
PACIFIC JOURNAL OF MATHEMATICS

Vol. 204, No. 1, 2002

MONOTONICITY AND SYMMETRY RESULTS FOR

DEGENERATE ELLIPTIC EQUATIONS ON NILPOTENT

LIE GROUPS

I. Birindelli and J. Prajapat

In this paper we prove some monotonicity results for so-

lutions of semilinear equations in nilpotent, stratified groups.

We also prove a partial symmetry result for solutions of non-

linear equations on the Heisenberg group.

1. Introduction.

Berestycki and Nirenberg (see e.g., [2]) introduced the so called “sliding
method” to prove monotonicity results for semilinear elliptic equations in
convex domains of Rn. The idea here is to implement the method in the
general setting of nilpotent stratified groups. Let us mention that examples
of such groups include the Heisenberg group and, of course, the Euclidean
space. Hence, in particular, we obtain monotonicity results for a large class
of degenerate elliptic semilinear equations.

More precisely, let (G, ◦) be a nilpotent, stratified Lie group, see Section 2
for definitions and properties. Clearly the notion of “convexity” has to be
related to the group action:

Definition 1.1. Fix η ∈ G. A domain Ω ⊂ G is said to be η-convex (or
convex in the direction η) if for any ξ1 ∈ Ω and any ξ2 ∈ Ω such that
ξ2 = αη ◦ ξ1 for some α > 0, we have sη ◦ ξ1 ∈ Ω for every s ∈ (0, α).

Observe that this coincides with the notion of convexity in a given direc-
tion for domains in the Euclidean space. Any Koranyi ball in the Heisenberg
group Hn = (R2n+1, ◦) is an example of a domain which is η-convex for any
η ∈ Hn.

At the end of the paper we show a “cube” in the Heisenberg group H1,
which is obtained by sliding a square of the plane x1 = 0 through the group
action in the direction of (0, 1, 0). In the figure, we have shaded the top and
bottom surfaces in order to make the cube more visible. Observe that this
set is convex in both the directions e1 = (1, 0, 0) and e2 = (0, 1, 0).

Let

∆G =

m∑

i=1

X2
i

1
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denote the sub-Laplacian operator defined on G and let SQ
2 denote the

Sobolev space for the group G where Q is the homogeneous dimension of G;

see details in Section 2. For η ∈ G and u ∈ SQ
2 , let Tηu(ξ) := u(η ◦ ξ).

Our main result is the following:

Theorem 1.1. Let (G, ◦) be a stratified, nilpotent Lie group and Ω be an

arbitrary bounded domain of G which is η-convex for some η ∈ G. Let

u ∈ SQ
2 (Ω) ∩ C(Ω) be a solution of

{
∆Gu + f(u) = 0 in Ω

u = φ on ∂Ω
(1.1)

where f is a Lipschitz continuous function. Assume that for any ξ1, ξ2 ∈ ∂Ω,

such that ξ2 = αη ◦ ξ1 for some α > 0, we have for each s ∈ (0, α)

φ(ξ1) < Tsηu(ξ1) < φ(ξ2) if sη ◦ ξ1 ∈ Ω(1.2)

and

φ(ξ1) < Tsηφ(ξ1) < φ(ξ2) if sη ◦ ξ1 ∈ ∂Ω.(1.3)

Then u satisfies

Ts1ηu(ξ) < Tsηu(ξ)(1.4)

for any 0 < s1 < s < α and for every ξ ∈ Ω.

Moreover, u is the unique solution of (1.1) in SQ
2 (Ω) ∩ C(Ω) satisfying

(1.2).

Remark. Clearly, (1.4) implies that u is monotone along γ(s) = sη ◦ ξ.
Observe that the curve γ is the integral curve of a right invariant vector
field Rη, even though the operator ∆G is left invariant.

