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Abstract

An integro-differential equation system with nonlocal effects of interspecific allelopathic in-
teraction has been studied to investipate the formation of spatio-temporal structures in toxin
producing phytoplankton population. The model is inherently more realistic than the usual kind
of reaction-diffusion model. Bifurcation from uniform steady-state solution has been examined.
Evolution of steady-state spatially periodic structure and periodic standing waves have been stud-
ted. The model helps to investipate the blooms, pulses and succession in different patches of
phytoplankton population. Numerical simulations for a hypothetical set of parameter values and
experimental observations have been presented to substantiate the analvtical findings.
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1. Introduection

Plankton is the basis of all aquatic food chain. Phytoplankton in particular oceupies
the first rophic level in the food chain. Plankton does huge service for the carth: food
for manne life, oxygen for human life and it also absorb carbon-di-oxide from the earth
atmosphere. Harmful effects and allelochemical effect of planktonic algal are the recent
topics in aquatic research. Bloom froming phytoplankton are directly hammful to the
other planktonic biota including human beings. Patchiness in phytoplankton population
is a commonly observed phenomenon. Several workers have noted that the increased
population of one species of phytoplankton might affect the growth of one or several
other species by the production of allelopathic toxins or stimulators, mfluencing the
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formation of patches, cach patch having the properties of exhibiting blooms, pulses
and suceession. It 15 now well established that quite a good number of phytoplankton
species produce toxin (see the elegant review of Hellebust [5] and the book by Rice
[13]) and a lot of theoretical works have been done on plankton patchiness with the help
of reaction-diffusion mechanisms (see [11], [4]). When a bloom of a particular harmful
phytoplankton oceurs, the cumulative effect of the entire toxin released may effect the
other organism, causing mass morality. Such extreme concentrations or blooms are
responsible for the massive localized monality observed in fish and mvertebrates in
various places [13].

Maynard Smith [ 7] incorporated the effect of toxic substances ina two species Lotka—
Volterra competitive system by assuming that cach species produces a substance toxic
to the other, but only when the other is present. Mukhopadhyay et al. [8] suggested
that a species needs some time to mature before producing a substance which 1s toxic
{or stimulatory) to the other, e, the production of an allelopathic substance by the
competing species 15 not instantaneous, but occur after some discrete time lag required
for maturity of the species. In a competing system, the allelopathic effect on that
system needs its past history. So, mstead of diserete time delay, continuous delay s
MOTE APProprite.

Britton [1] mtroduced the concept of double convolution m population models as
time convolution is necessanly effective to rise o a convolution in space. It s evi-
dent that the nonlocal spatial effect occurs not only due to diffusion but also due to
allelopathic interaction between the species. So, it also seems reasonable to assume
that the production of toxic substance by one of the competing species allelopathic to
the other and will be effective within a certain range of arca, beyond which there will
be no effect. Presence of nonlocal term brings about a vanety of solution behavior
which is not possible to obtain from a scalar local reaction diffusion equation [3]. So,
considering all above, we modify our model [B] in general.

In this paper, we have considered a computational method for determining regions in
parameter space comresponding to linear stability or instability of a uniform steady-state
solution of the considered system in plankton allelopathy. Investigation on nonlocal
allelopathie effect as well as effect of distnbuted time delay on planktonic world 1s our
main objective of study.

In an carlier work [8], we observed that the two species competitive and allelopathic
system as proposed by a delay differential equatons model where spatial vanation
was absent showed that the time delay could dove the competitive system to sustained
oscillations only when the allelopathy 15 of stimulatory nature but no such phenomenon
had been observed when the allelopathy was of mhibitory type. In the latter case
it was also observed that at the steady-state one species has always a lower value
than the other. Hence, although the delay effect produced by delayed allelochemical
production can regulate the densities of the different competing species in the aquatic
ceosystem by influencing seasonal succession, blooms or pulses when the allelochemical
is stimulatory, no such effeet of regulanon could be noted if the allelochemical was
inhibitory. But as in the planktonic world, most of the allelochemical intermctions are
of inhibitory type, one should conceptualize a well-posed model that can explain the
important attnbutes of planktonic growth such as blooms, pulses and succession when



A Mukhopadhvay et al ) Nonlinear Analysis: Real Warld Applications 4 (2003) 437456 439

the interacting species produce toxie allelochemicals. The present work 1s an attempt
towards developing such a model. The integro-differential reaction-diffusion model of
phytoplankton population involving competition and allelopathie interaction proposed
by us in this paper 15 thus a modification and improvement of the delay-differential
equations model as proposed in our eardier work.

