
Biometrika (2002), 89, 3, pp. 709-718 

? 2002 Biometrika Trust 
Printed in Great Britain 

An efficient design for model discrimination and parameter 
estimation in linear models 

BY ATANU BISWAS 

Applied Statistics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, 
Calcutta 700035, India 

atanu@isical.ac.in 

AND PROBAL CHAUDHURI 

Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, 
203 Barrackpore Trunk Road, Calcutta 700035, India 

probal?isical.ac.in 

SUMMARY 

We consider experimental designs in a regression set-up where the unknown regression 
function belongs to a known family of nested linear models. The objective of our design 
is to select the correct model from the family of nested models as well as to estimate 
efficiently the parameters associated with that model. We show that our proposed design 
is able to choose the true model with probability tending to one as the number of trials 
grows to infinity. We also establish that our selected design converges to the optimal 
design distribution for the true linear model ensuring asymptotic efficiency of least squares 
estimators of model parameters. 

Some key words: Adaptive sequential design; Consistent model selection; Nested models; Optimal design; 
Stepwise F-test. 

1. INTRODUCTION 

Experimental designs for discriminating among several competing regression models 
have received a fair amount of attention in the existing literature; see for example Anderson 
(1962), Hunter & Reiner (1965), Box & Hill (1967), Hunter & Mezaki (1967), Pazman 
& Fedorov (1968), Froment & Mezaki (1970), Meeter et al. (1970), Atkinson (1972), 
Atkinson & Cox (1974), Atkinson & Fedorov (1975a,b), Hill (1978), Atkinson (1981), 
Spruill (1990), Dette (1994, 1995), Dette & Roider (1997), Dette & Haller (1998) and 
Pukelsheim (1993, Ch. 11). Efficient parameter estimation is also important. In the case 
of a family of competing nested linear models, one is usually interested in selecting the 
correct model with the smallest number of unknown parameters as well as estimating 
efficiently the unknown parameters associated with the true model. Given a specific linear 
model, efficient estimation is guaranteed if we choose an optimal design, such as a 

D-optimal design, an A-optimal design or an E-optimal design (Pukelsheim, 1993, Ch. 11). 
However, the best design for discriminating among several competing linear models may 
be quite different from the design that is optimal for estimating all the parameters in the 
unknown true model. The resulting design may even be singular for some of these models; 
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see also Example 3.4 in Dette (1995) and the discussion therein. Furthermore, many 
optimal design criteria for model discrimination depend on the specific ordering of compet- 
ing models and which one of the models is the true one (Atkinson & Fedorov, 1975a,b). 

In this paper we study an adaptive sequential design that will simultaneously achieve 
three objectives, namely selection of the correct model with the least number of unknown 
parameters, efficient estimation of all the parameters in that model and generation of 
design points so as to converge to the optimal design for that model; see also Hill et al. 
(1968). We restrict attention to linear models as even in this case a complete solution for 
our problem is not available in the existing literature. Furthermore, optimal designs for 
linear regression models do not depend on the unknown model parameters; this has led 
to an elegant and feasible solution for the problem. 

2. DESCRIPTION OF MODELS AND THE ADAPTIVE SEQUENTIAL DESIGN 

We assume that the outcome Y of the experiment conducted at X, chosen by the 
experimenter, satisfies the regression model 

Y = f(X) + , 

where the X is either a real variable or a vector of real variables, the unobserved residual 
e has a N(0, a2) distribution, andf(.) = gj(fj, .) for some 1 <j < k. Here {gj(lj, .), 1 < j < k} 
is a specified family of k regression models that are linear in the parameter flj and nested 
such that 

gj_(pfl•1,.) 
is a special case of gj(pj, .) in the sense that gj_1(flp 1,.) can be 

obtained from gj(pfj,.) by assigning some specific values to some of the coordinates of the 
parameter vector flj. Consequently, gj,(fj1, ,.) can be viewed as a constrained version 
of the model gj(pj,.) with linear constraints, and the dimension of lj-, will be less than 
that of pfj. 

Suppose that we can carry out at most N experiments. Let the optimal design for the 
jth model consist of distinct design points {xj1,..., xjj)} with xj, having weight wj, for 
1 u r and j = 1, 2,..., k; here wj, > 0 and 

Z= 
Iwju,= 

1. We assume that each of the k 
optimal design distributions and each of these k models are such that the correspond- 
ing information matrix is nonsingular with all its eigenvalues positive. This is true for 
many standard optimality criteria. Out of N experiments, the first mo design points 
Xo,1,... , Xo,,o are generated from the uniform mixture of k optimal design distributions 
corresponding to k competing models each having the same weight. This can be done in 
many different ways. For instance, we may select one of the k models by simple random 
sampling, and then generate a design point according to the optimal design distribution 
corresponding to the selected model. This two-stage procedure may be repeated mo times 
to generate the design points Xo, ,..., Xo,mo, which form the initial design distribution 
prior to obtaining any data. This design is sequentially updated at various stages as data 
become available. 