An immediate consequence of Theorem 1.1 is:

Corollary 1.2. Under the assumptions of Theorem 1.1, if f is C1 and Rη

commutes with ∆G then

Rηu > 0 in Ω.(1.5)

In [1], L. Almeida and Y. Ge have proved monotonicity results in the
general setting of manifolds. However, they consider solutions of uniformly
elliptic semilinear equations.

An important tool in the proof of Theorem 1.1 is the “Maximum principle
in domains with small measure” which is new in the setting of degenerate
elliptic equations. On the other hand, it is known for uniformly elliptic and
parabolic operators (see [1], [2], [6]) and it has found extensive applications,
see for e.g., [3] and [15].
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Using the notations of [14], on a bounded domain Ω ⊂ RN , consider the
operator

Lu(x) =
1

2
σik(x)(σjk(x)uxj (x))xi + bi(x)uxi(x)(1.6)

where σk = (σik), k = 1, . . . , n1, and b = (bi) are smooth vector fields given
on RN and n1 is an integer. We assume that the Lie algebra generated
by the family of vector fields {b, σk, k = 1, . . . , n1} has dimension N at all
points in the closure D of a neighborhood D of Ω. Equivalently, L is an
operator satisfying Hörmander condition.

Similarly to [2], we say that the maximum principle holds for the operator

L + c where c is an L∞ function in Ω if for u ∈ SQ
2 (Ω)

Lu + c(ξ)u ≥ 0 in Ω

and

lim
ξ→∂Ω

u(ξ) ≤ 0

implies that u ≤ 0 in Ω. Note that by embedding theorems (see e.g., [17]),

u ∈ SQ
2 (Ω) implies that u is continuous in Ω.

The following proposition is the maximum principle for “domains with
small measure” of RN for the operators L:

Proposition 1.3 (Maximum Principle). Let Ω be a bounded domain in RN

and L be an operator as defined above and c such that c(ξ) ≤ b in Ω for

some b ∈ R+. There exists δ > 0, depending only on N and b, such that the

maximum principle holds for L + c in Ω provided

meas (Ω) < δ.

A weak comparison principle was derived in [1] using a Poincaré type
inequality. An anonymous referee raised the question of whether we could
similarly use a Poincaré type inequality to give an alternative proof of Propo-
sition 1.3. In the last section, we derive a Poincaré type inequality for
subelliptic operators and as a consequence of this inequality, we give an al-
ternative proof of Proposition 1.3. We thank the referee for pointing this
out.

Note that the class of operators L defined in (1.6) and the sub-Laplacian
∆G associated with a nilpotent Lie group G are examples of subelliptic
operators (see (6.1) for the definition of a subelliptic operator). Since it
is possible to associate a group structure with the operator L in (1.6) (see
[19]), the monotonicity result Theorem 1.1 is infact true for a more general
nilpotent Lie group. We have given the result here for nilpotent, stratified
Lie group to avoid technical details. However, it may not be possible to
associate a general subelliptic operator with a group structure.
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In Section 2 we state the basic definitions concerning nilpotent stratified
Lie groups in general and the Heisenberg group in particular, in Section 3
we prove Proposition 1.3 and in Section 4 we prove Theorem 1.1.

Section 5 is a different application of the maximum principle in domains
with small measure i.e., Proposition 1.3. We prove a symmetry result for
positive “cylindrical” solutions of semilinear equations in a class of bounded
symmetric domains in the Heisenberg group under some conditions. The
generalization of Gidas, Ni, Nirenberg result (see [10]), to the Heisenberg
Laplacian is a difficult open problem. Theorem 5.1 is a step towards the
solution of this problem.

Finally in Section 6 we prove a Poincaré type inequality as mentioned
above.

