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Abstract

We consider the Poisson Boelean medel of percolation where the percelating shapes are
convex regians. By an enhancement argument we strengthen a result of Tonassan (2001)
e show that the erilical imlensity of percolation in two dimensaons 15 mindmized among
the class of conven shapas of unit grea when (he percolating shapes are triangies, and, for
any wther shape, the eritical intensily is strivily larger than (this mimmum value. We also
chlain 4 pantisl generalization (o higher dimensions, In partivalarn [or three dimensons,
the cnitical intensity of percolation is minimixed smong the class of roenlar polyviopes
of unit volume when the pereolating shapes are tetrabedrons, Morcover, for any other
regular polvtope, the critical intensity is strictiy larger than this minimue value,
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1. Introeduction

The study of the percolation and geometric properties of the Boolean continuom perculation
midel has primarly being reswdcted to the model where there are balls centred at points of
an underlying spatial Poisson process, see e g. Hall {1988} and Meester and Roy (1996). Re-
cently, Jonasson {2001) meroduced the study of the critical densities of the Boolean continuum
percolation model as functions of the shape of the underlying convex region at every poinl
of the Poisson point process comngprising the model. Lo particular, he showed that among all
two-dimensional convex shapes of unit ares, the nangle minimizes the eribical densitics. In
this paper we continue this topic and first obtain an easier vnderstanding of Jonasson's results.
Bascd on this we show how Jomasson™s results could be partly cxtended w bigher dimensions,
thereby obtaining that the tetrahedron of unit volome is the shape which minimizes the ¢ritical
density among all regular polytopes, Moreover, we show that the crittcal density of the mode?
where the underlying shape is a triangle of unit area in two dimensions (or a tetrahedron of
unit yvolume in three dimensions) 13 steictfy smaller than that of 3 model where the underlying
shape is a convex region, barring triangles, of unit area (or a regular polytope with fve or more
faces of unit volumde in three dimensions). This resolt cannot be denived by the method wsed
by Fonasson,

Finally, the method of enhancement we have used here leads to an easy extension to obtain
that, ford = 2. the eritical density of pereolation for a model in BY with cubes of d-dimensional
Lehesgue measure | is strictly larger than the eritical density of percolution for amodel in B9
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with cubes of (d + 1)-dimensional Lebesgue measure 1. Sarkar { 1997 ) obtained a stmilar result,
but only for & = 2, because he needed the Tact that in two dimensions there is o coexistence
of an occupied region and @ vacant unbounded region,

2. The model and statement of resylts

Tet & = (X1, X72... .} be a Poisson point process of density A on I and § be a fixed
d-dimenstonal bounded convex region. The region ¢ 1= |7, (X; + 5) is the covered region
in ¥ and the connected component €y of C containing the origin is the occupied cluster of
the grigin. The critical density of percolation A:(5) 1% given by

Aod&) = infa : P50 is unbounded] = O},

Ford = 2and w = 3,lat P, he the regular polygon of » sides with unit area, while ford = 3

amd n = 4, lel By be the regular polvtope of r faces with unit volume.

Proposition 2.1, (a) For d = 2, we have 2:0P1) < L0 foralln = 4; and (h) for d = 3,
we Bve A (I} < A 000 foredf e = 5,

In the proof of the above proposition we will see thal while 4 siratghtlorward comparison
method immediately yields 4. (P = 2. (F 1 forall # 3 5 (and this method also yields part (b)
of Lhe proposilion), for the relation between 2:0P3) and A:( 1) we need Lo do more work, For
this we need the following result.

Theorem 2.1. Lot § and B be two d-dimensional bownded comex reglony with § T B and
35 &£ a8, where AA denoter the bopndary of the region 4. We have

Ac(E) = A5

‘The comnparison method used in the proof of Proposition 2.1 allows us to compare the eritfeal
densities for general convex shapes. In particular, tor two dimensions, let 5, denote the regular
hexagon of area « and, for three dimensions, let {; denote the regular icosahedron (1.c. 20 faces)
of volume or. Weshow that he(Py) = A, (Faptand A 00 = A:(T5 2}, We may view this result
vis-d-wiy the covered volume fraction question of Mecster ef al. {19947, There iL was shown
that the critical covered areavolume fraction is not a constant when the underlying shape is not
tixed. but random. Here ouor results show that the critical covered arga/volume fraction among
different shapes is not a constant, rather it is minimized by these rianglesfietrahedrons. Indecd,
the cntical covered area’volume fraction for 4 Boolean model with fixed shapes § is given hy
1 —expi—A {5)E087), where £08) is Lebesgue measure of 5. In our case, we see thal among
all regular two-dimensional shapes 8 of unit area, the cntical coversd area fraction is not a
constant; instead, it 1s minimized when 5 is a wianele, A similar conclusion may be deawn in
three dimensions with the enitical covered volume fraction being minimized by tetrabedrons
among all regular three-dimensional convex shapes,