2. The mathematical model

Generally two types of blooms, “spring” bloom and “red tides™ occur in aguatic
system. Spring blooms and red tdes may be explained by sustained oscillation and
multistability, respectively. Several researchers tried to explain the nature of planktonic
blooms by different approaches: for example, nutnent upwellng by Edwards and Brind-
ley [2], spatial patchiness by Matthews and Brindley [6], species diversity by Pitchford
and Brindley [12], ete. But the nature of planktonic blooms through nonlocal delay dif-
ferential model 15 still unknown. In this paper a Lotka—Volterma competitive model will
be modified and analyzed to explain the nature of planktonic blooms. Lotka—Volterra
competitive model is well studied [9] and the results obtained from this dynamics may
be tested in real life situation. In the formulaton of the model we consider two toxin
producing competitive plankton species, namely, Nitzschia sp. and Chaetoceros spp.
and the growth of the species follows the law of logistic growth [10]. We assume that
cach species produces toxin only in the presence of other and require some time for
maturity of the species to produce toxin. The effect of toxin substance on each species
is not depend only on the population density at one point in space, but depends on
the weighted average mvolving values at all pomts in space as the species moving (by
diffusion) and hence nonlocality arises in the system

Considering the above assumptions and facts, the following two species competition
model with nonlocal effect may be formulated by means of partial differential equations.

The modified two species competition model [8] in general, can be written as

OV
,\T —a“\'r |:.FL|—D!|JH'|'|—||"]!|MH||'!I— |4H\'2/. [ F|5{_]"1,T|}I
L]

® N(r—r.f — 1 )dn dn] P

NS & gt
— = Na [ K3 — aaNa — il V) — 72Ny [ [ Fa(rata)
T of —fs J —oa

il
KNP — P2t — T2 )d1a dr;], (2.1)

where Ny = Nyr.t)'s (j = 1.2) are the population densities (number of cells per
litre ) of two competing species at a certain position r with respect o certain frame of
references at time ; K\ K are the rates of cell proliferation per hour, 2, 22 are the
rates of intraspecific competition of the first and second species, respectively; B2, fay
are the rates of inter-specific competition of the first and second species, respectively
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and K/ (f = 1.2) are environmental carrying capacities (representing the number
of cells per liter). The units of %, 2, fi2 and 3 are per hour per cell, and the
unit of time is in hours. 3,72 are the mtes of toxic mhibition of the first species by
the second and vice versa. 7, 72 = 0 are the omes (in hours) required to produce the
“allelochemical” of the first and second species, respectively [B] e [0LR)(F = 1.2)
are the mange upto which the allelopathie effects are effective. We make the following
assumption on F(r O p # g pog = L2) [1]:

Hl. F = Fo r.t) = 0 (as a weighting function); F € L'(R" x (0.oc)) indicates that

the convolution s spatio-temporal and F LYY = (0, 22)).
H2. F satisfies the normalization condition, 1.e.,

[_. L Fpyr.t)dtdr=1.

H3. F = F(r.t). The Kernel £ assumes that the nonlocal effect depends only on the
distance, and not on the direction.

Besides the above-mentioned assumptions { HI-H3) the following assumption on
Flr ) is made as there will be no allelopathic effect when [r| = R (= 0)p = 1.2,

..,

H4. F o (r 1) is an even function of r vamshing outside an interval [(LR,]. So, F (1)
is defined as F, (r.f) =0, when r 3 [0LR,]p=L2.

We consider such Kernel functions satisfying all the above assumptions on them.
Therefore,

R 1
[ [ F:Jr.r'[rp: T_r.l}'a"'r_r.l{r o rp.,f = T_r_.}df_r_.d.l'p
J—R N =

o0 )
- [ [ F (v = ryt — 70 W (. 7, ) drp diy = F iy # 2N (22)

Alternatively, the model system is considered as follows

ihy

:,‘—I_! = aa\'r| [K| == Df|aa'|'r| = ﬂuan'n'rg ™ _',‘|an\'r2F|3 * *aa\'r| ],

4]

0Na ”

= = MalKa — N2 — BN — 721 Fay # #N2). (23)
L)

The double convolution F,, + +N , will be reduced to be purely temporal or purely
spatial form by tmking the Kemels in the form F o (r — rp.f — 7,) = (0 )F . (f — 1)
and Fo(r — rpt — 7)) = H1)F up(r — 1y ), respectively, where d§ represents the Dimc
delta function. The suffixes ¢ and 5 denote temporal and the spatial cases, respectively,

Note that F(r —rpt — 1,0 p.g=1.2: p # gq) represent Kemel functions quantifying

the effect of Nu(r,.t,) on Ny(r.1).
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3. Equilibria

The uniform steady states of allelopathic Inhibitory system are as follows:

£y =(0.0),

B (’—,‘, {]),
K
E= (ﬂ, 2 )
K

B — (NN, (3.1)
It was observed [B] that both the species will persist when K, /K, < 2,0, (p.g=
1.2, p # g). The system has unique positive intedor equilibrium if a,/f,, = 7,/
v 20 (p.g = 1L.2; p # g). Bo the required condition for the existence of unigue
positive equilibrium as well as for the persistence of the system is

o il T il K il
SR mﬂx('_—r, —I) when y,.7, >0 (pg=L12; p# q) (32)
figp Yy Ky

4. Local stability of interior equilibrium

Before dealing local stability properties of the system, we first rescale the system by
changing the variables as follows:
N, N
F s ==
.|"L|I."Df| FL]I."sz

fa Ks fa Ky
A =

and =K T,

o3 K| g 0 Kg
an K an K
P e R T Ll
2y Az |
i X 4.1)
- (4.

