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In this article, we determine the words of minimum weight in the code of the
incidence system of 5- versus -flals in a finite projective space. Our prool depends on
a lew combinatorial results on the geometry of flats which may be of independent
interest. We also give bounds For the minimum weight of the dual of this code and
show that they are attamed in many cases. The lower bound 15 2 consequence of a
general resull on the dual code of an incidence svstem. ) 202 Ekevier Science (LUSA)

L. INTRODUCTION

A triplet (X.,#,7) of sets is called an incidence system if 12X x #.
Elements of X are called the points and those of # are called the blocks of
this incidence system. We say that the point x is incident with a block B,
denoted by xiB, if (x,B) € {_If kisa field, &* denotes the k-vector space of all
functions from X to k. The k-ary code C of the incidence system is the linear
subspace of &' spanned by the ‘characteristic functions’ yg. 8 € #. Here, vy
is defined by ygix) = 1 if xIB and = 0 otherwise. (In case & = [, the finite
field of prime order p, this code is called the p-ary code of the incidence
systemn. ) The vectors in this code are called the words. The support of a word
wis theset § = {x & X |wix)#£0}. The cardinality of § is called the Hamming
weight (or simply, the weight) of w. By the minimum weight of a code, one
means the minimum non-zero weight of the words in that code. When X s a
finite set, the vector space k' has a natural ‘inner product’ (i.e. a non-
degenerate symmetric bilinear form) given by {v.v'> =% _, vlal/(x). The
dual C* of the code C is the orthogonal complement of C in &Y with respect
to this inner product. A comprehensive reference for codes obtained from
incidence systems is [1].

Let P" denote the projective space of dimension n over the finite field F, of
characteristic p. A subset of P is called o fla¢ if it contains the line joining
any two of its points. An s-flat of [*" is a flat of projective dimension s. By
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convention, the empty set is a flat of dimension —1. By a hyperplane in [P,
we mean an (m — 1)-flat. Let Gis,n) denote the (Grassmannian) set of all
s-flats in . For 0=s<i<n, let 4, ,(n, q) denote the incidence system whose
points and blocks are the s- and r-flats in P, respectively, and the incidence
is set inclusion. Let C,,(n, q) = [Fif"”" denote the p-ary code of A, ,(n, g). The
codes Cydn, g) are just the p-ary codes classically associated with the design
of t-flats in P,
For —1<r<m, let (1), denote the number of r-flats in P"". Thus,

(m+1) ={qm+| _ 1]{-!;""— 1]___{qm+|—.r_ 1)
o

r+1 @ - -0 (g—1)

The main result of this paper is Theorem 1, where we prove that the
minimum weight words of C, (n, g) are precisely the scalar multiples of the
blocks of 4, (n, g). The paper is organised as follows.

Section 2 contains a couple of combinatorial lemmas. The first lemma
characterises s-flats as the subsets of P intersecting every (n — s)-flat and
having minimum possible cardinality. This lemma occurs as Theorem 2 in
[4]. However, our proof is considerably shorter. As a companion and
corollary of this lemma, we prove—in particular—that any (non-empty)
point set containing no more elements than an (n — )-flat must meet some -
flat in exactly one point. The second lemma determines the minimum
number of points covered by a given number of flats. lts corollary may be
viewed as another characterisation of a flat of P,

Section 3 presents the proof of Theorem 1. The proof is by induction on 5.
The case 5 = 01is well known, see for example [1, Corollary 5.7.5, p. 186]. It
was proved independently by Smith [10] and Delsarte et al. [3]. Their
proof involves indentifying Cy {n,g) as a subfield subcode of a generalised
Reed-Muller code and giving an explicit description of the polynomial
functions that represent the code words. However, in Proposition 1, we
give another proof of this result which is simple and geometric in nature.
For even g, Bagehi and Sastry gave a similar proof of this proposition
in [3].

In Section 4, we prove a general lower bound (in terms of the minimum
number of blocks through a point and the maximum number of blocks
through a pair of points) on the minimum weight of C+ where C is the p-ary
code of an arbitrary incidence system (Theorem 2). This theorem is a
egeneralisation of the main theorem of [7] which studied the case of partial
linear spaces.

Section 5 discusses the minimum weight of the codes E'_ﬂ:,{n, q).
Theorem 2 implies the lower bound of Theorem 3 which significantly
improves known bounds even in the case s = (0. The results of this paper lead
us to:
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Conjecture.  If g is prime, the minimum weight of C(n, g) is 2", and
the only words of minimum weight are the scalar multiples of the ‘standard
words’.

