
into the predator response function. The modified model is given as follows:

dl : Ir— 7P

i . s

dt a+fir—7)

P arr —

e L s RSP

dr a4+ Hr—7)
Equation (7) has 1o be analyzed with the following initial conditions:

T{0) =0, P(0) = 0.

We observe that the right- hand side of Equation (7) is a smooth function of the
varables (1, P) and the parameters, as long as these quantities are non-negative, so
local existence and uniqueness properties hold in the positive quadrant.

4. LOCAL STABILITY ANALYSIS FOR 7= 0

In this section, we shall study and analyze the local stability of the equilibria of
Equation (7) for 7= 0. Let x{t) = It)— I, v(t) = P(t) — P* are the perturbed
varables. Afer removing the nonlinear wenms, we obtain the linear varational system,
by using equilibrium conditions, as

dx mP* ) ml* maP*
dr (_M +ﬂ )'li'rj_ﬂ+f"“'r:|_ ( A=)

+ la+ 1) ;
: (8)
dy HdaP (t—7)
—=———xt—7T).
dt (g +P:|2
The associated characteristic equation A(£, 7) = Owith eigen value £ can be wrillen as
E+AE+ A+ (B +B)e ™ =0 (9)
wherne
A = —AK + 25 { — y
| + +opta gy
ar .
A= —d)[AK —2\" — )
2 (ﬂ T ) H)
B, malP*

- (a +f‘:|1 '
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i (HFH . ) malP ” mblal” P (10)

+ I (a+1)?  (a+19)
For the zero equilibdum, B{0,0), 4) = —AK + p+d, Aa = —d{AK — p), By =0,
By = 0. Therefore, the charmcteristic Equation (9) becomes
E+(p+d—AE—d(AK — p) =0.
Hence £ = AK — pand £ = —d(< 0) and then Ej is stable if A < £ and unstable if
A = £ It is to be noted that if £, is stable then £ and E* do not exist.
For the axial equilibium Ej(252.0), Aj = (AK —p) +d — 2520 4y =

[ P HAK—n) . i Aa+AK —p .1
(AK — p)[d — J.=.+J.x—j1|' By =10, 8 =0 Hence the characteristic Egquation (9)
becomes

£~ [(AK—p) +d - ales p ] =

S wicia Sk Y, BT 1 (i s T I
Jm+)..‘i'—p]£+{ ;A:I[ Ao+ AK —p
Therefore £ = p— AK (< 0) and & = I;-[}k—_ﬂl;{'?‘_f-[ﬁiﬁﬁw—_ =

Thus £, is locally stable if A < k?’fj-li:iﬂ.d and 8 = d +‘f. It is interesting o see that

in this case also if E* exists then £ 15 unstable saddle.

Remark 1: It is 10 be noted that the delay factor in the Equation ( 7) has no effect on
the existence and stability propenties of the zero and axial equilibria.

We now investigate the local asymptotic stability of the positive interior equili-
brium E*. The associated charactenstic equation is given by

A(E,T) =E + AL+ (BiE+ Ba)e ™ = 0. (11)
Where
" mP*
A=A — T
B malf”
' e Y
mbaP I g
= i 12
2 @t Y i
Equation (11) can be wrillen as
A(g,T) =Pi(§) + Qi(§) e =0 (13)
whene
P\(§) = € +A¢
Q1(§) = Bi{+ Ba. (14)

Lemma 1: There exists a unique pair of wy, 7 with wy, 7 = 0, wymy < 27 such that
A g, ) = 0 if the conditon A < ~ holds (2 sufficient condition).
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Proaf: We note that A0, 1) # 0.
2 r 2
Now consider [Py (iw)[” — | (iw)|” for w € R, we have

1Py (i) — Q1 (iw)]” = w* + kiw? + (15)
where
ki =A*—B’ (16)
and
k= —B. (< 0) (17)

where A, B and B> are defined in Eguation (12). Now k& = 0 if A < ~ (for details
see Appendix), where
pif—d)(28 —d)

HI.I=|;,KH_Kd—f!d:|I;'2H—d:|—ﬂﬂd- {]'E:I

|Py (iw)]? — @ (iw)]* = + kv + ko = 0 (19)

has a unique positive rool
1, ) .
vy = 5 (—ki + \ ki — 4ka) > 0. (20)

Consequently |P, (iw)]? —3|Q.{=1¢,~;||E =0,w €R if w = twy,wy = /T > 0. There-
fore, |Pliw)|” — | {iw)|” =0 implies that there is a unique 7 = 0 such that
wipTy < 27 and

Al kg, 7o) = Py (iwo) + Q1 (iwn)e ™™ = 0. (21)