To avoild complexity, we here consider only the nonlocal as well as time delay effect
of w on v by considering Fa(r —ry, £ — 7)) =a(r)d¢) e, the reduced dimensionless
system of equations reduces to

du
= =u[l —u— ay20 — b,
il

~
(s

=

— = Kv[l — v — azu — bauFag # #0). (4.2)
The corresponding equilibna would be expressed accordingly. Here we are dealing with
the stability problem of mterior equilibrium £% ={ ", ¢*) corresponding to the orginal

equilibrium of the system (2.3).



442 A Mukhopadivay et al | Nonlinear Analysis: Beal World Applivations 4 (2003) 437456

To investigate the linear stability of the nonzero equilibrium (% ={u*, 0" )) substitute
w=n+u" and v=n2+0v* and the corresponding initial conditions are v = v*, and v = v*
for ¢ < 0 (so that n; = 0 for ¢ = 0) and w(x.0) =wp(x) o(x0)=wg(x); (f=1.2).

Consider the linearized system in the following forms for the system (4.2),

=
J

t;\ﬂ =An| + 8Bra,

i

ina .

— = Cny + Dna + EFa % #na, (4.3)
[ars

where 4, B, C, D and £ are defined as
A=—(14bp* u*,
B=—(az +bu" ",
C=—K(a +bav" 0",
D=—Kv*,
E=—Kbau"v". (4.4)

Mote that all the constant parameters in the lincanzed system are negative.
As we are interested for the spatially structured solution, we consider the solution
in the form

m(r.i) P\
= e
na(r.f) Q(r)
The charactenstic equation of the linearized system takes the form as

D(im?) =2 —(A+ D+ EFy(in?))l + AD — BC + AEFy (A m*) =0, (4.5)

where m is the wave vector m one-dimensional coordinate system; 4 is the growth
factor and Fy (A m*) = E:_ fﬁx' Fa(r.ta e~ e ™2 drydrs. 4, B, €, D and E are
defined in (4.4).

Let us now state the properties of F,(im*) due to Britton [1].

Pl. ‘l.-}"hcn Ais rual,_F_W{f'., ma) s a Eual valued function of £ and m?.
P2. Fp(0,0)=1, Fpp(0) =1 and F ,,(0)=1.

P3. If Re 4 = 0 then F (im?) < 1 and |F (im*) < 1.

P4. If 4 is real and nonnegative and (A,m”) # (0,0) then F'I,q{i.,mzj = 1.
P5. If (ea,m?) # (0.0) then F (ica.m®) # 1.

The proofs of the above properties may be found in detail in Britton [1] and Gourley
and Botton [3]. We also state the followmg

Fpglionm?) = Cpl) — iS5 (0), (4.6a)
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where

Cpyler) = [ f Fug(x.1) cosorf cosm.x di dx,
o —aa S

Spgltr) = [ f Fogl X 1) sinest cos mx dr dx. {4.6b)
S

Note that |Cp{w) = 1, |Sple) =1, forall w20; pg=12 p#gq

It is found that the particular time delay and wave number m of the perturbation
and the uniform state will make the system unsable if @i m?) =0 has roots in
the nght half complex plane. The number of roots can be obtained by the formula
n(oo)=limy_ (1 —1/marg a1, m? ) ). Therefore stability depends upon the geometric
properties of curve traced out (in the complex plane) by @i, m”) as o runs from 0
to oo, From the properties of ,E'I,,‘,{.-F.,m!}, in general, it 15 found that .E'I,,‘,{},mz} = 1.

Since A+D+EF(4m’) < 0, the steady-state will be linearly unstable at AD—BC +
AEF (A,m*) €0 along with BC > AD, i.e, F3(l.m*) € (BC — AD)/AE and stable
at Fy(im®) = (BC — ADYAE. So, the system will pass from stability to instability at
the bifurcation point ;'{u:{b.,b_:] whire

Wmt by b)) = EEA;;D =Fy(hm?).
(- # g pog=1.2. and by fixed). (4.7

Note that 7 is not only a function of m” but also depends on the bifurcating parameter
ba. At the entical wave number m = m, equated from (4.7) the system will sponta-
neously emerge into a steady spatially periodic solution (population patches) according
to Tunng sense.