{See Section 5 for the definition of standard words in E'__f:‘{n,q].] When
s =0, this conjecture can be verified using the theory deweloped i [5)
Section 5 contains some partial results in support of this conjecture.
Mamely, in Propositions 2 and 3 we prove this conjecture when t =5 + 1 or
g = 2. Proposition 4 shows that, in general, the statement of the conjecture
is false for g even, g =2. However, we have no such example when g
is odd.

Hamada found a formula for the dimension of © (n. g) in [6]. Recently. a
streamlined version of this formula was independently given in [2, Formula
(58); 8, Theorem 2.13). The referee has informed us that a computationally
efficient generating function formulation of the Hamada's formula has been
obtained by Moorhouse (see [9]). It would be nice to have a dimension
formula for the codes O, (n,g) in general.

2. COMBINATORICS OF FLATS

DerFmviTION. Let F be an s-flat in P and let & be an (n — s — 1)-flat
disjoint from F. The projection from F is the map 7:P"|F — & sending
¥ & F to the unique point in G n {F, ¥} Here {F, ¥} denotes the (s + 1)-flat
containing £ and y.

Mote that the image of an r-flat H under = is an (v — ' — 1}-flat where
# 15 the dimension of H ~ F. The cardinality of a (finite) set § is denoted
by |5

Lemma 1 I a set ScP intersecis every s-flat, then |S|3{"_'i'+|],‘r.
Eguality holds i and only i 5 i an (7 — s)-flat.

Proaf. We proceed by induction on 5. The lemma is trivial for s =1
and » arbitrary. For any point x € 8, consider the projection of & from x into
a hyperplane not containing x. If the image of 5§ missed an (s — 1)-flat L in
this hyperplane, then § would not intersect the s-flat ¢L,x% Thus, the image
of § intersects every (s — 1)-flat of this hyperplane. Therefore, by the
induction hypothesis, the image of § contains .3;{"";”],‘, points. Since §
contains at least as many points as this image, the inequality holds.
Moreover, in case of equality, the projection map is one-to-one when
restricted to S. Hence, any line through x € § can intersect § in at most one
point. Therefore, § is a flat since any line containing two points of § is
contained in 5. 1
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CoroLLary 1. LetO=s<t<=n Let ¥ be a collection of s-flats of P with
|| ﬂ{"_‘f’l]ﬂ,_ For any F € %, there existy a t-flat T in " such that F is the
only element of % contained in T.

Proof. Fix an (n —s — 1)-flat G disjoint from F. Let n: P"\F - G be
the projection from F. For every H#F in %, choose a point he H\F.
Let § denote the set of points thus chosen. By Lemma 1, there must
exist a (f — s — 1)-flat L in & that misses the image of § under = Therefore,
F is the only element of % contained in the fflat (L, F> spanned by L
and F. 11

Lemma 2. Let lss=sr

(a) Let % be a collection of s-flats. If A F 20 and || 2("), ., then
ol
|U-V|3{‘T|]r‘r'

(b) Let & be a collection of (s — 1)-fats. If | 5|2 (8, then | L F]2(]),.

Proaf.  First note that parts (a) and (b) are equivalent for each fixed 5. To
se¢ this, suppose (b) holds. Let % be as in (a) and let ve n%. Fix a
hyperplane i not passing through o, Let %" be the collection of (s — 1)-flats
F r H for all F e 5. By construction, |.%7| = |.%]. Now, applying part (b) to
%', one sees that the number of lines through v contained in W.% is at least
(1), Hence, the cardinality of . is at least 1 +g(]), ={’T'],‘,. Thus (k) =
{a). Clearly, one can reverse this argument to show that (a) = (b). We now
apply induction on s to prove (b).