After independent observations Yo,1,..., Yo,mo are obtained from the first mo experi- 
ments, we carry out some statistical tests in a stepwise manner until one specific model is 
selected. This can be done as follows. Consider hypotheses 

Hj: gj_-1(Ij- 1, .), is the true model 

against 

Kj: Hj is false and gj(fpj,.) is the true model, 
for j = k, k- 1,..., 2. Tests are carried out in reverse order starting from Hk. Let Hj be 



Design for linear models 711 

the first null hypothesis to be rejected. If none of Hk, Hk-1,..., H2 is rejected, we select 
the model g,(P1, .). The hypothesis Hj is rejected with level a0 if T' <ct, where T' is the 
F-statistic for linear models given by 

T=min_, 
Em? {Y0o,s j-l(flj-1, 

Xo,s)2 1min o,s j, Xo,s)}2 
mT-- 

mo - dj 

dJ - dj-' 
and c0 is the corresponding cut-off point at level al. Here dj is the dimension of the 

regression model gj(pj, .), which is same as the dimension of the parameter vector fj; note 
that, since our models are nested, we have dj > dj_ 1. At the next stage, m, design points 
X,, . . ., Xi,mi are chosen from a design distribution which will be a non-uniform mixture 
of all the optimal design distributions corresponding to k models. We may again adopt a 

two-stage sampling procedure, first choosing one of the k models by random sampling in 
such a way that the models rejected by the above stepwise method have weights 1/(k + 1), 
and the selected model has weight 2/(k + 1). Then a design point is generated according 
to the relevant optimal design. This procedure is repeated m, times to generate the design 
points X1,1,..., X,m,, which then lead to observations Y1,1,..., Y1,mi. 

The above process is repeated to obtain N = mo + m, +... + m, design points Xr,s and 
observations 

Y,,s, 
where 1 < s < m, and 0 < r < n. Here Xr,s is generated from a mixture of 

k different optimal design distributions, with the optimal design corresponding to the jth 
model gj(f j, .) given weight (1 + hj,j)/(k + r), where h,,j is the number of times thejth model 
has been selected on the basis of stepwise hypothesis testing carried out r times, that 
is first using mo data points, then using mo + m, data points and so on. When 

mo + mO +... + mr data points are obtained, tests are carried out in reverse order starting 
from Hk, and the hypothesis Hj will be rejected with some specified level ax if T <cI. 
Here Ti is an F-statistic given by 

T = o [min. 
_ 

i 
= {, -gj-1(fj1- 

, Xi,,)} 
2 

-_ min 
E 1 ,- f, Xn)} 2 

T=o [min Esm 
1 

(yi,s 
-- 

( j, 
Xi,s)} 

2 

= 0 (mi - dj) 
(r + 1)(d - d1-1)' 

and ci is the corresponding cut-off point at level cJ. If Hj is the first null hypothesis 
rejected, we select model gj(pj, .). If none of the hypotheses Hk, Hk-1,...,H2 is rejected, 
we select the model gl(fP, .). 

Note that the above procedure leads to a dependent set of data points (Xr,s, Yr,s), for 
1 ?< s < mr and 0 < r < n. However, the conditional distribution of Yr,s given all the obser- 
vations and design points obtained prior to obtaining Y,s, depends only on 

Xr,s. 
This is 

discussed in more detail in ? 4, where we develop some theoretical results that follow from 
this fact; see also results on the product form of the likelihood based on dependent data 

generated by adaptive sequential designs for nonlinear experiments in Chaudhuri & 

Mykland (1993, 1995). The form of TI is computationally convenient. As the observations 
from the mr trials in the rth stage of the experiment become available, we only need to 

compute the sums of squares based on these m, observations and add them to the sums 
of squares obtained in the preceding (r - 1) stages. 

Let us note here that many earlier authors, see for example Atkinson & Fedorov 

(1975a,b), have used sequential procedures that are based only on the ordering of the 
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residual sum of squares for different regression models for choosing the best model at any 
stage. However, this is not very useful with our nested models as a richer model will 
always yield a smaller residual sum of squares. The stepwise F-test used in our sequential 
scheme is a device for dealing with such nested families; see also Andrews (1971). 