5. Bifurcation

In this section, we deal with the problem of bifurcation of the solunon from the
coexisting steady-state (", 0*) of the system (43). Here we adopt the method of
perturbation. We consider two of the bifurcations, namely bifurcation to steady spa-
tially periodic solutions and Hop! bifurcation to periodic standing waves. We are not
considering the Hopt bifurcation to periodic traveling wave solutions as the concerned
dynamics of plankton allelopathy are in aquatic system. Followmg Bntton [1], we have
that as m* — oo, in n dimensions,

Tt 2

SN
Fay(A.m) T 2ym?

i 1
F_ﬂuup{—'-}+ﬂ(ﬁ), (5.1)

where

Fajp(2) = lim £(Fay(r, 20" (52)
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and £ denotes Laplace transform. It is to be noted that Foy,(0) < 0 and £, (0) = 0.
The Pade’ approximation of Fy(4) in the simplest form is

-FE It{.ll}{_{}::I

Fapym( ) = = 53)
264 S T (0) PO ¢
We then approximate the charactenstic equation (4.5) of polynomial type as
D(i.m?) = d(im?)= 0. (54)

Equivalently, the above equation can be written m the form as
1 3 I | Fayul0 : L Fapnl
e ':IH{}+{.4+EW 2+ :lu{} A4 D
AE AE | Fyyf AE | Fy(0)

202 Fs 1 (0) : i 272 Fy 1y (01 (Faiu(0))
~E T T f'_{"_ I'in/2)m? } Fy (0 =0.(53)

We shall anal_}zL (i, m’) = 0 instead of D, m” }—{] and assume that the dominant
roots of @i m)=0 are close to those of @i m?) = 0.
Firstly, we consider the root 4 = (. Then

2 2

5 Fa1yny(0 5.6

f{ﬂ Sy T2 H(0). (3.6)

Next to observe the change of 4. For this we differentiate partially ®(i m?) = 0 with
respect to 7, keeping m fixed and obtam that

| 11:1.1,,,1;«(}}{}i oy g 22 22 } -
FE +AEF§,M{{}} R e :

If the case when l;i = ) then the relevant root of ‘E’{.F.,m"} =0 crosses from the nght
half plane as ¢ inLFL&‘iL‘i s0 that the corresponding mode loses linear stability, but on
the other hand when 04/ = 0 it moves from rght to left, implying a gain of linear
stability. In either case, tranhxurhallt} condition holds, and this is the situation in which
bifurcation at a simple cigenvalue occurs in a system of differential equations.

The other way of change in stability can occur is by two complex conjugate eigen-
values crossing the imaginary axis. We therefore look for the locus in the (y.m*) plane
where @i m*) =0 has purely imaginary roots.

So our amalysis suggests that if we focus attention on a certain particular wave
number m (Le., if we fix 8 wave vector m and only consider stability to perturbations
of that particular wave vector), then regardmg B as bifurcation parmmeter, we should
et a bifurcation at simple eigenvalue to the steady spatnally periodie solutions, and a
hopf bifurcation to solutions which are spatially and temporally periodic. We confirm
those bifurcations in the followmg section by constructing the bifurcating solutions
using perturbation methods and with numerical results,



A Mukhopadhvay et ol ) Nonlinear Analysis: Real Warld Applications 4 (2003) 437456 445
3.1 Bifurcation to steady spatially periodic solutions

We consider the bifurcation that occur in (4.2) in the light of Gourley and Britton
[3]. When 7 15 increased, a root of the eigenvalue equation (4.5) crosses the imaginary
axis through the origin. Such a crossing always occurs if m* # 0. When A=0 is a root,
the lineanized equations have solutions proportional to ¢™*, so this sugzests that we
should consider the possibility of a bifurcation of steady spatially pedodic plane wave
solutions from the steady-state solution (u*, ™). Let m be any nonzero vector; define
£ =mx and look for a solution which 1s 2r-periodic of the form w(x.f) = Wimx) =
wli), v(x,f) =vimx)= o). The system (4.2) in the system becomes