The statement is obviously true when s = 1. Let s = 1. Let % be as in (b).
For a point v in W%, let %, denote the subset {Pe % |ve P} of % If for
some v the cardinality of %, is at least {_‘\:'ﬁq, then by part (a) with s, ¢
replaced by s — 1, r — 1, respectively (the induction hypothesis), w9 itself
contains the required number of points. Thus, we assume that each v & %
15 contained in at most {i_::],‘r elements of 5. Let us now count in two ways
the ordered pairs (¢, P) such that v € P e % On the one hand, the number of
such pairs is at least {:_]q{f]q. On the other hand, this number is at most
|u|-('2}),. Since, we have

(2),0),- 0).(20),

the result follows. (To prove the above identity, fix a (f — 1)-flat T and count
in two ways the ordered pairs (p, ) such that v e @ and @ is an (s — 1)-flat
m7T) 1
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CororLary 2. Let l=s<t Let & be a non-empty collection of s-flats
such that every point v € L is contained in at least (), elements of % Then,
|5 = {_:Ilﬁ,‘, and equality holds i and ondy i 5 s the collection of all s-flats ina
i-flat.

Proof. For a point ve v, let %, = {Pe¥|ve P}, We count the
ordered pairs (¢, P) where v e w.% and P e .%,. For any v e u.%, Lemma 2
implies that |u.5"|3|u.'3",.|;{‘+||],‘,. Hence, the number of such pairs is at
least {’T']q-{_:]q_ On the other hand, the number of such pairs is equal 1o
{"‘T'],‘r -|.l}|"|_ Mow identity (1) (with s, ¢ replaced by s + 1, 1 + 1) proves that
12 (),

Mui'g{;vqer. | = {_::'I]q if and only if for every v e w5, we have |0 =
{’T'],‘,=|u.l}‘;| and hence % = %, In this case, for any two distinct
points v and w in w.%, w e % Hence, the line in P which joins v and w is
contained in w.% . Thus, w5 is a i-flat and every element of % is contained
in it. This proves the result. 1

3. THE CODE C,,(n,q)

Lewmma 3. Let 8§ be the support of a word we Cyin,g). IS intersects an
(n —t)-flat in exactly one point, then 8 intersects every (n— 1)-flat.

Proaf. We assume on the contrary that there exists an (n — f)-flat M
disjoint from §. Therefore, 3, is orthogonal to w. For any (n — f)-flat ¥, the
word yi — yy 18 in the dual of Cy,(n, ). Hence, w is also orthogonal to all
the (n — f)-flats N. But by assumption, there exists an (n — f)-flat meeting §
in exactly one point to which w cannot be orthogonal. This contradiction
proves the lemma. 1

ProrosiTion 1. The minimum weight of Cy,ln, g) is {“I'I],‘r. Further, the
only words of minimwm weight in thiv code are the scalar mudtiples of the 1-flats

in [,

FProof. 1If we Cyln, g) i1s a non-zero word of weight 5{"7']“, then, by the
s =0 case of Corollary 1, there exists an (n — f)-flat which intersects its
support in exactly one point. Thus, by Lemma 3 the support of w meets
every (n—f)-flat. Hence by Lemma 1, the weight of w is {‘*I'],‘, and its
support is a i-flat. Since two words of minimum weight having the same
support must be scalar multiples of each other (otherwise a linear
combination of them will have strictly less weight), this completes the

proof. 1
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TueoreM 1. The mininmm weight of Coin, g) i {‘_::],‘, Maoreover, the only

words of mininuem weight in thiv code are the scalar nudtiples of the blocks of
Asu(n.q).

Proaf.  The proof is by induction on s. Proposition 1 is the case s = 0. So
let 5 =0 and w e C, (n,g) be a non-zero word. Let % be the support of wand
let v e w. View P"! as the quotient of P by the point v. For any F e
G{s,n), let F denote its iEna%e in P*'. If ve F, then F is an (s — 1)-flat of
P!, Let =, : FoVtd o POV U be the unique linear map satisfying

(F) = F ifverF,
Y=Y 0 otherwise

for F e Gis,n). Looking at the images of the generators of C(n, g), we see
that = (C, {n,g)) = C,_ i 1ln — 1, g). Moreover, because of our choice of v,
melw) 18 a non-zero word in C_p,—(n — 1,g). Hence, by the induction
hypothesis, [hft&rdlnah[} of the support of ,(w) is at least (]),. This proves
that every point v € W% is contained in at least (), elements ﬂl‘ ¥ Now, by
Corollary 2, |f];--{’+'],‘, and in case of equality, w has the same support as
the generating word corresponding to the -flat W%, Since two words of
minimum weight having the same support are scalar multiples of each other,
the theorem stands proved. 1

4. GENERAL INCIDENCE 5YSTEMS

Recall that a 2-design with parameters (v, h, 4) (a 2 — (v, &, 4) design) is an
incidence system on v points such that (i) each block is incident with &
points, and (i) any two distinct points are together incident with 4 blocks. It
follows that (iil) each point is incident with » + £ blocks, where the number n
(the so-called order of the design) is given by n(k — 1) = 4{v — k). If Dy and
Da are two 2 — (v, &, 4) designs on disjoint point sets X and X5, their i-join
Dywy Dy is defined to be the incidence system with point set X, o X2 whose
blocks are (1) blocks of [y and Dy and (i) blocks of type {x;,x2} for every
x| €, x» € X, each of these new blocks occurring £ times.