At all stages, the design points are selected from a mixture of all optimal design distri- 
butions. As a consequence, our scheme provides a protection for each of the competing 
models and their associated optimal designs in small sample situations. Models that are 
selected more often will have more weight in subsequent stages, along lines similar to the 
bandit-model approach used in clinical trials for selecting the best of a set of competing 
treatments (Berry & Fristedt, 1985; Hardwick, 1995). 

3. SOME ILLUSTRATIVE EXAMPLES 

3-1. Example 1 
We consider the case k = 2, with the following two competing models. 

Model 1: Y = c + X + e, 
Model 2: Y= + X + yX2 + . 

Suppose that X lies in the interval [0, 1]. The D-optimal design for Model 1 uses design 
points at 0 and 1 with the same weight -, and the D-optimal for Model 2 uses design points 
at 0, - and 1 with the same weight -. The first mo design points are generated from a 
distribution that puts weights 

j2, 
and -5 at the points 0, ? and 1, which is a uniform 

mixture of the two optimal designs. We then compute To, the test statistic for testing 
H: y= 0 against K: y +0 from the available data. If To > co, Model 2 is the winner at the 
initial stage. Otherwise Model 1 is selected. Then the design distribution is updated, and 
the selected model will have i weight in the new mixture distribution. At the second stage, 
a new set of m, design points are chosen from this new mixture distribution. We carry 
out the testing procedure after each stage. After the rth stage, with mo +.. + m, samples, 
we compute the test statistic T, and decide for Model 1 or Model 2. If, up to the rth stage 
and up to the (mo +... + m,r)th trial, Model 1 is selected s times and Model 2 is selected 
(r + 1 - s) times, the design distribution will be a mixture of the two optimal design 
distributions with weights (1 + s)/(3 + r) and (r + 2 - s)/(3 + r). In other words, the three 
design points 0, - and 1 will have weights 

2r+ s+ 7 r + 2-s 2r+s + 7 

6(3+r) ' 3(3 + r)' 6(3 + r) 

respectively. Define an indicator variable Z,,,+ such that it takes values 1 or 0 according 
as T,., is greater than or less than c,r+I. Then it is clear that 

pr(X,+0~i =l0past data)= 1+ 
o 

+ 1 
- 

+) 

2 6(r + 3) 1 ,= O 

= 
pr(X,+1,i 

= 1past data), 

pr(X,+i,i =lpast data)= 3(r+3) 1 + Z, . t=O 
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After taking expectations, we obtain the unconditional probabilities as 

1 1 ( 
r 

pr(X,+,,i 
=0)=pr(X,+x,, 

= 1) 2 6(r 1 + Zt , 2 6(r + 3) ,= 0 

pr(Xr+i,i =') 
=3(r+3)(1+ , t=O 

where rn, = pr(T, > c,). 
When the number of stages n, and hence the number of trials N, grows to infinity, we 

would like to have 7r, tending to 0 under the hypothesis H and to 1 under the hypothesis 
K for a shrinking sequence of significance levels used in our stepwise tests for model 
selection. This will ensure that, under H, pr(X,,i 

= x)--+ for x= 0, 1, and pr(X,, = =)- 0; 
and, under K, 

pr(X,,i 
= x) --+- for x = 0, , 1. 

3-2. Example 2 
We now consider some models involving two covariates z, and z2. We again consider 

the case k = 2, with the following two competing models. 

Model 1: Y= tz1 + # z2 + , 
Model 2: Y= atz + /z2 + yz1Z2 + e. 

Suppose that both z, and z2 can take only two values 0 and 1. Here the design point is 
a vector X = (z, z2), and the three possible design points are (1, 0), (0, 1) and (1, 1). We 
consider the E-optimal design which puts weights i on each of the points (1, 0) and (0, 1) 
for efficient estimation of the parameters of Model 1, and puts weights 4 on each of the 

points (1, 0), (0, 1) and (1, 1) for Model 2. As before, the first mo design points are generated 
from the uniform mixture of the two optimal designs which puts weights 

2, 
and 

2 
at 

the points (1, 0), (0, 1) and (1, 1). The test for H:y = 0 against K: y 0 is to be carried 
out at this and the subsequent stages, and the design distribution is updated accordingly. 
If, up to the rth stage, Model 1 is selected s times and Model 2 is selected (r + 1 - s) times, 
then, as in Example 1, we have 