O=u[l —u—apv— Mhurl.
0=Kv[l — v —aaju — bauFay # #0) (5.7)

with the penodic boundary conditions at £=0and ¢ =27 Again the system 15 invan-
ant under the transformation { — —¢& but we may ensure that the eigenvalue of the
lincared system 1s simple 1if we look for the solutions symmetric in ¢, Thus we look
for the solutions on (0, 7) which satisfy the conditions

w0 =u(m) = (0) = L'-r{I{}I =1. (5.8)
For general kemels, the term Foy o #0 requires o to be defined on the whole real ling;
a solution on (0, 7) satisfying (5.8) 15 therefore understood to be extended to an even
function on (7, —m) and then periodically over all B,
We can check that an approprate transversality condition holds as A4 passes through
0. Differentiating (5.4) with respect to bs and setting £ = 0 yields
B KB+ Ku'v"Fay i (0.m%) + Kutv" AEFy ;(0.m%)

it & Hiuck — 59
b 1=0 A +D+EEF3|13{U,:H-’}— .4E£F3|_3{{},m3} {

Since m® # 0, properties of Fa under parametrc conditions imply that the above
quantity 15 nonzero and therefore that the transversality condition does indeed hold. We
now construct the first few tenms in the bifurcating solution using standard perturbation
procedure, regarding m® as fixed and working on suitable space of functions satisfying
{5.8) with the inner product
[y ez ) (002 )] = [ (1 ()8 () + o D) (D) AL
Jo

We seek a solution of (5.7) with (3.8) of the form

o) e J 7o) 7 )+

by =bag+ ehay + by + -+, (5.10)
where

w0 = (m) = {0 =v{n)=0, n=12.. (5.11)
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We substitute (3.9) into (5.7) and equate powers of £ upto the third order. If we define
the linear operator Ly by
{1+ o™ ” {212 + b Ju”
L= " (5.12)
Ko™ (o + bat™) Ko™ (1 + boge™ Fay # )

where the operator Fay +# 18 defined (2.2, then the first three perturbation equations

an
Iy
L =1 (5.13)
Uy

T (1 + bye™ by + (o2 + 2™ oy )
1
L ( ) = | 1Ko {{aam + v"baguy ) + (0) + bygu™Fay # #01)} |, (3.14)
v
+Ke (bagtei Fay # w0y 4+ bago" ey 4 by Fay o+ #0p) )

[ A (bis + by )+ ({1 +byo s + (2o + b))
Fra (1 + b i + (a2 + b ey}
1bao(u Fay # #v2 + w2 Fay # %01 ) + bay(v" Fay # %02 + w1 Fay # %0y
= | uav™) + boav*uy + wFay o+ 0y ) +oi({azus
+o" agua ) + (2 + baF * w02 )+ boguFayg # #0) + bou" F & %0
+h210" w1 ) + 222101 + 0" baoty )
\ Hui + bt F # #01)) } /

(5.15)
MNext we have the simple result as
Fay # #c0sné = Fo(0,n°m Yeosné, n=0,1,2,... .

The nontravial solution of (5.13) with (5.11) is of the form

u i
( I ) = ( I )L‘{}sﬁ (5.16)
(&} a2

as long as
(0; g, m” ) = AD|py —pyy — BClpy—pay + AE by, F21 (0,m")
=K' v"{(1 + b v*) — (a2 + b Wazy + bxo™)
+ 1 bag(1 + by o*)Fay (0, m?) } =0 (5.17)
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and in this case either component of (5.13) gives the mto of a; to as;

£ v i) -|-.I’J|M'c

ﬂ_g h 1 +.I’J‘|L‘x :
This the only solution of (5.13) provided that
(0 bag.m°m®) % 0 for all integers n = 2

which we assume to be the case. Then (5.17) defines by as a function of m*,

%12 + b)) — (1 +bie*)

by = by(m?) = i} —. 5.18)
B b e FartO, oY (L :
We define the adjoint L} of the lmear operator L; is given by
(14 by Ko* (ot + bogt™)
= s (5.19)
(otia + b ™ Ko™(1 4+ byu" Fay # #)

L} satisfies the propertics [Lyw, v] = [u, Liv] showing that

[ 1'Fg.**ud§=f wFay * #0dé
Ji 0

for all functions w, v such that &'(0)=u'(7)=v"(0) =0v'(7)=0. It can be easily verfied
by expanding w, v in their Fourier cosine seres and evaluating cach mtegrand and using
the orthogonality propertics of the function cosn over the interval (0,7). We have
the Fredholm Alternative to obtain the solution (u},0])" of the adjoint equation:

1y
Ly i =1 (5.20)
L

Consider the solution is (u],v])" = (d).d2)" cos & where

.rﬂ K + bygv* Jo*

dr (1 +bo* )t k)

and this solution s unique upto normalization. With w) = ay cos £ and v = a3 cosé, 1t
follows from Fredholm Alwernative that (5.14) has a solution if and only if the inner
product of its rght-hand side with (u}, v})" is zero. Since the quadratic terms w7, w0
and 15y # #uy do not imvolve first hamonies we are lefi with

