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Abstract

Bayesian inference on stress-strength reliability is considered when the observations are binary
in nature and the covariates affecting the stress and the strength of a component are ohservable.
The posterior is evaluated using Gibbs sampling. The method is illustrated with a data set.

Keyworas: Stress—strength reliability; Prior distribution; Posterior distiition; Gibhs sampling

1. Introduction

It is well known that the strength of a manufactured unit is a random variable.
This fact 1s the basis of all relability modeling. In stress—strength modeling the second
sowcee of variability that needs to be considered is the stress conditions of the operating
covironment. 1f X represents the environmental stress on a unit and ¥, the strength of
a unit, the stress—strength reliability (R) s then defined by

R=P(Y =X). (1.1}

R represents the probability that the strength exceeds the stress, in other words, the
probability that a manufactured unit works satnsfactorily. The statistical formulation
{ 1.1) appears to be mven first by Bimbaum (1956). The problem he considered was
to find both the point estimate and an interval estimate of £ on the basis of s in-
dependent observations X,.. . X, on X and m independent observations ¥y,.... Y, on
Y. Bimbaum used Mann—Whimey statistic to estimate ® and found the confidence
mterval of £ in nonparametric set-up following the Hodges—Lehmann approach. This
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paper opened up the flood gates and was followed by a deluge of papers (Bimbaum and
MeCarthy, 1958; Owen et al, 1964; Govindamyulu, 1967, 1968; Church and Hams,
1970; Emis and Geisser, 1971; Bhattacharyya and Johnson, 1974; Guttman et al., 1988,
Weermhbandi and Johnson, 1992; ete. ), on the same theme. For an excellent review we
refer to Johnson (1988).

Most of the work subsequent to Bimbaum’s assume that both X and ¥ have some
parametne distobutions of known form, In most cases either the disributions are as-
sumed to be nommal or exponential or Weibull with the same shape parameter. The
problem of estimatng R then naturally reduces to the estimation of a function of the
unknown parameters of the distributions of X and ¥, In order to get an estimate of
R then the data on X and ¥ oare used. In our view, the application of stress—strength
reliability analysis in real-life situation has been somewhat limited by this classical
formulation of the problem. Two reasons can be ascribed. (1) This formulation -
plicitly assumes that the stress 1s identified with a single mndomly varyimg factor or
a known function of multiple mandomby varying factors (e.g., mechanmical, thermal and
other relevant conditions of the system and the way they interact with each other) of
the operating environment and it s observable and (1) the strength of a manufactured
unit is an in-built ennty which can be observed only by carrying out tests in the labo-
ratory. In many practical situations, however, the assumption (1) does not hold. Also 1t
is often unrealistic to accept the fact that the strength is only an inbuilt entity. It does
change with ume and s also dependent on the operating environment,

As pointed out by Mazumdar (1970) the stress strength reliability of a vmit dur-
g a given perod (0,7] s taken to be the probability that its strength exceeds the
maximum stress during the entire interval. With this formulation in mind is it always
reasonable o assume that the strength of the unit remains same over the whole mterval
{0, 7] and is independent of its past stress condition and or conditions of the operating
covironment? For example, consider a biological system and suppose the unit under
consideration 15 some organ, say, the kidney and one is interested to find its stress—
strength reliability during a given period of time. It 5 pot realistic to assume then
that the strength of the kidney s independent of its past stress history and its present
operating environment (viz., the state of the other related biological, clineal and the
physiological factors). Also the definitions of X and ¥ are not clear enough in this
case. Thus, the queston of geting independent set of observations on X and ¥ does
not anse and hence it is not possible to find the stress—strength reliability in a situation
like this using classical formulation. However, in situations like this we can think of
X and ¥ as latent vanables which are not observable but working behind the scene in
tandem and giving nise to the response variable mdicating whether the organ is mal-
functioning or not. Even if' X and ¥ are not observable we could observe the covariates
that are supposed to be related o the latent stress vanable X and the latent strength
variable ¥, There may be some common covariates affecting both. In this paper, we
propose a Bavesian analysis using Markov Chain Monte Cardo (MCMC) method to
infer about 8, the stress strength reliability, when the data are available in the above
form.

