Grao’s conjeciure on Zem-Sum Sequences H¥7

COROLLARY 3.3

Conjecture 3 is true for all positive integer n of the formn = 2°3°5°% forall(a, b, ¢, d) €
N4\ {(0, 0,0, 0)}.

Remark 3.4, 1t must be noted that there are sequences of length 4n — 4 in 2, & £, which
are made up of four distinet elements repeated n — 1 imes each which may contain a zero-
sum subsequence of length n. In other words, the candidates appearing in the conclusion
of Conjecture 3 are somewhat resticted. Forexample, if (0, 0), (a, b), {—a, —b) are three
of the four elements, there is always a zero-sum sequence of length n. Similady, ifn = 5,
the elements (0, 2), (2, 0), (1, 1) occurring four times each gives a zero-sum subsequence
of length 5.

4. Zero subsequences of lengthn inZ, & Z,

In this section, we shall prove results about sequences in 2, & £, which must contain azero
subsequence of length n. In particular, we obtlain some results pertaining to Conjecture 2
of Kemnitz for the groupZ , & Z ;.

It is trivial 1o see that if the conjecture holds good for two integers m and n, it is also
true for ma. So, if one proves it for all pames, then it holds good for all natural numbers.
For our convenience, instead of writing f{Z, & Ly), we write simply f(p).

Harborth [ 12] considered a function g(n) which is related 1o fin). To define gin), let
us define an element § = [[;a; € F(Z, & Z,) o be square-free, if a;'s are pairwise
distinetin Z, 5 Z,,. Then gin ) is defined to be the least positive integer such that given any
square-free § € F(&, & Z,) contains a zero subsequence of length n. Harborth proved
that g(3) = 3 and used this o prove f(3) = 9. Then Kemnitz [13] utilized the special
vitlues of g(p) = 2p— 1l for p =5, 7 o prove fip) = 4p — 3 for p = 5, 7. A bound
known for all primes p is, due o Kemnitz [13]:

2p—1=gip)=4p-—3.

We shall prove on the one hand that the lower bound 2p — 1 s tight for many classes
of sequences and, on the other hand, we improve the upper bound for many classes of
sequences. In 1996, Gao [7] proved that if fin) = 4n—3andn = ({(3m —4)(m — 1)m* +
3fdm with m = 2, then finm) = 4nm — 3. These results were improved upon by the
second author of this paper in [17] where it has, in fact, been proved thatif § € FiZ, &24,)
with |5 = 4n — 3 and T = a' as ils subsequence with 5 = |n/2], then § satisfies
Conjecture 2 and that if fin) = 4n —3andn = (2m* —3m” 4+ 3)/4m, withm = 2, then
finm) = 4nm — 3. In 1995, Alon and Dubiner [ 1] gave the upper bound fin) < 6n — 3
for all n & N. Later this was improved upon for all primes to f{p) = 5p — 1 by Gao [8].
In 2000, Ronyai [ 14] proved that f{p) = 4p — 2 for all primes p. From this bound, he
concluded that fin) = (41/100m. Recently, Gao [11] has proved that j'{p"‘}l = 4l|rf‘ -2
for all primes p and & = 1. Many of these proofs use graph theory and are quite different
from our methods.

We stan with the observation:

Lemmad.l. If§ € F(Lp®Ly) with |S| = 4p —3 such that there is no zero subsequence
T of §with |T| = 2p, then § must contain a zero subsequence of length p, Le., § satisfies
Conjecture 2.
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Proaf. The proof follows by putting & = 2 in Theorem 2. 1(b) and applying Proposition 2.4,

PROFPOSITION 4.2

(a) Let k be an integer such that 0 = &k = |nj2|. Let § € Fid, & L) with | 5] = 4n — 3.
Suppose T = a" '~ is a subsequence of S for somea € 2, & Z,,. Then there exists
a zew subseguence R of § with |R| = n.

by Let ¥ and k be two integers such that 0 = £ < k = |n/2|. Let § € F{L, & L) with
|51 = 4n — 3 — €. Suppose T = (0, 0)"* is a subsequence of 5. Then § contains a
zere subsequence Rwithn — £ = |R| =n.

Proofof (a). Without loss of generality we can assume that T = (0, 0)" !, Let §* =
ST! be the subsequence of 5. Clearly |S*| = 4n —3—n4+ 14k = 3n —2 4+ k. By
Proposition 2.3, there exists a zero subsequence U of §* with k41 = |U7] = n. Thus there
exists 8 zero subsequence R of TL with |R| =n.