[' v by (0% + u*Fa (0.m))ayd | cos® EdE =0 (5.22)
il

or by (v* 4+ w* Fay(0,m*)aydy =0 implying that by =0 (as a;.d; camnot be zero).
Changing Eq. (5.14) by using the above results and applying Fredholm Altemative
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theorem we have
* ﬂz ® 2
by (v +—u"Fa(0,m })
I
=ﬂ1r'[3‘ll+31'?|ﬂx}{(-4_ﬁ + E.‘h) +l (Ez+ﬂ—33|)
d2 iy 2 i
« 1 3 @ ,
+2{1 + ety [ 4+ EEI + H.I’J‘|ﬂ|ﬂ3 - bm As+ — ‘4|F3|{.ﬂ$m )
ay
i s j
+ E{HEleiﬂAm‘ )+ = B Fa(0,m))
s i 1
i {fﬂ:u + v hy) (A, +—E,)
aq 2
! = 1 _
+(1 + u"bag)d: + 5{1 +H“banz|'l;ﬂ,4-'ﬂz}l}ﬂ'z} +3 bznz—zl a Fay (0,m*)

+ ("43 + é HE) {{Izl + v*bag) + :%‘[1 + bagu* F 210, }}I}} s (5.23)
|

where
" 1 - )
B _m{{l+fmu }(ﬁ{'“"'blt Jai + (212 + 2byu }lﬂuﬂz}')
1
_z.ifvsu'[l+4’J|L~*}{1+2b3}u“}a|az+{l|z+b|u*}[1+;,mux}ﬂi}}j
t=—— L (i + 26wt )aras + (1 + bi*)ad) — (1 +byo*)A
T T V2 14 I e ay) — o o)Ay
B o D0 00,0)
LT @(0,bag, dm2)
B 1 -~ o
PTap bt e (0012 + 20007 Y@z + (1 + &yv i)
—(1+bhv*)B}. (5.24)

Hence the sign of fa: indicates whether the bifurcation 1s sub or super cntical. We
assume the following numerical values of the constants [8]: K, =2, K =1 % =
007, a2 =008, fi2 =005 fy =0015 7 =0009, 72 = 0008 Then after some
algebraie computations we can find have, b = 0 for all m = 2. Hence the bifurcation
15 super=critical in this parametric space.
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3.2 Hopf bifiwecation to periodic standing waves

Following Gourley and Britton [3] next we consider the bifurcation that oceurs in
{4.2) when as 7 s increased, two mots of the eigenvalue equation (4.5) cross the

imaginary axis as a pair of complex conjugates. Here the linear equations have the

solutions of the form 4¢™*¢** and this suggests that we are to consider the possibility

that from the unifonn steady-state solution (w*,¢*), a family of plane wave solutions
which is perodic i both space and time bifurcates. Let us look for a solution of {4.2)
of the form w(x.¢t)=w(l 1), (%) =v(f,7) where £ =m.x and 7= o (m being any
fixed nonzero vector) such that w, v are 2r—penodic in both arguments. We have

o, = M1 — 1 — a0 — by,

o, = K[l — v — g2y — bau [ /\I Faf(r —ra,f — 12)o(ra, 72 )dra dra |
' (525)

for (&.t)e(0.2x) = (0,27) with the penodic boundary conditions. Again the solutions
are symmetric in &, Thus we look for the solutions which satisfy the conditions

vl t) =g t) =ve{lt) =ve(m t) =0 (526)
and the conditions

W0y =u(l2r),  wAL0)=u(l2m),

(0=l 2n),  ve(E.0) = vl 2m). (5.27)
We look for a solution of (5.25) with (5.27) m the form

()

by = by + by + b+,

0 = itk + Bty +4‘."3{LI'2 + .- (528)
Substitute (5.28) mto (5.25) and equate powers of & upto the thind power. We have

Fay # vy = (Fay # #u,)" + e(Fay # #10,)) + L& (Fay # 0u,) + -, {529)
where the superscript zero denotes evaluation at &= 0. Let us define the lincar operator
La by

a (1 + byo* (22 + by™ u*

Ly =t — — o |® (5.30)
0t \ Ko*(ayy + bat®)  Ko*(1 + bygu*(Fay # +)%)

where the operator Fay ## 1s defined in (2.2). The first three perturbation equations are
then obtained as

i
La =1, (531)
ry
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{_fulu|:+u|{{1+h.u“}u|+{1|2+25|lﬂx}”l}}
- 1= — K{o {laz) +bagr™ by + 1 +“x"’3“{Fz': tn)'} . (532)
+o" {{ 221 + bag Juz + 2 + bai(v 0y + 0T (Fay # #00)7)

thaglui(Fay # #01 ) + 0t (Fay # #00 ) +(Fap # #u2)"} 1)

1
La
vy

{ A=t — enuae + 201 + bye" s b
Hotia + 200" Wios 4 oy + (22 + 26" sy }

{—nry — enva: — K{va{(az) + v bag

Hoy + bagu™(Fay #5004+ oy d(221 + b s + 02

Hhaau™t" + by vy + by (Fay # #01)" + baguy (Fay ##0y)'