First we put C(5) = %lﬁ' = (— 51, Note that C(F)} = Ay, Ol = Fep and 4043 =
A(C(8)} Then we have the following proposition,

Proposition 2.2, (a} If for ot iwo-dirensional comer bounded region § of unft aren theve exists
an affine transforeation T such thar C(T8) & Hagz, then he(P5) = 2.05)

{b) If for a three-dimensional comvex bounded vegion § of wdt volume there exisis an affine
transformarion T such that CIT 8) C Tsp, then 2.(04) = 2,05}



50e5G3A E. ROY AND A TANEMURA

The essence of the proof of Theorem 1.2 of Jonassen (2001) is that the condition in () above
holds for all convex shapes § barring triangles. Thus we have the following theorem.

Theorem 2.2. For uny two-dimensional convexr shape § of wnit avea, AP0 = 3 A5 wirh
equality holding if and only if § s a triangle. Moreover, if the comdition in Prapasition 2. 2{b}
furddy, then for any three-dimenysional convex shape 8 of unit volume, 3,004 = Ao (3 with
equality holding if and only if 5 i a tetrahiedron.

In four dimensions, using the Schlifi symibol {see Coxeter | 198Y}) to denote four-dimensional
regular polviopes, the comparison methad shews that the regular polytope denoted by the
Schlifi symbol {3, 3, 3| minimires the critical density among regular polylopes with unit four-
dimensional Lebesgue measure. This could be extended to higher dimensions too.

3. The comparison argmment

Letus first consider 4.}, Let Pz be as in Figure | with one vertex of it heing at the origin
of B, one on the x-axis, and the third in the positive quadrant. Consider the Boolean model
generated by the shapes [X; + Pi}ji=1). Given X; — P+, a shape in this model, shapes X; + Py
which have nonempty intersection with X; + Pz must satsfy the following:

(X_,‘+Pj}ﬂfo‘-P3}1'ﬁﬁ — X_,:EX;"FH.&. (3.1

where Hy, i Lhe regalar hexagon centred at the origin of area 6.
For the Boolean model obtained from {X; + Hasli1, Hay2 being the regular hexagon
‘centred’ at the origin and of area % we ohserve, as in (3.1), that

(X, +Hyad (X + Hapl =2 = X; € X+ Hy. (3.2}

Thus, for the processes {X; + Flj=1; and [X; + Hagahia gy, we see from (3.1 and (3.2}
that

[ )
ch; + £4) admits an vnbounded connected component

i=l

nu)
= U{X ¢ + Hap2) admils ian unbounded connected component. (3.3

=1

Figure 1: The finite cluster for large o, The bold e owldings the iriangle ™. The hexapon which
coniging Py a5 fy. The inner hexapon is Ay
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Remark 3.1. The above statement is valid for all spatial point processes X and not only for
the Poisson point process.

From (3.3}, we have that, for the Poisson Boolean model,
Aol Pa) = AcCHz2)

Now, simple caleulations and geometry show that, for every n = 5 nt(H5:2) 2 cl( £ wherne
int and ¢l denote the topological tnterior and closure respectively, Moreover, we obtain that,
for every n = 5, there exist constants ¢y > 1 such thatint(Fs2) 2 clie, Fy). This obscrvation
immediately vields that

Acl P3b = Aol H52) = dplon Pt foralle = 5 (3.4)

Haowever, the scaling properties of the Boolean model (see Meester and Roy (1996, Chapter 21
imply that, ot i = 0, ke (k¥ = & 255} for the two-dimensional Boolean mode!; fhus (3.4)
gives

Al P5Y = Aol Py) forallm = 5.

For the tiwee-dimensional case, this comparison method yields
Al = ‘-‘--:;{IS.-'EL

where f5;2 s the regular icosashedron of vilume ; Muorcover, us o the two-dimensional case,
we observe that, for every r = 3, there exist constants ¢,; = 1 such thae ine{fs43 = clic, L3,
This, along with the three-dimensional scaling relanon, gives

AplDa) = Ap(fspe) = (D) foralle = 5,

Proposition 2.1{h} 5 thus proved in its entirety, while for Proposition 2, [{a)} we still need to
comsider the case n = 4,

Remark 3.2, Tt may be easily observed that the disc of unit area, or the sphere of vait volume,
both satisly the ‘strong” set inclusion with respect 10 the hexagon Ha 2 or the icosghedrom F5p0,
3¢ the strict mequality between the comesponding critical intensities is obtained.