The paper is organized as follows. In Section 2, usig the latent variable model
we formulate the stress—strength reliability  problem based on the kind of data
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mentioned above. This formulation s mportant on a number of counts. First, ot of-
fers a new formulation to the classical sress—strength reliability problem. Secondly,
it offers the modeling of stress—strength reliability o terms of a certain number of
covariates thus making the prediction of stress—strength reliability possible in a given
situation observing the values of the covanates only. Use of covanates m finding the
stress—strength refiability m the classical formulation under the normality assumption
of the distnbutions of X and ¥ was first considered by Bhattacharyya and Johnson
{ 1981). Last but not the least important s the fact that this formulation certainly widens
the domain of applications of the stress—strength reliability to a wider variety of
problems. In Section 3, we adopt a Bayesian approach to the inference problems in
stress—strength  reliability for convenience.  Following  Albert and Chib (1993,
Tanner { 1996) and Gelman and Rubin (1992) we then discuss how Gibbs Sampling
can be adopted to find the posterior distribution of the stress—strength reliability £ In
Section 4, we present an example to illustrate the methodology described m Section 3.
In Section 3, we conclude the discussion by identifying a few extensions and problems

that need to be taken care of n future.

2. Formulation of the problem

In an experiment suppose n units are observed independently for a specified perod
of time possibly under different operating environments. The data are represented by
(U, i=1,....n where U = 1,0 according as the unit operates or fails and x;
represents the covariate vector that is supposed to have mfluence both on the stress
and strength of the unit. Denoting by ¥, and X} the strength and stress of the ith unit
we see that the stress—strength reliability

R=P(U;=1)=P(Y;—X; > 0),

where we assume without loss of generlity that (Yo X;) ~ BN(x) .50 11 p)
Then R reduces to R = @x'ff) where x'f = (x| i — x5f82)/ V’E{IIH— j.r;g.} with x rep-
resenting the vector consisting of only the distinet components of x; and x» and J
the vector of regression cocfficients with proper definitional adjustments and oy y) =

(1/v2m) [ ¢~"2d. For notational convenience we write xip = (xi fh —xip)f
V20— ).

Let piff) be a prior on f#, summarizmg the prior mformation about . The postenor
density of i s then given by

plf/data)= {PiﬁiH P(x/f)"(1 — ﬁ*{-ﬂ-ﬁﬂ"‘”}

i=l

/ { [ o T ey~ ‘P{-T}ﬂ}}""-'dﬁ} _
y =]
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This s clearly analytically intractable. The usual asymptotic approximation to this by
f".-’,.;:{ﬁ,f{ ﬁ}_ : ) where ﬁ is the posterior mode and f{ﬁ} 15 the Fisher mformation matrix
evaluated at §. If p(f) 15 uniform then § 15 the MLE. Gniffiths et al. {1987 ) observed
that MLE has significant bias for small sample sizes.

Here we adopt a smmulation based approach for computing the exact postenor of
f using data augmentation and Gibbs sampling known as the systematic scan Gibbs
sampler {see Tanner, 1996} Once we find the postenor distnbution of § we can find
the posterior density of £, the stress—strength reliability, and hence the point estimate
and a credible interval of R

3. Systematic scan Gibbs sampler

We mmplement systematic scan Gibbs sampler (Tanmner, 1996) to find the posteror
density of § given the data. We mtroduce n latent vanables 7, i= 1L2,....n such
that If; =1 if Z; =0, and =0, if Z < 0 where Z; ~ N(xif, 1), i =1,2,....n and are
independent. 1f Z7s were observed the postenor distnbution of § takes simple form if
the prior p( i) is either multivariate normal or diffuse. Also given U, the conditional
distribution of Z; 15 truncated normal. In the applications considered i this paper the
computations are done with the above two choices of the prior.