= Hhagu((Fay # #00  + (Fay # #02)")} + 0" {baa(u®( Fay # #0)" s K
iy Fay # #0%) + by (0712 + 1y (Fay # %0y )

't ((Far # vy )+ (Fa # v02)))

ooz (Fay # 01 ) + (o # %00 + (Fay # #02)°)

\ " (3(Fa # #0100 + (Fn # #02)0) + (Fay # #0311} /

for (£x)e (0, m) = (0,27) with the conditions of the form (5.26) and (5.27) for each
{1y, v, ). Gourey and Britton [3] gives the value of Fay o+ =" cosnf as

Fay # #e'™ cosné = Fay( pies, w'm* e cosné,  pon=10,1.2.... (5.34)

For functon u of the form ur,‘,,{ﬁ._,r}=cif“ cosné we have, from (5.34), (Fa #+0,, )=
Fay( piey.n’ ot W0 .. For other functions o(Fa##0)" would be calculated by first writing
v as Fourler series i terms of the function v, The nontrivial solution of (531) is
of the form

) i k.
( ) = ( ) et eosE 4+ e {5.35)
[} 1

which satisfies (5.31) as long as
@ieng: bag. m*) = —wy — i(A + D + EF 3 (iewg.m*) )y + (AD — BC)

+ AEF 3 (itwg. m°) =0 (5.36)
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and in this case either component of (5.31) implies that
b *® =
RS (.- ous L v L Y (537)
g — (1 4+ bo* Ju®

This 1 the only solution (upto scaler multiples) of (3.31) if we assume

o piesg; bag.nm” ) #£ 0 for any pair of nonnegative integers (pn) # (1.1).
(5.38)
The real and imaginary parts of (5.36) give by and ey implicitly in terms of », by =
bag(m?). ey = wyl(m®).
It is evident that the adjpint LY of the linear operator Ly is given by
il ( (1 +be" " Koo +bage™)

ot

B g — Kbyw't*Ly,  (539)
{12 + b u® Ku*v*

where the linear operator L acts on the Fourier components as follows:

r & i 1]
L eeosné= | (540}
a2 Fayl piesg,.nim? e cosné

and on any other functions satisfying (5.26), (5.27) by expressing it as a Founer series
and using lincanty. The term L;r is in fact the contribution to the adjoint from the
nonlocal term in the operator La.

The solution (u}.0})" of the adjoint equation

uy
= =0
vy

15 of the form

HT d| r
= efeosd + e (541)
vy 1

with
Koy + boge™ o*
dy = — . 542
: iy — (1 + byo* hu® ( )
For values of s near bag, let A(b2) be the oot of the eigenvalue equation (4.5) such
that A bag ) = 1oy, Then

= )..3{1’3‘3“} — A+ D+ -El.l'u:."rmﬁll{_';\{_bm }ﬁmz}}';-{_bzﬂ}

+(AD — BC) + AE|y,_y F21(M(bag).m?) = 0. (5.43)

Differentiating the above equation with respect to by and evaluating at by = by we
have

() { (—B i “'ljfz — EFy j{iesg,m?)) + (A — D) +£F.z.+;ium,m2;=) }
ap|-

—Kv* { i i.f‘.'i; Fyy (g, m? A — BL"‘} . (5.44)
ap -
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Usmg the values of gy from (5.37), o from (3.42) and from the Pade’ approximation of

-FE 1§ ar i{_{}}
1 - {.Fzrlﬂnj{.ﬂ}."lplHn}{_{}} }-"7

Fajld) =

we find the approximate value of '{hay) and ey = e at ba = bay for large m®. From
{5.43), separating real and imagnary parts and using the apprommate value of the
Kernal function, we get approximate values of A{hag) and ey = e, where off can be
evaluated from the followmg:

AD — EC+A£{I_—‘:-§%}

wlh = S (5.45)
L+ (4 + D+ B

Here we derive certain condition which will be needed to demonstrate the transversal-
ity condinon required for this bifurcation. Assume that Re g'(bay) # 0. 1L 15 obvious
that (Fay # #1 }E_' = i F a2y (1o, m” )e'* cos £+ complex conjugate (c.c.). By taking the
inner product of the rght-hand side of (5.32) with (u}.v} )" we have after some alge-
braie caleulation and applying solvability condition of (5.32) by =0 and ) =0 and
consequently we also have (Fa) o+ +0y f =1 Let