To obtain the eelation between (P50 and A0 Pq), we (st note an observation made by
Jonassen [20{}} that the percolation properties of the Boolean model remain invariant under
arsa-preserving (volume-preserving in three dimensions) affine transformations. Thus 2.0 Py)
equals A:(R) for any rectungle of unit arca. In parbicular, taking R to be the rectangle of size
371 % 314, we see that an affine transformation £ of & is contained in 13>, Unfortunately, the
stromg selinclusion is nol lrue, and, on the contrary, we have Rc Hagp.batd RN iz &2,
Thus, although we have A (%) < Al I} = A (P4, the absence of the scaled inclusion relalion
prohibits us from drawing any conclusion regarding the strict inequality.

4. An enhancement argument for Theorem 2.1

In this section we will prove Theorem 2.1, The proof will be based on an adaptation of the
enhancement argument of Aizenman and Grimmett 19217 to the Boolean model, Sarkar{1997)
has also used an enhancement arcument, but our method is significandy diflerent [rom his. in
thal we consider a more general enhancement lechnigue and we donot "discretize” the problem.
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Fusuwe 20 The shapes 5 and £,

For comvenicnee in writing the technical details, we mestriet ourselves to two dimensions, 48
well as taking specific shapes § and & as in Figure 2,

Shape § is a sguare with sides of lenglh a, centred at the orgin and B is the square §
capped by an isosceles triangle of height &, This choice of shapes was made with the inequality
Aotz = »o( &) in mind: however, as can be seen lrom Lthe proof, the argument cxtends Lo
arhitrary convex shapes.

On E° we construct two independent processes (%), 1, §) and (Ez. v, £), i.e. Poisson
Boolean models with under]ying shapes 8 and B respectively. Let X denote the superposition
of these twa processes.

Let A be the event that € 7 (|—m, m|5)° 2 3, where Oy is the conneeled component
containing the origin of the covered region of the plane in the superposed process X. Let Py, .
denote the probability measure governing the superposed process 3. By Ruosso’s formula (see
Tanemnura (20000 we have

d
EP%UHM} = E,, wfarca of the S-pivotal cegion for Am), (4.1}
i
’;_UP“""{A’“} = E,, v{arsa of the B-pivotal region for Ag). (4.2)
i

Here a point x € 7 is said (o be S-pivotal fur (e, Ay ) for a contiguralion @ if @ @ Ay, bul
af € A, whete w' is the configuration which agrees with w for all ¥ € B2 with ¥ = x and, at
x, ef asslgms 4 point there with 8 ay the underlying shape, 1.c.

Cwr= | x+ou |J &x+m
X=X (an XeHafw)

does mor contain any connected component which contain the origin and has nonemply inter-
section with {|—»t, m 21, while

cwi= [J X+ ) @+m= ) x+9Hu |J X+BUE+s)

XeXqjiar) X=X (w) XeZlwl XeXaraw)

does contain such a component. We define B-pivotal points similarly,
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Lemma 4.1, for (g, v) £ [f.m!,,lﬁ]2 with 0 = o = B there exisls o constanl 0 < ¢ = 1
independent of 10, v and m, such thar

E,,  {arca of the S-phvetal region for Ay = ey v (etrea of the B-prvatal region for Ag).

Proof Clearly if x = %7 is S-pivotal for (e, 4.}, then it is alsa B-pivotal for {w, Ay,
because § = B,

Consider the laltice {aE)? and, without loss of generality, assume that s is divisible by a
{otherwise, instead of Ap,. we would look at A, ). Let By, M, oo By De the cells of this
laltice which lie in [—n1, m]?.

We will show that if a cell I admits an $-pivoral point, then the probabilicy of the config-
urations for which there is & region of area larger than some A = 0 in £ which is B-pivotal,
but not §-pivoral, is larger than p = 0, where A and p are constants not depending on the cell
D; or on m. This will ensure that the lemma holds with ¢ = {1 + pAa~51

Let T = [—4a, Yal x [—1(1la + 4}, 3(l1a + b)]. Let F|, Fa, Fa and Fy be as in Fig-
ure 3. A region F will be called a face if F s isomorphic to a rotation 8y Fi of £, where R
denotes a rotation by an angle ékm k=01,2.3 i=1234 forsome) < & < & = o0
and 0 = v, yo, v3 < ¥ = 200 The wo lnangular cuts on 4 lace are ils roses, while the front
;[u part of the nose is its tip (see Figure 4},
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i

Fiourt 4: A nose wilh the shaded area being is tap.