1 1 ( r 

pr {Xr.I,i =(1, 0)lpast data} = - 6(r 1 + ZZ 
2 6(r + 3)( t= 0 

= pr {X.+1,i = (0, 1) past data}, 

pr {Xr+. ,i = (1, 1) |past data} = 3(r+ 3)1 + 
, 3(r + 3) rt=O 

with the definitions of the Zt's as before. Consequently the unconditional probabilities 
can be written as 

1 1_ _ 
pr{X+,,,i =(1, 0)} =pr{X,r+,i = (0, 1)} = - -6(r + 3) + , 2 6 (r+ +3) \t=o 

pr{Xr +,i = (1, 1)} = 
1 + 

. 3(r +3) +t=o 

Once again, when the number of stages n grows to infinity, we would like to have 
rE, 
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tending to 0 under the hypothesis H and to 1 under the hypothesis K for a shrinking 
sequence of significance levels used in our stepwise tests for model selection. 

4. MAIN RESULTS AND THEIR IMPLICATIONS 

As we have already pointed out, the response variable 
Y,,s 

is dependent on the previous 
design points and responses only through X,,s, in the sense that once Xr,s is chosen the 
response Y, depends only on it. As in a non-adaptive regression scenario, we can restrict 
ourselves to inference that is conditional on given design points, and this leads to the 
following useful theorem. 

THEOREM 1. We assume that the information matrix corresponding to the model gj(flj,.) 
based on the design points Xi,s (i ? s < mi) is nonsingular for each 0 < i < r. Then, under the 
null hypothesis Hj, the conditional distribution of the test statistic TJ given the covariates 
Xi,,, for 1 < s < mi and 0 < i < r, for testing Hj against Kj will be F with (r + 1)(dj - dj_ 1) 
and r=o (mi - dj) degrees of freedom, just as in the case of independent observations taken 
in r + 1 groups. 

Note that the F-statistic that we consider here is different from the conventional 
F-statistic based on independent data points arising in the non-sequential case; the exact 
finite-sample distribution of the conventional F-statistic is not tractable when dependent 
data are generated by our adaptive sequential scheme. Even its asymptotic distribution 
for such dependent data is unknown to us, and it seems rather hard to obtain. Of course, 
in a non-sequential situation involving independent data, the standard F-test enjoys many 
optimal power properties, but it is not clear how its power compares with that of our 
F-test in adaptive sequential problems. The only claim that can be made about the stan- 
dard F-statistic in this case is that it remains the relevant likelihood ratio statistic, because 
of the product form of the likelihood. Asymptotic results about its behaviour may therefore 
be available by using some of the results of Chaudhuri & Mykland (1993, 1995) and Hu 
(1998), for example. Since our subsequent results depend critically on the exact distribution 
of our new F-statistic, we have not investigated the standard F-statistic further in this 
paper. 

For r =0, 1, 2,..., n and for j = k, k- 1,..., 2, define a set of indicator variables Zj,r 
such that 

1 if 
T", c" for u= k,..., j+1 and T > c , 

j, 0 otherwise. 

Note that the above automatically implies that Zi,r = 0 for all 1 I j. We also define another 
indicator variable 

Zi•r, 
which takes value 1 if and only if T• < c for all u = k,..., 2. 

Suppose that x is a design point common to optimal designs associated with b models 
indexed by j, . . .,jb with corresponding weights wj,,..., wjb. For 0 < r < n - 1, define 

B,(x)= wi 1I+ ZZj5, ,t 
v= 1 t=O 

Then the conditional probability that a specified trial will be conducted at the design 
point x given the past data is 

b w Wr-1 B(x) 
pr(Xr,s = x past data) = 

w 
( 1+ 

Zj,, 
= 

, 
(1) 

=1k+r \ t=O k+r' 
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where 1 < r < n and 1 < s i m,. Writing rj,r = E(Zj,r)= pr(Zj,r = 1), we have 

b w( 
r 

- 1 

pr(Xr,s= 

= x)= w 1+ 
7rjgt, . 

(2) 
=l k+r t= o 

The design should be such that, if the number of experiments is large, the adaptive sequen- 
tial procedure will lead to the convergence of our mixture design to the optimal design 
corresponding to the true model. This will ensure most efficient estimation of model 
parameters. For our scheme, this is guaranteed by the following theorem. 

