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The generalized Gause model of predator-prev system is revisited with an introduction
of viral infection on prey population. Stability behavior of such modified svstem is car-
ried out to observe the change of dynamical behavior of the system. To substantiate
the analyvtical results of this generalized susceptible prey, infected prev and predator
population, numerical simulations of the model with specific growth and response func-
tions are performed. COur observations sugrest that the disesse on prey populsation has
a destabilizing or stabilizing effect depending on the level of force of infection and may
act a5 a biological control for the persistence of the species.
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1. Introduction

Mathematical ecology and mathematical epidemiology are major fields of study in
their own right. The study which includes ecology and epidemiology is now termed
as eco-epidemiology. Even though the importance of transmissible disease in ecolog-
ical situations has been shown to induce major behavioral changes in the species,
little attention has been paid to describe such situations theoretically that may pre-
dict useful implications in both dynamics and control. Few theoretical studies have
been carried out in such systems [1-5, 8, 11, 12] where the effect of viral infection
has been explored.

1.1. The main motivation

Beltrami and Carroll [1] proposed and analyzed a predator-prey system in which
some of the susceptible phytoplankton cells were infected by viral infection and
formed an infected group. They conchided that only a minute amount of infec-
tious agent can destabilize the otherwise stable trophic configuration. Venturino
[11] considered a predator-prey system and the analysis included 51 and SIS mod-
els with mass action and standard incidence type. He concluded that under suitable
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assumptions the disease can act as a control for the persistence of the system. Chat-
topadhyay and Pal (3] modified the model of Beltrami and Carroll [1] and the model
of Venturino [11]. They observed that if the contact rate follows the law of mass ac-
tion, there i a possibility for the coexistence of the species but on the other hand if
the contact rate follows the law of standard incidence, only a mimite amount of in-
fectious agent can destabilize the otherwise stable system. Fmally, Chattopadhyay
and Pal [3] concluded that behavior of such system is very much model dependent
and the progress of this sensitive and important issue depends on the responsibility
of the researchers. Hence the study with generalized predator-prey model may be
wseful to have some insight on this complex system.

Gause [6] model on predator-prey dynamics is one of the pioneering work on
population dynamics. A considerable amount of research papers have appeared in
the literature based on this work. The roke of disease in such systems can not be
ipnored and we like to revisit the peneralized Gause type predator-prey model with
viral infection on prey population only. The main objective of this article & to
observe the role of the disease in the original Gause model

2. Gause Model and Main Results

Let us consider a generalized Gause Model |6, 7] for predator-prey interactions, e.g,,

dy (2.1)

dt
where, g(z) is the specific growth rate of the prey in the absence of any predators
and p(r) & the predator response function for the predator with respect to that
particular prey. We also adopt the general assumption (for the theoretical as well
as for the biological walidity) on the fimctions g{z), p(z) and gq{z), ie.,

= y{—7+q(z)},

la. g{z) is continmously differentiable for z = 0, g.(x) < 0 and g{0) = 0.
1bh. There exists K such that g{K) = O on 0 < z < K, K being the carrying
capacity of the environment and g{z) <0 onz > K.
2. plz) and g{z) are both contimonsly differentiable for = = 0,p.(z),q.(z) =0
and p(0) = g(0) = 0.

As a comsequence of above assumptions, (0 < lim, o plz) = py and 0 <
lm o q{T) = e aTe true; we also consider p.(0) = g and q.(0) = g). A unique
positive interior equilibrinm {x*, y*), exists if 0 < z* < K such that g(z*) = ~
and Hmy . ¥ > maxg<a< R{ﬁ}?{(ﬁl} {see [9]). Conditions for local asymptotic sta-
bility and instability of the system (2.1) around the positive interior equilibrium
(z%y*) is
Hiz®) < 0 = (z%, y") stable,
=0 = (z* y") unstable, {2.2a)
= [} undecided |
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where,

H{z*) = z*g:(z*) + g(z*) — y"p=(z"),
(2.2h)

«_ Tg(z®)
¥ T e

2.1. The modified G ause model

We shall now modify the Gause predator-prey model by introducing viral infection
on prey population. The following basic assumptions are made:

(a) In the absence of virns disease the prey population grows with specific growth
function g(x).

(b) In the presence of virus the prey population i divided into two classes, namely,
susceptible prey, denoted by r; and infected prey, denoted by za. Therefore at
time f the total prey population i

o(t) = 2y (t) + zalt) .

(c] We assume that both susceptible and infected prey are capable of reproducing
and contribute with carrying capacity of the system.