Let D =(X,#, 1) be an incddence system and ¥ be a subset of X By the
incidence system induced on ¥ by D we mean the incidence system (¥, #, 1 ~
(¥ » 28)). We now have the following generalisation of the main theorem of
[7] (which is the case i = 1).

Tueorem 2. Let nand £ be povitive infegers. Let D be an incidence system
with at least n+ 2 Bocks ieident with every point and ot most 2 Blocks
incident with any paiv of distinet points. Then, for any prime p, the mininim
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weight of the p-ary code C* (the dual of the code of DY is at least 2%+ 1 — 1.
Moreover, i case of equality, the incidence system induced by D on the
support of any word of minimem weight & of the form Dy v, Da o where D) and
Dyared —{§+1— ﬁ, P A) designs.

FProof. We prove the theorem by way of contradiction. Let D be a
counter-example satisfying (a) [ has the smallest number v of points among
all counter-examples, and (b) D has the largest possible number of blocks
among all counter-examples satisfying (a). Since the minimum weight of a
code is by definition the minimum of the weights of the non-zero words in it,
the theorem is vacuously true in case €t = {0}, Therefore, € # {0}, The
induced subsystem of D on the support of any non-zero word w of O is also
a counter-example. Thus (a) implies that the full point set ¥ of D is the
support of any non-zero w and hence C* is one dimensional. Since D is a
counter-example, it follows that

mz(hl—.i). (2
A Ap

Let M be a non-empty proper subset of a block L such that y,, € C. Then the
incidence system obtained from O by deleting the block L and adding the
pair of blocks M, L\ M is a counter-example with larger number of blocks.
Since this contradicts property (b) of D, we see that y,, ¢ C for any such M.
Fix a basis {w} of €. The above observation implies that for any proper
non-empty subset M of a block of D,

> wA)#0. (3)

AeM

For any 4 e &', let x4, vy, 74 denote the number of blocks through 4 of
cardinality 2, 3, 4, respectively. We now count the pairs (8, L) such that 8+ 4
and L is a block containing 4 and 8. Since pairs of points occur in at most 4
blocks, we get: xy+ 2y +3n+A—xy— y)=ilv— 1) and xy + 2y + 324
+din+ 4 — x4 — yg —z4)= M — 1). Therefore, by (2), we hawe

;
3u, + 2y, + 2,220+ 34+ 0 (4
P
and
.
g+ yizEn+ 20+ — (5)
P

Similarly, we have Alv— Dazxi+2y+ 31, (|L|—1), where L;s
are the blocks through 4 of size =3, Since wy=n+ 4 —x4—m, by (2),



PROJECTIVE GEOMETRIC CODES 135

we et
L2 o :
XA+ 24) (L =3). (6)
i=l

The theorem is trivial for p = 2 (namely, one argues as in [1, Lemma 2.4.2,
p- 34]). Thus, we assume that p= 3. Fix a point 0 € ¥ such that xp <xy for
all 4 & . We normalise the generator w of O by assuming wi() = —1. We
now colour ¥ by elements of F, using this w, wherein a point P gets the
colour wiP). As the characteristic function of a block is in the dual of {w’,
the sum of the colours occurring on any block is O {mod p). Let % =
{ae Fy | wiP) = a for some point P} denote the set of coloursand let X, < &
denote the set of points with colour . The number of blocks n[‘
size 2 through any point is at least xp. Hence, for every o €., at least ™
points of ¥ are coloured —a. As xp = 0, we have x € & il and nnl:, if —x € f
Hence