Moreover, 1L s to be noted that the eritical value of 7y can be calculated from wy after
computing vy from Equation (207,
From Equation {18) and Lemma 1 we see that

Ali, T =0 weRT=0

il w=dwp.7=% =™ +%,n = Al where wy =0 and 7 = 0 as is
defined in Lemma 1.
Lemma 2:

Re EL-;;,‘E{-F;;?'—T"II Q1 (iwp)e ™™ | >0n=1,2,..... (22)
[#
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FProaf: Now,
4 rJEr +Ta F i 2 : o : JenT . —iuT,
iluiy - I:;uizl }' Orliwp e "™ = iun(—2ivg + A + B1e™'™ — 7,01 (iup Je™"™) O (iw Je ™™
= —2(u ) Py (i) — iwoA Py (i) + inBy Q1 (i) — iwo | @1

= {2...,'.““ "-Azl.uﬁ i LuﬁBF "-jI:Lu'(|3A 'i'n'.u'(|.H|Bg - 2|.|.,'|:|3A —|.|.,'|:|TH|Q] |3:|.

Therefore,
H'E{!-&r‘m Tn:'
X
= wp(2up® + A —B‘T]
A
= v\ ki — 4k =0

Re|iwy Q| |::!-|'.|:.||:p:| P

Hence the kemma:

Lemma 3: If A < ~vand wy, 5, n=0.1,2, ... bedefined as Lemma 1, then for each
Ty there exists a neighbourhood [, © R of 7, and a contnuwously differentiable
function A, :f, — C such that

Ei} ‘fﬂl{Tu:I gy !-"-'l"ﬂ-
(i) Alfu(r).7)=0,7€l,.
(iii) Re[Sgl| _ ]3> 0.
Proof: It is clear from Lemma 1 that 2122l 520, (for n = 0, 1, 2....). From the
implicit function theorem there exist a neighbourhood [, and a continuously
differentiable function £, which satisfies the condition (i) and (ii) of Lemma 3.
Now differentiating condition (ii), we have

OAiwny, T)

x  or

Therefore it follows from Lemma 1 and Lemma 2 that

T=T,

= !-l'.,a.-‘uQ| {I-Lc.t;jf_‘"""r" =

L JI{F'I:I:I) |- ]- {- HE“-'-GIMTMII - — R T }-‘
Re| ——— | = Re fiak T
( (}T ;'}_ﬂ{fu“__q-“j 3 CE ] IILE g-..l{ l:l
ax
1 By }]
e —R SR el A S = Loy T > ﬂ_
DA, ) H“‘ a Qe
ax

Nexl we state the following theorem due to Cooke and Van den Driessche [15] as
maodified by Boese [9].
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Theorem 4: If Pi(£) and (4(£) are analytic funcuons in Ref = 0 and satisfy the
following conditions:

(i) Pii£) and @ (£) have no common imaginary root;
(ii) Pi(—iy) = Pi(iv), Qi(—iy) = Qu(iy) for real y;
(i) P1(0)+ Q1(0) # 0

(iv) fim sup{Q(E)/PUE) - |&] — oo, Ref = 0} = 1;

F(y) = |P(iv)[F — |@1(iv)]* for real y has atmost a finite number of real zeros.
Then the following stalements are Lrue:

ia) If F(y) = 0 has no positive roots, then no stability switch may occur.

by If Flv) = 0 has at least one positive root and each of them is simple, then as T
increases, a finite number of stability switches may occur, and eventually the
considered equation becomes unstable.

By applying Lemma 1, Lemma 3 and the above theorem, we finally conclude:

Theorem 5: For A < ~, the equilibdum (I, P*) is locally asymptotically stable if
0 < 7 < 7 and unstable if 7 > 7 where 7 18 defined in Lemma 1.

Remark 2: As 7 passes through the wvalue 7, the equilibium (I*, P*) losses its
stability and Hopf bifurcation occurs with emergence of a small amplitude pedodic
oscillations.

Remark 3: The intedor equilibrium E* is locally asymplotically stable in the range
0 <7< for A<~ Itis interesting to note that the value of A in delay induced
system is smaller than that of the upper value of A in non-delayed system, which
shows that delay has destabilizing effect on the system around the interior
equilibrium.

5. DISCUSSION

In this paper, we have modified the model of Chattopadhyay and Bairagi [5] with an
assumption that the growth rate of susceptible fish is very high. Since a time delay
factor is always present in between the infection and predation process, we have
incorporated this into the predator response function of the modified model and
analyse this delay-induced eco-epidemiological model.