2. Preliminaries.

In this section we recall the basic notions of nilpotent, stratified Lie groups
from [19]. Let (G, [ , ]) be a real finite dimensional Lie algebra, G1 = G
and Gi = [G,Gi−1] for i ≥ 2. Then {Gi}i≥2 is a decreasing sequence of Lie
sub-algebras of G. The Lie algebra G is said to be nilpotent of rank r if
Gr+1 = 0. A Lie group G is said to be nilpotent of rank r if its Lie algebra
is nilpotent of rank r.

A stratified group G is a simply connected nilpotent group whose Lie
algebra G admits a direct sum decomposition (as vector space)

G = V1 ⊕ . . . ⊕ Vm

with dimVj = nj , [V1, Vj ] = Vj+1 for 1 ≤ j < m and [V1, Vm] = 0. Thus V1

generates G as a Lie algebra.
More precisely, given a Lie algebra (G, [ . ]) satisfying the above conditions,

consider RN where N =
∑l

j=1 nj with the group operation ◦ given by the
Campbell-Hausdorff formula

η ◦ ξ = η + ξ +
1

2
[η, ξ] +

1

12
[η, [η, ξ]] +

1

12
[ξ, [ξ, η]] + . . . .(2.1)

Note that since G is nilpotent there are only a finite number of nonzero
terms in the above sum; precisely those involving commutators of ξ and η
of length less than m. Then (G, ◦) = (RN , ◦) is the nilpotent, stratified
group whose Lie algebra of left-invariant vector fields coincides with the Lie
algebra (G, [ , ]).

Consider the standard basis e1, . . . , en1
of the subspace Rn1 of G. Let

X1, . . . , Xn1
denote the corresponding “coordinate vector fields”, i.e.,

Xi(f)(ξ) = lim
t→0

f(ξ ◦ tei)− f(ξ)

t
,

for any smooth function f defined on G and for i = 1, . . . , n1. The family
{X1, . . . , Xn1

} forms a basis for V1. We define the sub-Laplacian operator
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on G as

∆G =

n1∑

i=1

X2
i .(2.2)

We observe that this operator is subelliptic and satisfies Hörmander’s con-
dition. Hence the Bony’s maximum principle holds (see [5]). Furthermore,
the vector fields are invariant with respect to the group action, viz,

Xi ◦ Tη = Tη ◦ Xi

and clearly so is the operator ∆G. In fact, this is a fundamental property of
the operator which we shall use to prove Theorem 1.1.

Since the vector fields {X1, . . . , Xn1
} generate G as Lie algebra, we can

define recursively for j = 1, . . . ,m, and i = 1, . . . , nj , a basis {Xi,j} of Vj

as

Xi,1 = Xi (i = 1, . . . , n1)

Xα = [Xi1 , [Xi2 , . . . , [Xij−1
, Xij ]] . . . ]

with α = (i1, . . . , ij) multi-index of length j and Xik ∈ {X1, . . . , Xn1
}.

With the decomposition G = Rn1 ⊕ . . .⊕Rnm , we define a parameter group

of dilations δλ by setting for

ξ = ξ1 + . . . + ξm, (ξi ∈ Rni)

δλ(ξ) =

m∑

i=1

λiξi.(2.3)

For any ξ ∈ G, the Jacobian of the map ξ 
→ δλ(ξ) is λQ where

Q =

m∑

i=1

ini.(2.4)

The integer Q is called the homogeneous dimension of G. Note that the
euclidean dimension of G is N =

∑m
i=1 ni. We have Q ≥ N with equality in

the trivial case m = 1 and G = Rn1 .
Observe that since G is simply connected, the exponential map exp : G →

G is a diffeomorphism and the Lebesgue measure on G, dx = dx1 . . . dxN ,
pulled back to G by the map exp−1, is left and right invariant with respect
to the group action.

We recall that the equivalent of the Sobolev spaces, as introduced by
Folland and Stein [8, 9], are

Sq
2(Ω) = {f ∈ Lq(Ω) such that XIf ∈ Lq(Ω) for |I| ≤ 2},
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where I := (α1, . . . , αh) (αi ≤ n1) denotes a multi-index of length |I| = h
and XI = Xα1

. . . Xαh
. The norm in Sq

2 is given by:

‖u‖q
Sq

2
=

∫

Ω




2∑

|I|=1

|XIu|q + |u|q


 dξ.