Let # be the collection of all faces Fsuchthat F © Tund for j = 1, 2,3, 4, d{T;. 84F) = a,
where 17, 15, 15 and T} denote the rop, bottom. left and right edges of the rectangle T,

Let e be a confipuration adimitting an S-pivotal point in a cell 13 for the event A,,. for some
£3 such that

e+ TCf-m.mfF and 0gc(D+T, 4.3

where o[£} is the 'centre’ of the cell £ and 0 denotes the origin (0. 0,
Lel F £ F he such that the conliguranon e oulside of £) + £ aduits

(i) a connecred component of the covered region which contains the origin and contains a
Poisson point situated in the tip of & nose of F, and,

(i1} aconoected component of the covered region which intersects 3(f—m, m %) and cantains
a# Poissan point silwatad in the tip of the other nose of F,

Ohserve that F is determined by the contiguration aptside o D+ F, 5o the conliguration fnside
o £ + F s detenpioed by a Poisson point process of intensity 4 which is independent of the
confignration outside c(f3) 1 F,

Sipce I¥ contains a pivotal point for (e, A,). thers must exist two disjoint connected
components of the eovered region such thal both of thetn bave nonempty intersection with
ol —{1- %a. %a] - %a, ga]} and one of them contains the origin while the other has
nonemply inlersection with #{f—m, m 2. Note that there is a lot of freedom in choosing the
face F'. in paricular, we only reguire thut the boundary of the smallest reclangle containing the
face lies in the region T % [- gu. 'ia] = [- é(!;'a + B, ;{9-1 + #1]. This ensurex that we can
obilain a face with properties (1) and (ii) described above.

Now divide the plane by the latice (%17, where § = miu[l;g%a}. {j}zb)}, For I’ as given in
{431, we first choose twor F-cells ﬂmp and Mgt such that

() (D) + (0va + 1b - (& minja, b)) € Ay,

(i) c(D)+10, —at — b+ (55 minfa. b))} € Apg.
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Frivis 3: 'The cell A . The point near the nose denotes the site of a Poisson point which is ‘connected”
to the origin.

Note that these cells Agwp and Ape have been chosen such thae if a shape 5 were to be centred
anywhere in Ay and another shape S were to be centred anywhere in Apg, then

{a) nosinele shape shape § cenred inside 3 will have nonemply intersection with both the
shapes: however,

(b} there is a region in I of area at least | nlz'a;”b such that a shape B placed anywhere in this
region will have nonemply inlersection with both the shapes.

W now gel more such d-cells o "conneet” Aqypgp o one of the noses and Apge Lo e ather nose in
the face. For this, we first obtain two §-cells A1y and Ajj inside the face such that two § shapes
placed one at each ol these cells will be digjoint and if & nose is oo the lelt or right (respectively,
top or butlom ) side of the luce, then the homzontyl (respectively, vertical) distance of & ) from
the end of the nose is between 3 e and ';j%a (see Figure 53, Similarly we take Aoy at a horizontal
or verbical distance between %a and %a fromn the end of the other nose.

Having chosen Aqp and Ag ), we now choose more §-cells A, o0, Ay and Ags, oo, Agr

for same % and  such that
(ay rera § shapes, one placed in A; ; and the other in A; ;1. have nonempty intersection,
) A & el +[-3a. 34 and d(3F, A; ) > 24,

i) forany 1 = /i =kand ] = f» =1, two § shapes, one placed anywhere in & ;, and the
other placed anywhere in Ag ., are disjoint, and

{(d) two sets of two § shapes, one placed in A (respectively, Ag ) and the other placed in
Ao (respectively, Ap) have nonempty intersection.

Since the total number of &-cells in a face is atmost 1024 x | lail la — & ominja. 2]}, k and
{ above are bounded.
Now we ansure that each of the cells A, ; and both Aiap and Apet, have

(i) at least one Poisson point each, with a shape § centred at each of them, and,
{1y no Poisson points with a shape B centred there.