L’lez-zxj? for all 2 € %,
Also, |5 is even as 0 & 5 (4 is the support of w). Thus, |5 = 2r for some »
with lﬂra-"_j;'. Since ¥ is partiioned by X.'s, by (2),

rx{gén+}.—;. (7N

First consider the case » = 1. In this case % = {1, —1}. By (3), the blocks
containing a point each of colour 1 and —1 have size 2. Also, any block all of
whose points have the same colour must be of size p. Thus, all blocks have
size either 2 or p. Also, by (7), the number « of blocks of size p through (1s
at least £. Let fi=xp so that 2+ fizn+ 4 We also have afp— 1)+
B=iv—1). Hence

. 2n . ; . 2n
2n+A—F=Mm{1{p—1]+ﬁ}&€z{ﬂ—1]£2n+z—g. (8)

Here, the minimum is taken over all real numbers o and # such that 24
and 2 + fizn + 4. This minimum is attained only when fi =n+4i-2%a

=2 Thus, xg =n+4— ) As xp = ALX|, we must have |X|=4%+ 1 —,P
Snn'rlarlg, IX_1|=%+ 1 — & Therefore, by (2), |X|| = |X_y|=5+1—+ and
x4 =xp for all Ae & Aim the inequality in (8) must be an equaht:,
Therefore, for any point P20, the pair {P, 0} occurs in exactly 4 blocks.
Since x4 = xp, the above argument holds for any 4 € ¥ in place of Q. It
follows that D is the A-join of two 2-design with parameters as in the
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statement of the theorem. This is a contradiction since D is supposed to be a
counter-example.

Thus, we may assume that v = 1. As 1 a--:r«:-j . we have p= 3. Hence (6)
and (7) implies that r £ We thus have 1 <r<2;.

Let G denote the grapﬁ whose vertex set is & and whose edges are given
by the following rule:

x and f are adjacent if and only if x + f=00o0r 1 in F,.

Since 0 ¢ %, the degree of 1 is onein . The nnli,- possible loop of G is at the
vertex £+ and this loop occurs if and only if £ belongs to . If &) - - -1,
is a non-trivial cycke in G, then m must be even, as the edges of types {a, —a}
and {x, 1 — 2} must alternate in the cycle. Also,

(o) +az) + -+ {1 + ) = {22 + )+ - -+ o, + o).

As one of these sums is zero and the other is 4, m must be a multiple of 2 p.
Since m=|%|<p—1, G cannot contain any cycles. Therefore, each
connected component of G is a path. In case £ e %, one of these paths
has a loop at one end.

Case 1. The graph G is connected: In this case, G must be the path
H=132(=2)---H—r). Since r::%', (7 does not have a loop at either end.

Let f denote the number of blocks L of size = 2 through ( such that at
most one point in L} {Q} has colour different from —r. Since r > 1, Q¢ X_,..
Hence, |[{Q} w X _,|=1 +72 Counting pairs (R, M) where R is a point outside
IOtu X and M 2 {0, R} is a block, we get

x 2n
An+i—xp—1) +.t;_;£i(u— (1 +—Q)) =+ l-———xp.
i P

Therefore, =% + 5 =2 We now estimate the cardinality of such a block L.
Since the colours on L add up to 0{mod p), it follows that the colour of the
remaining point is m (mod p) where m = 1 4+ {|L| — 2)r. Since, |L|= 2, m>r;
also m(mod p) is in the set of colours ¥ ={1,...,r,p—r.....p—1}.
Therefore, mz= p — r. That is, |L| = }L +1 l‘ﬂr any such block L. Since, each
of these ! blocks through O have size :—-!“ + 1= 3, by (6), we get

—1 , H R
ti;.‘-b.r+ + 2] =i4=-——
P op\r r  pr

However, this bound contradicts (7).
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Case 2. G iy disconnected: Let %' = % denote the set of colours which
have degree one in G Since & contains at most one loop and s disconnected,
we must have |97 = 3.

Let M be a block of size 3 through 0 As the colours on M add to
0 (mod p), the colours of the two points of M {0} add up to 1 (mod p) and
hence they cannot be from %' Thus, for all 2 € &', M ~ X, c {0}, We now
count the pairs (P, L) such that Q#Pe #\(|J.,» X:) and L is a block
containing {P, 0}, Since for every block of size 3 through @ we have
two choices for P, it follows that 2vp < Ay — |.5‘"’|1;_i]_ Hence, by (2) and (5),
|| < 4.