THEOREM 2. Let x be an optimal design point associated with the jth model with weight 
w, where 1 

<j 
k. Assume that maxo ,in-_max <jk J--+0 and P,= mino-<rm - oo at 

an appropriate rate as n, and consequently N, goes to infinity. Then, for all p,n < r n, 
pr(Xr, = x) converges to w whenever the jth model is true and p, is a sequence of positive 
integers such that p, < n and p, -+00oo. In other words, if the jth model is true, the limiting 
proportion of times the design point x is chosen in the experiment with N trials is w. We will 
also achieve complete consistency in model selection in the sense that ultimately the correct 
model will be selected with probability tending to one, and the probability that an incorrect 
model will be selected tends to zero. 

It is natural to investigate the performance of the usual least squares estimator of the 
parameter vector corresponding to the correct model when data are generated by our 
adaptive sequential scheme. Clearly, its finite-sample distribution will be quite complicated, 
because of the dependent nature of the data. Nevertheless, the following theorem ensures 
the asymptotic efficiency of the least squares estimator in the correct model. 

THEOREM 3. Assume all the conditions of the preceding two theorems. Let gj(f#j, .)= 
(pj, Gj(.)> be the true linear regression model, where flj and Gj(.) are dj-dimensional vectors 
and (.,.> denotes the usual Euclidean inner product of vectors. Consider all N data points 
(X,,s, Yr,s) for 1 s d Smi and 0 < r < n, and let bj denote the least squares estimator of flj 
based on these observations. Let 

n Mr 

Ij,N = Z {Gj(Xr,s)}T{Gj(Xr,s)} 
r=0 s=1 

be the dj x dj information matrix associated with the jth model and these data points. Then, 
if N-' Pom,-+0 as n--oo, we have that N-'Ij,N-+I, in probability, where 

I- = • l{Gj(xju)}'{Gj(xju)}wj, 
is the optimal information matrix associated with the jth 

model. Furthermore, N1/2(bj - fj) asymptotically normally distributed with zero mean and 

(It)-1 as the covariance matrix. 

5. CONCLUDING REMARKS AND DISCUSSION 

The choice of the value of mr and the m, design points at the rth stage of the experiment 
is an important issue. It should always be such that the resulting information matrix 
associated with the largest model, i.e. the kth model, based on those mr design points is 
nonsingular. This is necessary for Theorem 1, which guarantees proper F-distributions for 
the test statistics used in model selection. We have described in ? 2 a two-stage sampling 
scheme for generating the design points Xr,,... , Xrm. The procedure used here assumes 
the knowledge of the optimal design distributions for all the competing models, and our 
strategy is to build the optimal design by adaptively changing the mixture of all those 



716 ATANU BISWAS AND PROBAL CHAUDHURI 

optimal design distributions. For a finite sample, the resulting optimal mixture might 
include many support points with low weights especially when there are several nested 
models in the family, some involving quite a few parameters. To obtain meaningful results 
in this situation, we need sufficiently large m, values and accordingly a sufficiently large 
value of N. 

The adaptive updating of the mixture of competing optimal designs depends on the 
choice of the significance levels a' used in our stepwise F-test for model selection. However, 
this dependence is only through the values of the mixing proportions in the mixture 
distribution. The o-values have no effect on the support points of the designs, which are 
completely determined by the nested family of models at the outset. We have indicated in 
the proof of Theorem 2 some appropriate asymptotic orders for the a-values. 

It would be appropriate to discuss the difference between our approach and some of 
the existing methodologies available in the literature for similar and related problems. 
Optimal designs for nested models were studied by Anderson (1962). Spruill (1990) con- 
sidered similar problems, determining the optimal approximate design with respect to a 
maximin criterion which maximises the local power of the F-tests. Dette (1994, 1995) 
considered the problem of finding optimal designs for the degree of a polynomial 
regression. More recently Dette & Roder (1997) considered optimal discrimination designs 
for multi-factor experiments and Dette & Haller (1998) considered optimal designs for 
identification of the order of a Fourier regression. All these authors considered optimal 
design solely for model discrimination; the problem of efficient estimation of parameters 
was not considered simultaneously. For instance, the optimal discriminating design con- 
sidered by Dette (1995, p. 1254) for model discrimination between a linear and a quadratic 
model on the interval [- 1, 1] puts a very small mass at 0 and divides the remaining mass 
equally between the points -1 and 1. However, for efficient parameter estimation, the 
optimal design puts equal weights at - 1, 0 and 1 for the quadratic model and equal 
weights at - 1 and 1 for the linear model. 
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APPENDIX 