The basic idea behind the implementation of systematic scan Gibbs sampler m ths
case s to augment the observed data U = (U4, Uy .. U by Z=(Z, 74, Z,), the
latent data. This 15 done by drawing Z; from the conditional distnbution p(Z;/U, ) for
i=1,....,n at the first stage stating with some ninal value of . Note in this case
P U Y s nix B, 1) tuncated at the left by 0 1f U5 =1 and truncated at nght by
0 U; =0, At the second stage, f§ is drawn from p{ /U, Z) where Z 15 kept fixed
at the values obtaimed at the first stage. This completes one eyele or replication of
the algorithm. After a sufficiently large number of replications the generated values of
f and Z are approximately a mndom sample from the distoibution p( §.2/U) under
certain regularity conditions.

Mow given both U and Z the conditional distribution of f§ 15 of relatvely simple
form and is given by

PBIU.ZY = p(B/Z) o p(f) [ nZisxiB. 1), (3.1)

i=]

where m(.;.67) is the probability density of a normal distribution with mean g and
variance o . The posterior density given in (3.1) is the same for the regression para-
meter f# under the usual nomal linear model setup with dispersion matrix equal to
the identity matrix. 1f the prior p(f) is diffuse, then p( /0. Z) 15 Np(f. (X80,
where fi. = (XX ) (X'Z). If prior p(fi) is the proper conjugate, say, N(f*, 2" ), then
p(BU.Z) is Ne(B.Z), where fi=(Z* ' + XXy (Z*'8* + X’Z) and £=(Z*' +
XL

To obtain an approximation to the posterior density p(f/U), one computes the
average of p(B/U.Z) over the retained values of the imputations e, p(f/l) =
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#MZ:?S:“I plp/U.Z;). Of course our ultimate interest lies i finding both the point
estimate and the posterior probability mterval of B = ®{x*" 1), the stress—strength relia-
bility, for any given value of the covariate x say, x*. Simply applying the transformation
of vanable technigue on the multivariate normal density p( /U, Z) the estimate of R
comes oul as ﬁ{R..-'L"]={\1..-"lﬂ{]}ng:m (D (R); . o )/ D™ (R)), where ¢(.; 1t 57)
is the probability density function of normal distribution with mean p and vanance a,
w=x"f and 6% = x*(X'X ) 'x* and ¢ the nommal density corresponding to mean 0
and varance 1.

4. A numerical example

As an illustative example we consider the following data set (see Weichung and
Weisberz, 1986) with certam modifications to suit our purpose. Endogenous creatining
{CR) clearance s an important measure of renal function. So also is serum creataning
concentration (SC). Low value of CR and high value of 5C 15 associated with renal
malfunction. For the purpose of illustrating the methodology we classify somewhat
arbitrarily all the patients with SC greater than 1.5 and CR less than 70 as having
suffering from a renal malfunction and thus for these patients we take the value of the
response variable as one and for the others equal to zero. CR can be thought of as a
covariate associated with the strength of the renal system and SC a covariate associated
with the stress on the renal system although both are associated. The data are shown
in the Table 1. We implement Gibbs sampler to find the posterior based on this data
using both the diffused pror and the nomal priors. For normal priors with moderately
large variance the results look similar to what is obtained by diffused prior and so we
have reported the results for diffused pror only. For implementing Gibbs sampler we
have used BUGS (see Spigelhalter et al, 1996).

To implement and monitor the convergence of Gibbs sampler we follow the basic
approach of Gelman and Rubin (1992). Statting from some mitial value of fi, say,
fg, we generate 4 chains of values of Z and fi, cach chain being generated starting
from an over-dispersed distnbution and with a sample size 20,000, We delete 10,000
replications as “burning”™ samples o mmimize the effeet of mitial values and retain
the values of the next 10,000 replications to approximate the postenor disribution. To
monitor the convergence we focus our attention to R, the primary parameter of our
mterest.