Proofof (b). Let §* = §T~! be the subsequence of § with |[$*| =4n—3—¢ —n+k =
3n — 24 (k — ¢ — 1). Therefore by Proposition 2.3, there exists a zero subsequence T
of 8% with k — £ = |Ty| = n. Therefore there exists a zero subsequence R of TT) with
n—¥§& = |R| =n.

Remark 4.3, One can prove that if fin) = 4n —3and n = (3m’ — m* 4+ 6)/8m for
some posiive integer m, then f(nm) = dnm — 3. The proof of this is quite similar 1o
the corresponding result proved in [17], except that one uses fin) = (41/10)n instead of
Fin) = 5n—4.

Here is a result about the group £, & 4,

PROPOSITION 4.4

Let § € Fidy, & L) with |8] = 2n 4+ (21/10)m where m|n. Then § conmins a zero
subseguence of length n.

Proaf. Since 2n + (21/10m = (2Zn/m — 2)m + (41/10)m and we know fim) =
(41 /10)m, we can extract 2n /m — 1 disjoint subsequences S1, 51, ..., Szpm—1 of § with
length m whose sum is zero in £, & £, . Since we have the following exact sequence

0 — er.n'm — Ly ®Ly, — Ly, — 0

and by the E-G-¥ theorem (Corollary 2.2(a) here), we know there is a subsequence of the
P i —
sequence {8 }‘-J;'lm ' of length n/m where s5; € &y such that s := 1/m ZT:I s O

2nfm—1 f

under the exact sequence. Let sy, 52, ..., &y, be the zero subsequence of | tiz1

length n/fm. This means

n il

i=l i=l j=1

inZy @&, wherea;j € Siforj=1,2,... mandfori =1,2, ... ,nfm.
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Remark4.5. If § = [[;a; € Fldy & Zy) 15 square free with [5] = 2r — 1, then all the
first (or second) co-ordinates of the a;"s cannot be distinet in Z,,. Also, none of the first
(second) co-ordinates can be repeated more than g times, since the corresponding second
(first) co-ordinates run through 0w n — 1. If # is odd and, one of the first (second) co-
ordinate repeats exactly n times, then the corresponding second (first) co-ordinale runs
through 0o r — 1 and we pick upthose a; in § to produce a zero subsequence of length n.
Hence we can always assume that if s is odd, then, in any such sequence, a single residue
class modulo n is repeated at most r — 1 times among the first (second) co-ordinates.

Now, we can prove lwo qualitative results both of which exemplify the tightness of the
lowver bound gip) = 2p — 1.

PROPOSITION 4.6

(a) Let n be a prime and let § = H‘- a; € Fildy & L,) be a square-free element with
|51 = 2n — 1. Suppose the first co-ordinates of the a s mn through all the different
n residue classes modulo n such that n — 1 different residue classes modulo n are
wepeated exactly twice. Then there exists a zemw subsequence T of § with |T'| =n.

(b) Let n be a prime and let § = I—L- a; € Fildy & L,) be a square-free element with
|5 = 2n — 1. Suppose the first co-ordinates of the a j run through thiee distinet residue
classes modulo n such that two of the residue classes repeat n — | times. Then there
exists a zeve subsequence T of Swith |[T| =n.

The following lemma will be used in the proof of (a) as well as later in the proof of
Froposition 4.9.

Lemma4.3. Letn be aprime and let § = []; a; € F(Z, & L) be a square-free element
with |8 =2n — 1. Leta; = (x;, yi) and ajop— = (x5, ) fori = 1,2, .. n — 1 where
vi # zj (mod n) foralli andaze_) = (b, o). fxp +x2+---4 1, +b =0 {mod n),
then, there exists a zevo subseguence T of § with |[T] = n.

Proof. let K = vy +yv2+---+ v +c{mod n) and ¢y = z¢ — y¢ (mod n) for all
¢=1,2,....n—1 Clearly, e # 0 (mod n) because y; # z; (mod n) forall i. If we
form all the partial sums of ;s we get all the distinet residue classes modulo n (This can
be done by simple induction, see for instance [6]). Therefore, there exists a positive integer
msuch that K + ¢, + e, +--- + &, =0 (mod n) which implies

itttz ¥+t Yim—1l o+ Zie
+ Vel + o+ o +e=0 (mod n).