Proofs 
Proof of Theorem 1. In view of the discussion preceding the statement of the theorem, it is clear 

that the variables Yr,~, for 1 < s < mr, given the variables i,, for 1 < s < mi and 0 < i < r - 1, and 
the design points Xi,,, for 1 < s < mi and 0 < i < r, are conditionally independently and normally 
distributed, and the conditional distribution of Y,,s depends on the past data only through X,~,. 
Consequently, under Hj and given the same response variables and the design points, the sum of 
squares 

mr 

min U-2 Yr,s -gj(fj, Xr,s)}2 
bj s=l 

and the difference of sums of squares 
mr mr 

min a-2 s Y j-(flj-, X,,2- min a-2 { -gj(j, X,,s)}2 
bj- 1 s=l bj s=l 
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both have conditional x2 distributions with 
mr 

- dj and dj - dj_-1 degrees of freedom respectively, 
and they are conditionally independently distributed. Since these conditional distributions do not 
depend on the conditioning variables, the same will be true of the unconditional distributions. 
Furthermore, these sum of squares and difference of sums of squares are independently distributed, 
and they are independent of the past data on which conditioning was done. This can be used 
repeatedly to verify that the numerator and denominator of the statistic Ti have independent x2 
distributions and consequently Ti has an F-distribution with (r + 1)(dj - dj - 1) and 

C=o(mi 
- dj) 

degrees of freedom. El 

Proof of Theorem 2. Let the oa's be such that 

max max -+0, max max -41F ral, (r + 1)(dj-dd-1), (mi-d)• 
-+0 

O0rbn---1 
1 <j<k O<r n-<n - 

1 
1<j<ki=1 

as n -+ oc, where ci = F{or=, (r + 1)(dy - d_ 1), 
E 1(mi - dj)} is the 100(1 - ax/)th percentile point of 

the F-distribution with (r + 1)(dj - dj-1) and EZ= (mi - dj) degrees of freedom. Note that it is 
always possible to choose m,'s and ca's to satisfy these requirements. For instance, given a value 
of n, we can choose mr's so that p, is of the order of log n and cl's are of the order of ./(log n) as 
n -+ oo. Clearly, if the jth model, corresponding to the alternative hypothesis Kj, is not true, then 
under the null hypothesis Hj we have 

1tr,, = prHj(Zi,, = 1) < prHj(Ti <ci)= a -+0, 

for all O0,r <n- 1 as n-+o. 
Let us now consider the case when the jth model, corresponding to the alternative hypothesis 

Kj, is true but K, is false for all 1> j; that is H, is true for all 1>j. Since the optimal design for 
each of the k linear models is such that the associated optimal information matrix has all of its 
eigenvalues positive, and since we choose that pu, -+ co as n -+ oo, the least squares estimator of Pf 
based on mr observations obtained in the rth stage of the experiment is consistent for each 0 < r < n. 
Furthermore, TI/p,, will remain positive and bounded away from zero in probability as n - 00o. 
Consequently, using our assumption that 

cli/u, 
-P0, we obtain 

prKj(T7> cI)- 1, K r rj 

as n -+ oo. Observe next that 

k 

r,r =prK(Z,r= 
= 1)> 

prKj(T 
~ cU)+ pr (Ti> ci))-(k -j) 

u=j+l 

k k 

= prKj(T> C)-- Z prK.(T >c)= prKj(Ti>cc)- Z ), 
u=j+l u=j+l 

which converges to 1 as n -- oo. Suppose now that the jth model is true, and x is an optimal design 
point for the models indexed by the set S = {ji,... ,b} with corresponding weights wjl,..., Wjb. Then from (1) and (2) in ? 4 and using Toeplitz's lemma we get that pr(X,,s = x) converges to wj 
or 0 according as j is a member of S or not. This completes the proof. El 

Proof of Theorem 3. Convergence of N- l',N to I* in probability follows from Theorem 2 using 
martingale convergence arguments that are very similar to those used in the proof of Result 3.3 in 
Chaudhuri & Mykland (1995). Recall now that, for normally distributed residuals in the linear 
regression model, the least squares estimator bi is also the maximum likelihood estimator of fpj. 
Note that, in spite of the dependent nature of the data (Xr,s, Y,,1), for 1 < s < mr 

and 0 < r < n, the 
likelihood remains in the product form (Chaudhuri & Mykland, 1993, 1995). Asymptotic normality 
of N-(b - /p) with mean zero and (I* )-' as the dispersion matrix now follows by arguments and 
martingale central limit results similar to those in the proof of Result 2.6 in Chaudhuri & 
Mykland (1995). 
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