We have observed that the time delay factor has no effect on the existence and
stability behaviour of the system around the trivial and axial equilibria. However,
incorporation of delay factor in the predator response function drives the otherwise
stable system into Hopf bifurcation, and small amplitude periodic solutions occur
around the non-zero equilibrium point, when the delay factor 7 reaches ils critical
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Fig. 1. {a) Stable periodic sohmtions of Tilapia population for = 88 and A = (L006, for other parameters
see main text (h) Stable periodic solutions of Pelican population for = 88 and A = (L006. For
ather pammeters, see main text

vitlue 7= 7. To illustrate our analytical findings, numerical studies have been
pedformed, based on the following hypothetical set of parameter values: K = 400,

m = 14.5/day,a = 0.0 tonnes, 8 = 0.8 /day, p = 0.0019/day. d = 0.7/ day. It has
been observed that when A = 0.006 and < 88(h) the system becomes stable (with
decaying oscillation) and for 7> 88 the system becomes unstable (with growing
oscillation). Further for 7 = 88 we observe that the system exhibits stable limit eycle
with the emergence of small amplitude pedodic solutions [see Fig. 1(a) and 1{b}]. The
growing oscillations (unstable siwanon) ndicate both the population will go w
extinction in the long run. These findings may be related to the comments of Horvite
on the problem of the Salton Sea [2]. He remarked that thovsands of birds depend
upon the fish for food and 380 species of birds have been counted in the Sea, which is
nearly half of the total species known to exist in the United States. As the salinity of
the sea 15 gradovally increasing, there will be massive algal blooms causing oxygen
depletion in the Sea water due o decomposition of algae. Consequently, the Salion
Sea 15 becoming a suitable medium for the botulism bactena o grow and prodoce
toxin and in future, there will be no more fish in the Sea and naturally many of the
birds that vse this Sea will no longer be able to survive there. Thus our observations
for the extinction of the species (due w growing oscillation) are 1o some extent similar
to that of Horvitz (due to enhancement of salinity, eutrophication, ete.). Againif = =0
and the value of A is increased from 0.006 to 0.06, keeping other parameters fixed, the
system becomes locally asymptotically stable around the intenor equilibrium [se
Fig. 2(a) and 2{b)] but in the presence of delay for this value of A we observe that the
system becomes unstable for sufficient lower value of 7 Thus, both the analytical and
numerical studies confirm that the delay in predator response function has a
destabilizing effect on the system. In other words, the non-delayed system can tolerate
maore infection than that of the delay-induced system. These findings are realistic from
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Fig. 2. fu) Asymptotically stable solutions of Tilapia population for = =0 and A = 0.06, for other

parameters see main text (bl Asymptotically stable solutions of Pelican population for v = 0 and
A = (106, for other parameters see main text.

a biological point of view as vivio is passed from one infected fish o another
susceptible fish; the more infected Tilapia is in the sea the more chance of the
susceptible Tilapia to be infected in a large scale by the disease and instability
conditions sets in. Thus, if the infected fishes are allowed to spread infection by means
of introduction of delay in the predation term, there 15 a high possibility of an
epidemic outbreak in the fish population and evenwally in the Pelican population. In
other words, the chances of sability of the system around the positive interior
equilibrivm will increase by decreasing v Thus, contol of the disease may be
achieved by controlling the value of A and 7. Therefore, for sustaining Tilapia and
Pelican in the Sea, the infected fishes must be reduced as eady as possible. We may
finally conclude that for sustainability of Tilapia and Pelican from explosive epidemic
in the Salton Sea, reduction of the Tilapia population (specially infected Tilapia) in a
considerable amount 15 essential and hence a suitable harvesting policy should be
implemented. Steve Horvite pointed out in his meport Safton sea 100 that for
prevention of Salton Sea the number of the Tilapia population should be reduced by
thousand of tons of fish each year. These findings are also supported by Gonzalez et al.
[1] from experimental view point and by Chattopadhyay and Bairagi [5] from
modelling point of view.
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APPENDIX
Caleulation for A < ~ in Lemma L

We observe that, if A + By and A — By are both positive then K, = 0. Now

mP* 4 maP* r [Ma + f‘]" — mP?|
a+ {.n+f‘:|3 {I!+f‘:|2

A+ B =M

Again,if A = [“+’—‘:v then (A + B ) > 0 and in system parameters this condition can be

i
wrilten as A < %.
Similardy,
. mP” malP” Alfla+1* S mP*(2a+ I
A—B =M — o 5 = { ) 5 { :I
a+l' (a+1*)" fa+ 1
: 2 (B [ 28—l
QJ,A—E| }ﬂlf}.{m.
Therefore, K, =0 if
pid—d) e —di(28 —d)

A < mi i
= M K0 —Kd—ad—af) ' (KO — Kd —ad —af)

That s if

ulf — d)(26 — d)

A
= K6 —Kd — ad — ab)

= y(say).
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