Then, the following subsequence of §
(x1, ¥1)s oo oz -1, ¥ =1, (s 2i ) (s Y1) oo s (Zn—1, Ye—1)s (B )
produces the required zero subsequence of length n

Proaf of Proposition 4.6(a). Let § € FiZ, & Z,) be the given square-free element satis-
fying the hypothesis. Let us list the elements of § as follows:

aj={xp,y) forali=1,2,...,n—1
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and
dian—) =lx5.z;) foralli =1.2,... . .n—1

where z; # yi (mod n) foralli = 1,2, ... ,n — | and x; # x; (mod n) for every § # J.
Also, let azy— = (b, c)suchthat b # x;{mod n) foreveryi = 1,2, ... n — 1. Clearly,
we have a zero-sum of length n as follows:

i+x+---+ g +b=0(mod n).
MNowy, the result follows from lemma 4.7,

Proafof (b). Let § € F(Z&, & Z,) be a square-free element with |§] = 2n — | satisfying
the hypothesis. We shall list the elements of § in the following manner. Let

ap=(x,3) for i=12,....,n—1 whery # y; (modn)
and
disp—1 =(v,z) for i=1,2,--- . n—1 wherez # z; (mod n)

and x # v (mod n). Also, we let a—) = (Boo) where b 2 x (mod r) and b # ¥
{mod n). Consider R = x"~'y"~'h € F(Z,) with|R| = 2n — 1. Therefore, by the Erdds—
Ginzburg—Ziv theorem, there exists a zero subsequence T of B with |T7| = n. Clearly,
b appears in Ty. Thus, we have, T} = ™ y'b € F(Z,) such that £ + m + 1 = n where
E,m = 1.

Suppose {_1.‘;}:-:11 and {2;}:-:: miss ¢ and 5 residue classes modulo n respectively. If r =
5 = c(mod n), then we can choose, by relabeling indices, vy, w». ..., Frs E1s 22300 s Zm
such that y; # zj(mode) forall § = 1.2, ..., fand j = 1,2, ... . m. We are in the
following situation:

(v e (L ye) (w2t o0 (2w (B €)

such that its sum is zero modulo n, since vy, ... . ¥e, 21, .- - D, ¢ Tuns through all distinet
residue modulo n.

If r # s (mod n), then we can choose vy, ..., ¥, 21, .. - T, ¢ tuns through all distinet
residue modulo n. Therefore again we can produce a zero-sum subsequence of § of length
n.

If r =5 # c{mod n), then we do the following. Letr = 5 = aimod n). Let us take

L, =10,1.2, ..., a—la,a+]1,. .. £ ¢4+1 ... .c—1lc, ..., n—1}.
Then we choose the sequences

() i e S oy SRR P L, R (T
and

{z_,-}j-"=| ta+ L P42 843 c—le+1l,....n—2n—1.
Then we see that

it+yt--+wtat+zz+---+zm+ec =0 (mod n).
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Thus, we have the following zero subsequence T of § of length n
(v, () a1y oo s (Fi2m)s (BL )

inZ, ¢ Z,.

Our last two results go o indicate that the upper bound gi p) = 4p — 3 can be strength-
ened in some cases. In the proof, we shall need to use the so-called:
Canchy—Davenport Inequality. Let A and B be two nonempty subsets of Z,. 1f we denote
the cardinality of A by |A| and of 8 by |B|, then

|A+ B| = min{p, |A| + |B| — 1},

where A 4+ B stands for the sum-sel of these two subsets,

An induction argument easily gives: If Ay, Az, .., Ay are nonempty subsets of Ly,
then

L]
|AL+ A2+ -+ Ay = min(p, ) |Ail —h +1).
=1
Remark 4 8. Let § € Fid, & £,) be a square-free element with | 5] > 3n — 3. We know
that if n is odd and § does not contain a zero subsequence of length n, then no single
residue class can occur as the first co-ordinate more than n — 1 tmes. Therefore, the first
co-ordinates of the elements of 8 run through at least four distinet residue classes modulo
noansuch a case.

PROFPOSITION 4.9

Let s be an integer suchthat4 <5 <= p. Let § = [, a; € F(Z, & £,) be a square-free
element with |§| = 4p — 2 — 5. Assuwme that the first co-ordinates of the a ;°s run thiough
exactly s different residue classes modulo p and that each diffevent residue clasy modulo
p repeats an odd number of times. Then there is a zew subseguence T of § with |T| = p.