Thus, |%'| =3 and 71£;+3.t;_;£_ﬂ,{7n+7r -;' By (3), we also have
2yp + vz 2n + 44 +‘hl Hence, xp= 24 + ! This, together with (7), forces
L<r<s,

Alm. (7 must contain a loop as the number of vertices in & of degree 1 is
odd. Thus, the graph  consists of two components. One is

H=1)2(=2)---H{—t) for some ¢ such that 1 ¢ <r

and the other is

&) ) ) E) - ()

Thus 1,—¢ and o=£H"2r=20_ pHl_ ooy are the three vertices of
degree one in G. If every block of size 4 through Q contains one point
from 2'\(| J,. .~ X.) which is different from Q, then there are at least 2yp + zp
pairs (P, L) as before. This implies that 2yp +zp< My — 3—‘—] This contra-
dicts (4). Hence, there exists a block L of size 4 thrnugh () contained in
1O Vo X 0 X, (by (3), no point of X 5 contained in a block of size 4
through ).

]_:et L contain { points from X, so that the sum of the colours occurring on

15 z{”f-— r+i—i(3—i)— 1 with 0=i=3 Since this sum is 0{mod p),
varying { between 0 and 3, we infer that one of the ntegers 3r+ 1,
Ar+ 60+ 1, 2r—t, 6(r—1 — 1 is a multiple of p. However, this cannot
happen as 1 =r<r<£. This completes the proof of the theorem. 1

5. THE DUAL CODE C(n.q)

For any two flats L and M, ket [L.M] denote the collection of all s-flats F
such that Lc Fc M. Let g g€ [Ff"""" denote its characteristic function.
Take any (s — 1)-flat 4 and two (n — ¢ +s)-flats B and C such that B » C is
an {(n—t+s—1)-flat and 4 = B~ C. Then, Tum — LA 15 a word of
weight 2¢"™ of C;-(n, q).
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DeriNiTion. For any triplet (4,8, C) as above, yp.m — #u.q is called a
standard word in C__i"{n, q).

Tueorem 3. The mininun weight d of C; (n, q) satisfies

il )<
ol —=) +=)=d=<24"".
(q’"‘—l rl P 1

If the lower bound is attained, then we must have = s+ 1.

Proaf. The upper bound follows from the existence of the standard
words. In the incidence system A, {n.g), each *point’ is in ({”7), blocks and
any two distinct ‘points’ are together in at most ("~ ), blocks. Therefore,
the lower bound follows from Theorem 2.

If this lower bound is attained, ket w be a minimum weight word. Let %
denote the support of w. Because of equality in Theorem 2, any two s-flats in
5 are contained in the maximum possible number of t-flats. This means that
any two of them must intersect in an (s — 1)-flat. Hence, any three of them
are contained in an (s + 2)-flat. Therefore, for ¢ =5 + 2, any three of these s-
flats are contained in a common f-flat. However, Theorem 2 guarantees the
existence of three s-flats which are not contained in a single block in the
induced structure on . Thus, it follows that r=s+1. 1
Lemma 4. The p-ary code C"J'_m{n,q] attaing the lower bound given by
Theorem 3 if and only if Cy((n — 1+ 1,q) does so. In this case, any word of
minimum weight of C- Ang) is a pull-back of a minimum weight word in
E',:tp[n —t+ 1,g)

Proaf.  In the incidence system A, ,(n,g), any two distinet ‘points’ are
contained in at most one block. We therefore call a set of *points’ collinear if
there exists a f-flat containing all of its elements. Thus, two ‘poinis’ are
collinear if and only if they have a {f — 2)-flat in common.

Let % be the support of a word w in C- | (n, g) attaining the lower bound
of Theorem 3. Because of equality in Theorem 2, any two “points’ of % are
collinear. We now claim that there exists a (¢ — 2)-flat M which s contained
in every element of %

Given three (¢ — 1)-flats in [* any two of which intersect in a (¢t — 2)-flat,
either all of them contain a common (¢ — 2)-flat or they are contained in a
i-flat. This shows that any three ‘non-collinear’ elements of % havea (r — 2)-
flat in common. Now, Theorem 2 says that % can be partitioned into two
equal parts such that any three collinear ‘points’ of % are contained in the
same part. This fact implies that all the (r — 1)-flats in % have a (¢ — 2)-flat
M in common.
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View P"*! ag a quotient of P" by M and let  be the quotient map. The
word W defined by w(v) =w(z (1)) is an element of E}{:,{n—f+ L, g}
attaining the lower bound given in Theorem 3. Clearly, this formula can be
used (for any choice of a (r — 2)-flat M, with the understanding that value of
w is zero for any (f — 1)-flat not containing M) to construct a word w from a
siven w. 1

PROPOSITION 2. When g is prime, the minimum weight of C-| (n.q) is
29" Morveover, the words of mininwm weight are precisely the scalar
multiples of the standard words in C- | (n, g).