Based on the above assumptions the peneralized Gause model can be written as:

dr

EI = zg(z) — yp1(z1) — r(z2),

% = r(z2) — ypa(z2), )
dy

=5 = ¥i-7 +alz)},

where, g{z) is the growth rate of the prey in the absence of any predators and
pilxi),i = 1, 2 is the predator response functions for the predator with respect to
that particular prey x; and re respectively. v{zs) is the prowth rate of the infected
prey population such that r{zs) is contimmously differentiable for z = 0, rp(ze) < 0.
qlz) follows the same properties of g(z) and p;(x;),71 = 1, 2. In addition to that we
also consider a function (a linear transform) p{z), following the same properties of
pilx;) such that

plz) = pr(z1) + pa(za) . (2.4)
System (2.3) has an interior equilibrivm (z7, 25, ¢") iff

z*glz*) —y*plzy) +r(z*) = 0,
r(z*) —y'pa(z3) = 0, (2.5)
glz*) =7 =0,

have a unique solution.
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2.2. Local Asymptotic Stability (LAS) analysis

Adopting the same notation those were used in Freedman (5], we compute the real
parts of the eigenvalues of the Jacobian matrix evaluated at the interior equilibrum

s
H(z") +y"poc(25) H(z")+y'pelz®) —7el(z3) —pul2])
Sz}, 25, y7) = 0 Te(23) — ¥ P2l z}) —palz3) |,
¥ g.(z") ¥ g.(z") 0
(2.46)
where H(z*) is given in (2.2).
The characteristic equation of the linearized system of (2.3) is given by
AN=M+as +ad+ap=0, (2.7}

where
ay = —(H{z") + r2(z3)),
ay = y'pla” )g.(z") + (H(z") + y"paz (1)) (r2(23) — ¥ paz(23)) (2.8)
ag = Y q=(z")(y" (P (2] Jp2(25))e — pl)72(23)) -
Following Routh-Huriwtz conditions, system (2.3) is LAS iff
(i) as >0, ie, H(z*) +r.(z3) <0,

(ii) ag >0, Le. y* (pa(z)pa(z3) )2 > plz®) 72 (23), (2.9a)
(iii) oy — g > 0 ie., H? + alH + b < 0, where, (we use H mnstead of H(z*))

_ ¥zt )g.(z")
Tx(23) — ¥ pa:(23)

+ TI{‘TEJ +U¥Pﬂz{$;j s
(2.9b)

w2 * i ET pE &
b=y putedirte) + Ll e

T(T5) — Y pasl 25

The following two cases which are arising from (2.9b) are to be useful to determine
the range of stability of the systems around the positive equilibrivm.

(1) re{z3) — y*pac(23) = 0 then, H{z*) < min(H,, Ha) < 0,
(ii) 7o (z5) — y*pac(23) < 0 then, max(Hy, Ha) < H{z®) < 0, (2.9¢)

where, H,, Ha are the roots of H® +aH + b= 0.
Now we are in position to compare the Gause model (2.1) and the modified
Gause model (2.3):

a. If H{z*) < 0 then the system (2.1) is LAS at (z*, ¢*). From Eq. (2.8), it iz clear
that if H{z*) + v (z%) > 0, then os = 0, hence the system (2.3) iz unstable.
Thus there exists a threshold level of infection below which the dynamics of the
interior steady state becomes stable and above which unstable.
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b. If H{z*) < 0 and the conditions given in (2.9) hold, then the system (2.3) at
(r1, x5, y") 8 LAS. This observation shows that infection on prey population
decreases stability region (see Eq. (2.9¢)).

c. If H{z*) = 0 both systems are unstable.

To substantiate analytical findings, model (2.1) and model (2.3) have been in-
tegrated using forth order Bunpe Kutta method with the following hypothetical
set of parameter valies and functional forms. Let us consider g(z) = R(1 — &),
pi(z:) = bz, i =12, plz) = E?=1 pi(z:), r(z2) = 1_.%%'- g(zx) = pz.

For Gause model we consider £ = 1.5.b; = 0.8, =0.25.p = (.78 and K = 5.
We ohserve that the system settles down to steady state solutions, depicting stable
solution (Fig. 1). Now keeping all other parameters fived and assuming b = 0.3,
4 = 1456, 32 = (.15, we observe that one of the population (susceptible prey) of
system (2.3) becomes extinct, an unstable sitnation (Fig. 2). This result shows that
infection on prey population has a destabilizing effect.

In predator-prey models the carrying capacity of the environment and half sat-
uration constant are two important factors. Murdoch and Oaten [10)] showed that
half saturation constant, which is proportional to ;' is a key parameter in deter-
mining the stability of predator-prey system. To observe the role of these factors in
this modified system we have just changed the walue of K =5 to K = 250 (other
parameters have unchanged) and have ohserved that the system ungerpoes limit
cycle oscillation (see Fig. 3.) Increasing 3» from 32 = 0.15 to & = 0.2, we haw

a8
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Fig. 1. Stable solution of Gause model.
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Fig. 2. Unstable situation of system 2.3,

a5 !

w
-,

25 "l

Paopulation
[
-

a5
[x] S00 1000 1500 2000 2500 000 3500 4000 4500 5000 S50 (=] e300 pyale TS00
wme 1)

Fig. 3. Limit cycle solution for Gause model.

observed that limit cycle oscillations in Ganse model settles down to a steady state
solutions (see Fig. 4). This observation indicates that infection in prey population
has a stabilizing effect.
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Fig. 4. Stable situation of system 2.3.

3. Conclusion

The dynamics of predator-prey systems are well known but the role of infection in
these systems can not be ignored. In this paper we attempted to see the role of
infection in the gpeneralized Gause predator prey model and arrived at the conchu-
sion that level of infection plays an important role in determining the dynamics of
the system around the positive interior equilibrivun. Moreover the disease on prey
population may act as a biological control for the persistence of the species.
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