Proof. Let§ =[];a; € F(Z, &Z) be the given element satisfying the hypothesis. By
hypothesis, the first co-ordinates of the elements a; run through s different residue classes
modulo p and each of these residue classes repeats an odd number of times. Some of the
residues may appear only once. The number of such residues is at most 5. Now, let us list
the elements of § as follows if necessary by relabeling the indices

ai=ik.c) fori=1,2,....5

whereb; # b (mod p)fori # j. Also among the & 's we put those residues which appear
only once in §. Therefore the remaining residues will be appearing as pairs. So, lel

digy =(x;, %) fori=12 ... . 2p—1—x
and
Gigzp—1 = (x5, 5) fori=1,2,....,2p—1—3s

where v # zjimod p)foralli = 1,2, ... 2p — 1 — 5. This kind of listing is possible
because of the assumption on the first co-ordinates of the elements a; € Z, & L.
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Now we partition the x; § = 1,2,....2p — | — s ino nonempty classes
A, Az, oo, Apoy such that each A; consists of different residues modulo p. This is
possible because no single residoe class can be repeated more than p — 1 tmes. Set

A, = b1 by, ... by}

Clearly A; C Zp fori = 1,2, ..., p. Consider the sum Ay + Az + --- + A, Cauchy—
Davenport inequality imphes now that

n
|lA1+---+Ap| =min (p,zfr’ul —-r+ 1) =min{p, 2p—1l—s+s5s—p+1))=p

This means, (} € Z, can be written as sum of p elements, e, x +x24---Fxp_1+b =0
wherey; € Ajfori =1,2,. .., p—land b, € Ap (Here we have relabeled the indices
of x;.)

Now we have the following situation.

(xp, m) (x2,32), ..., {-rp—l . _1',:'1—[}'1 By, cp)

and
(x1, z1), (x2, 22), o0, (xpo1, Zp—1)

wherex; + x4+ -+ xp_1 + b =0{mod p)and 3 # g foralli =1,2,...,p— L
An application of Lemma 4.7 now yields the result.

For general n, with an additional assumption on the first co-ordinates, we prove:

PROFPOSITION 4.10

LetQ =5 = [(n—1)/2] be an integer. Let § = [|; ai € Fl&, B Zy) with|S| =3n—2+5
be a square-free element. Assume that the first co-ordinates of the a ;s run throughn — s
different residue classes modulo n and each residue class occurs an odd number of times
with at least 5 + 1 different residue classes modulo n which are repeated at least three
times. Then there exists a zevo subsequence T of Swith |[T| =n.

Proof. Let § = [[;a; € F(Zy & Z,) be the given square-free element satisfying the
hypothesis. By our assumption, all the first co-ordinates of the a ;s appear an odd number
of times as different residues modulo n. 1tis clear that the number of residues which appear
exactly once cannol exceed n-5-3, since any residoe modulo # can be repeated at most
n — 1 times. Therefore other than these residues, every other residue is repeated at least
three times.

Now, let uslist the elements of the given sequence § as follows, if necessary by relabeling
the indices

ai=(x;, %) fori=1,2 ... . n—1+x

and
diap—y = xi.z;) fori=1.2,....n—1+s

where y; # z;(mod n) foralli = 1.2, ... ,n— 145 Also,

Gizzn—140) = (Bj. ) fori=1,2,...,0n—3x
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where by # by (mod n) for i 5 j. Any residue that is epeated only once has been put in
the class of the b;'s. This kind of listing is possible because of the assumption over the
first co-ordinates of the elements a; € £, & £,

Since s 4 1 distinet residue classes modulo norepeat at least three tmes, we can take
them o be Xy, Xy oo o o Xp—p 2y Other than these x;'sfori = 1,2, .. .0 — 1 4+ 5, we
have b;"s which run through n — s different residue classes modulo n.

Let Z:.:ll.r; +xj=djfor j=n—1,n,....,n—1+4s Since the sequence {—d;}
of length 5 4 1 is such that d; 7 i (mod n) for § # &, there exists one b, among the
bi's such that —d; = by, for some f, since the sequence {b;} cannot miss & + 1 different
residue class modulo n. Hence we have

x+x+---+xm_r+x;+ b =0(mod n).

Suppose, by relabeling, we letx; = x, -1 for our convenience. Now we have the following
situation:

(xy, yido (xa, v2), oo (a1, Y1)y (B, )
and
(xp, 2 (x2, z2), o0 (Xp—1.Z0—1)

where v +x2+4---+x, 1+ b, =0 (mod n)and vy Fz;(mod n) foralli= 12, ...,
n — 1. Once again, an application of Lemma 4.7 proves the result.

COROLLARY 4.11

Let r be an integer such that 0 < r < 3. Let § = [[; a; € F(L, & Z,) be a square-free
element with |§| = 3n — 2 + r. Suppose the first co-ordinates of a;'s run throughn — r
different residue classes modulo n such that each residue class is repeated an odd number
af times. Then there exists a zem subseguence T of § with |T| =n.

Proaf. 1tis enough o prove that there exist r + 1 different residue classes modulo n which
are repeated at least three times. Then, the corollary follows from the theorem. Since we
have totally n —r different residue classes modulo r, at least four different residue classes
modulo n have to repeat a minimum of three times. Hence the corollary is proved.
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