Following Gelman and Rubin {1992), we compute the between and the within chain
mean squares of the retained values of R, say, B and W, respectively. Then we find

s =(10,000 — 1 JHLO 000 + B/10.000, v =5 4 ((4)(10,000)) ' B.

and fimally the potential scale reduction factor r=o/W . If the potential scale reduction
factor s neardy 1, then this sugpests that the desired convergence 1s achieved in the
Gibbs sampler. For convergence diagnostics CODA (see Best et al., 1995) has been
used. We have taken two sets of values of covanates vz (1) SC =27, CR = 40 and
{n) SC=1.33, CR =70 and found the posterior distributions of £, say distributions of
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Table 1
[Data showing renal malfunction, CR, SC for 29 patients

Patiemt serial mnumber Response SC CR
| il 071253 1320
2 0 L4EI6T 5310
3 | 220545 50.0
4 { 1.42505 820
5 (67860 10
f L1 075777 1000
7 [l 111969 LA
B il 0491611 920
9 | 154947 6.0
([}] [l (931873 94.0
11 il 099528 1050
12 ] L0745 QR0
13 il 070122 120
14 il 071253 125.0
15 il (199528 1080
& 1 252012 0
17 0 113100 1110
15 il 111969 1300
14 ] 1LA79R2 94.0
20 il 111969 130.0
21 il 09726 50.0
n | 16002 E A
2 1 1.58339 65.0
24 0 140244 B5.0
25 [l (L6TE60 14100
26 ] 1. 198RG 800
27 | 210001 412
28 L1 1.15719 150
. il 105183 41.40

EE  sample: 50000
150.0 F
1000
&0.0
0o+
0.85 09 0.95

Fig. 1. Kemel density for f{i).

Ri1) and R{u1). These are shown in Figs. | and 2, respectively. For (1) the posterior
mean comes out o be 09983 and 95% credible interval as 0.9948-1.000. For (ii) the
posterior mean s 0.49 and the 95% credible nterval 1s 0,426 -0.552,

In Figs. 3 and 4, the convergence of Gelman-Rubin shrink factor to one are shown
for B(1) and R(u), respectively. From Figs. 3 and 4 it is clearly evident that the
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Fig. 2. Kemel density for 8{ii)
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Fig. 3. Gelman-Rubin shnnk factors for 8{1)
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Fig. 4. Gelman—Rubin shrink factors for 8{i).

convergence 15 more or less achieved after 100 iterations. Also Fig. 5 clearly shows
the autocorrelations between replications of the values of £ m cach of the four chans
are very small. The results obtamed are heuristically consistent. In case (1) the values
of 5C and CR are cleardy much above and much below the threshold levels and so
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Fig. 5. Awtocorrel ations for four chains for both 8(1) and R{ii).

the length of the credible mterval is shorter compared to that in case (i1). In case (i1)
the values of 5C and CR are at the border lines of the threshold levels and thus one
is more uncertan about the malfunction of the kidney and hence the length of the
credible interval 15 larger.
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5. Discussion

It 15 noted in the Introduction that the formulation of the stress—srength reliability
analysis in this paper is somewhat different from the vsual. To make a few additional
comments, first, we would like to mention about its potential application to finding
the stress strength reliability of a manufactured unit wsing feed back data after its
marketing. When the units are marketed they are expected to operate under different
environments and environment have an effect on both the swess and the strength of
the unit. It 15 important for an industry to have feedback data on the performance of
the unit marketed for further improvement of the product. The feed back data in most
of the situations are not expected to provide observations on stress and strength, On
the other hand one can get observations like what we have considered in this paper.
The covanates may be some environmental factors affecting both stress and strength,
Sceondly, using this formulation there 1s further scope of extending the analysis to
the case when a cluster effect s present without much difficulty. Cluster effect may
arise in different ways. For example in the kidney malfunction data the patients with
same dietary habit or belonging to the same racial group may form a cluster. In the
same way the units marketed that are produced m a single factory or shipped in a
single batch may form a cluster. Thirdly, one can apply the latent variable approach
adopted here to the case when the stress and the strength variables are non-normal. It
15 our intention to take up this aspect of stress—strength reliability analysis noa future
communcation.
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