A typical example of a nilpotent, stratified Lie group is the Heisenberg
group Hn = (R2n+1, ◦) endowed with the group action ◦ defined by

ξ0 ◦ ξ =

(
x + x0, y + y0, t + t0 + 2

n∑

i=1

(xiy0i
− yix0i

)

)
.(2.5)

Here we denote the elements of Hn either by (z, t) ∈ C
n ×R or (x, y, t) ∈

Rn ×Rn ×R where z = x + iy, x = (x1, . . . , xn), y = (y1, . . . , yn).
The Lie algebra of Hn decomposes as R2n ⊕R. Hence n1 = 2n, n2 = 1

and the anisotropic norm which is homogeneous with respect to the dilation
given in (2.3) is defined by

|ξ|H =
(
(x2 + y2)2 + t2

) 1

4 .

The so called Koranyi ball is the set: {ξ ∈ Hn such that |ξ|H ≤ const}.
The generating vector fields are defined by

Xi =
∂

∂xi
+ 2yi

∂

∂t
, for i = 1, . . . , n,

Xn+i := Yi =
∂

∂yi
− 2xi

∂

∂t
, for i = 1, . . . , n.

Furthermore, we have

X(i,j+n) := [Xi, Yj ] = −4δi,jT

for 1 ≤ i, j ≤ n and T := ∂
∂t . Also, observe that the homogeneous dimension

of Hn is 2n + 2, which is strictly greater than its linear dimension.

3. Maximum principle.

The Proposition 1.3 is a consequence of the following theorem by Krylov:

Theorem 3.1. Let L be an operator defined as in (1.6), on a smooth bounded

domain D ⊂ RN . For a fixed ε ∈ (0, 1) and f ∈ Lp(D) with any p ∈ (1,∞),
let u =: Rf ∈ W 2

p (D) be the unique solution of the equation

(L + ε∆)u − u = f

with zero boundary condition. Here ∆ is the Laplace operator on RN . Then,

there exists a (large) p0 ∈ (1,∞) and a (small) α ∈ (0, 1) both independent
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of ε and such that for any p ≥ p0, subdomain D1 ⊂ D1 ⊂ D, and f ∈ Lp(D)
we have

sup
D

|Rf | ≤ C‖f‖Lp(D),(3.1)

|Rf(x)− Rf(y)| ≤ C|x − y|α‖f‖Lp(D),(3.2)

where the constants C are independent of x, y, f , and ε.

We refer to [14] for a beautiful proof of this result. Also, it follows from
[13] that one does not need the condition that the domain D is smooth in
the above theorem.

Proof of Proposition 1.3. Define u+(x) = max{u(x), 0}. To prove the
proposition, we need to show that u+ ≡ 0. Let Ω+ = {x ∈ Ω : u(x) > 0}.
Then u+ satisfies the equation

Lu+(x) + c(x)u+(x) ≥ 0(3.3)

for x ∈ Ω+ and

u+ = 0

on the boundary ∂Ω+.
Now let v be the solution of the equation

Lv − v = −u+ − bu+(3.4)

on Ω+ with zero boundary condition. From Theorem 3.1 we have

sup
Ω+

v ≤ C(b + 1)‖u+‖Lp(Ω+).

But from (3.3), (3.4) and u+ − v = 0 on ∂Ω, the maximum principle implies
that u+ ≤ v in Ω+. Hence it follows that

sup
Ω

u+ ≤ C(b + 1)‖u+‖Lp(Ω+).

Estimating the r.h.s. we have

sup
Ω

u+ ≤ C(b + 1)meas (Ω)1/p sup
Ω

u+.(3.5)

Hence, if we choose δ such that C(b+1)δ < 1, then meas (Ω) < δ and (3.5)
implies that u+ ≡ 0 i.e., u ≤ 0 in Ω.