8 =& = (1 + bt )a; + (22 + 2byu*)ay,

b1 = &y = —K{(221 +bar™ Jar + (1 + 2bagu” Fo1(0.m*)) } (5.46)
and let
1
A= {Diwyd; — 3K (1 +bau™ ) + 8 e
1 Eﬁzi{mhhzmﬂ}{ Btk el 1 L{_ + gl }+ 3{5{|2+ | }H }
1
Ay = 5o {2iondy — Bau*(1 + biv®) 4 O1K
: 2¢1{2i{m,,bm,{}}{ iwgdy — dau™(1 4+ b10”) + 61K (o1 + brev™ )0}
1 . = :
o 2¢{ 2icwy, by, dm?) 12igd) — 61Kv" (1 + bagu” Fa1(2iesg, 4m”))
+ o+ b "}
&, =imj—} {2iegds — dare*(1 + byv*) + 6 K{zay + bagr* ™
o =2¢{{me._.{}}{_§'ﬂt (1 +bagu™ ) — ooz + by’ ™ |
Cymeih 1 {—&au™(1 + byw* ) — & Ko™ (a2 + bagv™)} (547)

17 2(0. . 0)
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Now with by = @y =0 we have (Fay # ) =0 and (Fay * +0a ! =2ing_2|{_.,.J,{imu,,
m® e cos £ +c.c. After some algebra using the solvability conditions, we have

1
by = — =
= Rel Ko (u (1 + Fa(lewg.m?)) + v*a )}

where

Re {'f?lj:jl L+ 2k

P = —leaa + 214 be*)Na + 21 a8+ a(2Re ) +Re )
+(2p2 +2byu")( Ay + 3 By +2Re C) + Re Dy)
+ (2 + 26t WA + 1 @By + a(2Re G + Re Dy))
+bi(at + 3 )

P12 = —ien(l + Kbagu® Fay j(ien,m?))
+ Kb (u*(1 +F_3|{iw¢hm3}|}+ v ap )
— K{(a21 + v*bag + baF 21(ig, 4m” )) (@ A2 + 1 a1 B2
+a(2Re Cs + Re b)) + (22 + byt”
+ by Fay(iex.m*))(4; + 5 By +2ReC) +Re D))
+(2 + u*bwFa(iwg,m”) + v* Fa (i, 4m”)) (A2 + 3 By
+{(2Re Cy + Re D)) + bagFay (g m’ )ay

and
Pi11=—lwna; + iy,
12 = —ien(1 + Kbagu® Fay j(ien.m*))

+ Khar™(u™(1 +F_2|{i{:_l'¢hm3}}+L‘xﬂ|}+fj|g. (548)

The above quantity determines whether the bifurcation is super-critical or suberitical.
Applying Pade approximation on £ (i, #c ) and using the same parametric values as
in section (5.1), we workout o) = (.21, bya = 7253 = (1. Hence the Hopf bifurcation
is super-critical implying that the system (4.2) has stable limit eyele spatially penodic
solutions.

6. Discossion

An integro-differential equation model of toxin producing phytoplankton dynamics
involving distobuted time delay o the production of allelochemicals and nonlocal
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allelopathie effect has been considered. The mmportant findings can be summarzed as
the following:

{1) The nonlocal effect drves the system into a steady-state spatially periodic and sym-
metne soluton by bifurcation at some higher values of the wave numbers explaining
the formation of phytoplanktonic patches (stationary dissipative structure ).

{23 The tme delay factor dnves the spatial system into a limit eyele by Hopf bifurcation
at some value of © = 0 (periodic standing wave) describing phytoplanktonie blooms,
pulses and succession through out the year.

To observe the spatial pattem, plankton samples were collected from Talsari (Orissa,
India) to Digha Mohana (West Bengal, India) during the period 1999 -2001. Frequency
of sampling was once in every fortnight except the months of September and October.
During this time due to roughness of sea sampling programme had to be suspended.
The study area is situated between 21937 Northern latitude and 87925 Eastern Longi-
tude to 21°42° Northern latitude and 87°31° Eastemn Longitude. There were altogether
30 sampling dates (in Fig. 2, the collection dates are mentioned as 1,2,...,30) and
the collection region 15 divided into seven stations, the distance between two subse-
quent stations is 2 km. Six species of the diatoms, vie., Chaetoceros spp., Skeletonema
costatton, Cerratatuling spp., Leptocylindvicis spp., Nitzschia spp. and Phaeocys-
tis spp. are toxin producing plankton (TPP). Soumia [15] also mentioned that these
species are TPP species. Dinophysics acuta, Noctiluca scintillans and Prorocentrien sp.
of Dinoflafellate group are also TPP. Richardson [14] mentioned that these species
are TPP.

Our analytical results show that the proposed model may generate spatial pattem. To
substantiate our analytical findmgs numencal simulation 5 presented for a hypothetical
set of parameter values (sece Section 5.1 for the parameter values and Fig 1)) The
qualitative behavior of the spatial pattern generated by Nitzohin sp. and Chaetoceros
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spp. 15 similar to the pattern observed by numerical solution of the proposed model
{see Figs. 2 and 3).

Thus the model proposed here can adequately deseribe the dynamics of planktonic
communitics mvolving toxic allelopathic mteraction, in aguatic still water ccosystem.
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