This occurs with a probability pge, v) = (b, which depends on @ and b, hut more importantly
is continuous in e and w.
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As seen earlier. the construction of the d-cells ensures a region in I} of area at least m-lﬂfrh
which is B-pivolal, but not S-pivotal for A,y Thus, given 53 satislying (4.3) und contuining un
S-pivotal point for {w, Ay ), Wwe obtain that the region in I3 which is H-pivotal, but not S-pivotal,
has an expected area at least 7z plu, viab,

For ) not satisfying (4.3). if I} is near the boundary of [—m. m]?*, then we consider a face
with unly one nose, Lhrough which a connected component of the coverod region contaihing
the origin intersects the face. We place d-cells inside this face. so that

(11 a set ot d-cells goes from near £ (e, Awpp or Apg) W0 he nose, and

(i) another set of S-cells goes from near £ (ie. Agpy, o Ange) o the boundary of | —nr, m |2
{unless I} is ar a distance less than %{:: + #) (respectively, %ﬂ‘.l from the top (respectively,
bottom) edge of [—m, m]%. in which case we obtain a pivotal region in £ where if a shape
R is centred there, it will itsell intersect ¢ —m, m|%) and the constructed path from the
ongin, but a shape 5 centred there will not intersect 3{[—m, m]En.

However, for I close to the origin, we will get two sets of S-cells—one going (tom near 0
to the ongin, and the other going from near 2 (o the nose theough which passes 4 connected
component of the covered region which has nonempty intersection with 3{—nr, mlE.

All these cases ensure that the given D contains an S-pivotal point for {w, A, ). the region
in £ which is #-pivotal. but nat 5-pivotal. has an expected area of at laast ﬁ P, viah, tor
Pl vy = 0 and is contimuous in g and v

By the continuity of pix. v} and p'iy, vy, take p = min{p(w. vl g/, v (e, v €
[er, A1} = D and take A = sz ab (o obtain the lemma,

To complete the proof of Theorem 2.1, we now fix & = 0, such that 25 < A (B). This
is indeed possible, because AL(H) = (O (sec Hall (1985)). We take o = EJLUJ']' — & and
g = a.,a,.‘{j_?j - £ in Lemma 4.1 and obtain 0 = ¢ = | from the lemma from this choice
of o and B. Fort & [0, I, consider pi(t) = .,,-.:I[E‘_‘J ve+ er and vir) = —.n..;l[ﬁ:l — CEL,
where p = O s chosen such that 1 — ¥ — ¢ = 0.

Then from (4.1} and (4.2, we have, forr & [}, 1],

(jijf Fui, vin{Am) = B0, 0 (area of S-pivotal region lr Ay )
— e£E, ), viry (areu of B-pivolal reglon lor 4}
= (4.4}
Mo,
Proiml—y—eie,0idm) = Picgya—i1-pea i 2—ce CAmd = Pugy i (Am)

= P,l.a.-:l:l_:l.mfl:l_l {-"“m} = P?.C{R]_.-"l—y:..i,_-f.ﬁ'jl."z'f"!lmj
= FD,J.;[H}—]JHAM} =1}

(the second incgqualily follows on integranng (4.4) from G o 1),
Thas 4:(51 = 4.{B) +{l — y — )& = A.{R), therchy proving the theorem.

5. Conclusion

Theorem 2.1 along with the observation that i.{ P3) = A.(Hy2) immedialely yields Propo-
sition 2.2, Moreover, Theorem |.2 of Jonasson (2001) contains a proof of the fact that, for a
two-dimensional convex bounded region &, other than a triangle, of unit urea there exists an
alfine transformation such that £5 C Hsy2. This proves Theorem 2.2,
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In the proof of Theorem 2.1, by a different cheice of p(f) and v{#), we could oblum the
following more general resull. Lot A.{p, §, 8) be the critical inlensity of percolation in a
Paoizsson Boolean model where each Poisson point is the centre of a shape 5 with probahility p
or 4 shupe B with probability 1 — p, independently of other points as well as the process, with
S and B as in Theorem 2.1,

Theorem 5.1. Fw = p < p' = L. A (p. 5 B) <= i.ip.§, B

Moreover, ihe enhancement method of Theorem 2.1 can be easily modified to consider the
critical intensities of processes on K% x {0} and B » [— 1, 1]. This will yield our last theorem,

Theorem 5.2, If 55 denores g d-dimensional cube of unit d-dimensional Lebesgue measure,
thew, for d = 2, i.f{.S‘.,g]l = Lf"“{S..,gH]. where }.E{S,.,,a] denotes the critical Intensitv of the
Poisson Boolean model (3, 5, 52 on B9
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