FProof. When g =2, this proposition 1s a special case of Proposition 3
below. Thus, we assume that g = 2. In the case g = p and t =5+ 1, the
upper and lower bounds in Theorem 3 coincide. Therefore, the scalar
multiples of standard words in E"J‘_u{n,p] are words of minimum weight.
Under the pull-back construction of Lemma 4. a standard word goes to a
standard word. Thus, it is enough to prove that the minimum weight words
of Cj,(n, p) are the scalar multiples of the standard words for any prime
P= 2

Let § be the support of a word w of weight 2p"! in Cgi(n. p). Let
8§ = 8) v 5 be the partition of § given by Theorem 2. Fix a point v in 5, and
a hyperplane & not containing v. Let m denote the projection from v to .
Let H =n(S\{r}) and K = n(52).

Let L be any line through v. Because of Theorem 2, we have: (1) L does not
meet both ) {¢} and Ss, (i) L meets 5| {v} in 0 or p— 1 points and (iii) L
meets 82 in at most one point. Therefore, we ger: (a) H n K =0, (b) the
restriction of = to 8} {v} is (p — 1) to one, and (c) the restriction of @ to 5: is
one-to-one. Thus, |H|=("]"), and |K|=p"~! so that |G| =|H|+|K|.
Therefore, by {a), & is the disjoint union of & and K.

We claim that H 1s an (n — 2)-flat in & If it is not, then by Lemma 1 there
exists a line L in & disjoint from H. Then L = K. Because of (c), the
2-flat {L,v} meets % m |L]= p+1 points. Thus, Ay, (n. p) induces
a2—(p+1,p1)design on 5 ~ {L,v}. Since p= 2, there is no 2-design
with these parameters. This proves our claim.

Thus, 5 is contained in the (n — 1)-flat &) = {H, v Since no line is
contained in 8|, every line in ) intersects M = H,|5,. Thus, by Lemma 1, M
is an (n — 2)-flat in H). Let H» = M 8. Any line joining two points of §;
contains p points from 8 and meets H) in a point of M. Thus, a line joining
two points of S or two points of M is contained in . Moreover, a line
joining a point of M and a point of 5 cannot contain any point 8. This
means that it is a line containing p points of 52, Therefore, by the previous
argument, such a line is also contained in H>. Thus Hy is an (n — 1)-flat.
Thus, 5 is the symmetric difference of the hyperplanes H) and > which meet
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in M. Therefore, § is also the support of the standard word corresponding to
the triplet (&, /. M), Since, two words of minimum weight having the same
support are scalar multiples of each other, this proves the proposition. 1

The following results completely settle the case g = 2.

LEmMma 5. The minimun weight of C,(n,2) is 201 Further, any word of
minimun weight in C(n,2) is a pull-back of a word of minimum weight in
E',:{:I___‘_{n — 5 2.

Proaf.  Let w be a word of minimum weight in E'_t‘{n,E]_ Let % be its
support. 1f |.‘}"|£_{"‘{+']3, Corollary | tells us that there exists a rflat T
containing exactly one element of %, Then, w cannot be orthogonal to yy.
This forces that | ]2 ("~I*), + 1 = 2"~"*1, Existence of the standard words
shows that | = 2+,

Fix an s-flat Fe.% and an (n—s5— l)-flat & digjoint from F. Let
n:P"\F - (G be the projection from F. For every H#F in %, choose a
point i € n{H\F). Let T denote the set of points thus chosen. We claim that
T is an (n — f)-flat of G. Since |T|<("""),, by Lemma 1, it is enough to
prove that every (f —s — 1)-flat of 7 intersects T Let L be a (1 — 5 — 1)-flat of
7 such that L~ T = 0. In this case, F is the only element of % contained in
the +-fat {L,F . Therefore, w is not orthogonal to the characteristic function
of this r-flat. Since this cannot happen, our claim is proved. Hence, |T| =
{"‘{*"}: = |%|—1. Since this happens independent of all the choices
involved, we see that m{H\F) is a singleton set for every H#F in .%. Thus,
H ~ Fisan(s— 1)-flat for all H £ F. Since F was an arbitrary element of %,
it follows that any two distinet s-flats in % must intersect in an (s — 1)-flat.

Fix an element H, € ¥\ {F} and let M = Hy, » F. We now claim that the
(s — 1)-flat M is contained in every element of .. Let H, € ¥\ {F, Hy} . If H
does not contain M, then the (s — 1)-flat Hy ~ H, must contain a point v
outside F. In this case, n{Hy\F) = n(v) = n(H,\ F) so that |T|<|%| — 2 which
cannot happen. Thus, M is contained in every element of 5. Therefore, by
viewing [P"7" as the quotient of [ by the (s — 1)-flat M, one sees that wis a
pull-back of its image w in E}{:,_ {n — 5,2). This proves the lemma since the

&

weight of w is equal to that of w. 1

PropPoSITION 3. The mininum weight of C-(n, 2) is 2=+ and the words
of minimun weight are precisely the standard words.

Proof.  After Lemma 5, it suffices to prove that the standard words are
the only words of minimum weight in E}t‘{n,E}_ Since this i1s a Reed-Muller
code, this actually follows from the existing theory of such codes. However,
we present an elementary and self~contained proof.



PROJECTIVE GEOMETRIC CODES 141

Let § be the support of a word w of weight 2"~ in Cj (n,2). Fix a point
vin § and a hyperplane H not containing v. Let = be the projection from v to
H. Arpuing as in the proof of Lemma 5, we see that T = (S| {r}) is an
{n— r}l-ﬂat in H. Hence, §is contained in the (r — r + 1)-flat ¥ = {T,v}. Let

= Fl5.

We claim that 7 is an (n — f)-flat. Let py and p be two distinct points in 2
and let py be the third point on the line L joining py and . To prove our
claim, we wish to show that L = Z. There exists a r-flat W such that W~ ¥
=L If megZ, then W~ 5 = {m}. This means that w is not orthogonal to
7w, contradiction. Thus, § = ¥\ Z where ¥ is an (n — 1 4 1)-flat and Z is an
{n—i)Fflat in ¥. Let 2, Z be two (n— f)-flats of ¥ such that ¥ =
2w Z w7y Then §is also the support of the standard word corresponding
to (0, 2, Z2). Since two distinet words in a binary code cannot have the same
support, this completes the proof. 1

Lemma 6. The minimum weight of C-(n + 1,q) is at most gt times the
minimum weight of C(n.q).

Proof. For any word w e C(n,g), we can construct a word weCp(n +
1, g) in the following way: Fix a point v € P""! and view P" as hyperplane H
in P"*! not passing through v. Let z: P"*'\ {¢} = H denote the projection
from . Define i e FOU+!) by

- win(F)) if vgF,

= { 0 ifref.
For an (s + 1)-flat F of P! containing v, the number of s-flats in F not
containing visg*t'. This implies that the number of s-flats of P! which are
mapped under = to a given s-flat in P" is g*+!. Hence, the weight of w is !
times the weight of w. Let M be a fflat in P+ If M does not contain o,
then m(M) is a -flat of & . Further, {w M = {w, m(M) > = 0_If M contains v,
then O, MY =g ' Qw, n(M)» = 0. Therefore, W defines a word of
('_\{‘,{n +Lg. 1

ProposITION 4. For g even, the minimum weight of the code C;- | (n.q) is

at most ¢" '~ (g + 2). Further, the equality holds in case n =t +1.

Proof. Since hyperovals in P* are words of weight g + 2 in Cii(2,9), the
inequality holds for r =1, n = 2. Now repeated application of Lemma 6
implies the inequality for + = 1, n arbitrary. The construction of the word w
from w as outlined in the proof of Lemma 4 now implies the inequality in
general. When n= ¢+ 1, Theorem 3 implies that g+ 2 is the minimum
weight. 1



142 BAGCHI AND INAMDAR

It seems plausible that the above upper bound is actually attained even
when n =t + 1. In the end, we observe that Corollary 1 can be applied to the
support of a non-zero word of the code C,(n.q) @ {1} (where 1 is the all

one vector) to show that its minimum weight s at least {“'{*"],‘,_ In case

=10, this bound is attained and, by Lemma 1, the words of minimum
weight are the scalar multiples of the (n — f)-flats.
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