4. Proof of Theorem 1.1.

As in previous sections (G, ◦) = (RN , ◦) is a nilpotent, stratified Lie group
and ∆G is the corresponding sub-Laplacian operator. Using the notations
of Theorem 1.1, define us(ξ) = Tsηu(ξ) for s > 0. The function us is defined
on the domain Ωs = {ξ ∈ G : sη ◦ ξ ∈ Ω}, obtained by “translation” of Ω.
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Furthermore, since the sub-Laplacian is invariant under the group action it
follows that us satisfies the equation

∆Gus + f(us) = 0 in Ωs.

Since the domain Ω is bounded, there exists s0 > 0 such that Ωs0 ∩Ω = ∅
and for s < s0 near s0, Ωs ∩ Ω �= ∅. And as we slide the domain Ωs, i.e.,
we decrease s to zero, we get Ω0 = Ω. Now for s < s0 consider the function
ws = us − u in Ds = Ωs ∩ Ω. Clearly, to prove (1.4), we need to show that

ws > 0 for every 0 < s < s0.

Observe that ws satisfies the equation

∆Gws + cs(ξ)ws = 0 in Ds,

where cs is a L∞ function satisfying |cs(ξ)| ≤ C for ξ ∈ Ds for all s. Fur-
thermore, due to the assumptions (1.2) and (1.3) we have

ws ≥ 0

on the boundary of Ds.
Let δ denote the constant appearing in the Proposition 1.3 corresponding

to the operator ∆G defined on Ω. For s > s1 and sufficiently near s1,
meas (Ds) < δ. Therefore, by Proposition 1.3 it follows that

ws ≥ 0

in Ds for s near s1. Moreover, (1.2), (1.3) and the strong maximum principle
implies that

ws > 0 in Ds.

Let µ1 = min{µ : ws > 0 for every s > µ}. We claim that µ1 = 0.
Suppose, by contradiction that µ1 > 0. Then wµ1

≥ 0. Since µ1 > 0, again
the strong maximum principle implies that wµ1

> 0 in Dµ1
.

Choose a compact set Σ ⊂ Dµ1
such that meas (Dµ1

\Σ) < δ/3, where δ
is as fixed above. Since Σ is compact, for s < µ1 with µ1 − s small, we have

ws ≥ 0 in Σ.(4.1)

Further, for 0 < µ < µ1 and sufficiently close to µ1, we have

Σ ⊂ Dµ and meas (Dµ1
\ Σ) < δ.(4.2)

Fix a µ < µ1 such that (4.1) and (4.2) hold for all s, µ < s < µ1. Propo-
sition 1.3 implies ws ≥ 0 in Ds \ Σ for µ < s < µ1. This, together with
(4.1) implies that ws ≥ 0 on Ds for all s, µ < s < µ1. Since s > µ > 0
and ws �≡ 0, we further conclude from the strong maximum principle that
ws > 0 in Ds for all s, µ < s < µ1; which contradicts the definition of µ1.
Hence µ1 = 0 and therefore (1.4) holds true.

Uniqueness. To prove the uniqueness, suppose u, v ∈ SQ
2 (Ω)∩C(Ω) are two

solutions of (1.1). Consider the function ws(ξ) := vs(ξ) − u(ξ) in Ωs ∩ Ω
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where vs(ξ) = v(sη ◦ ξ). We can go through the above proof with this
function to conclude that for every ξ ∈ Ω,

u(ξ) < v(sη ◦ ξ) for s > 0.(4.3)

Similarly, considering the function w̃s(ξ) := us(ξ)− v(ξ) in Ωs ∩ Ω we have
for every ξ ∈ Ω that

v(ξ) < u(sη ◦ ξ) for s > 0.(4.4)

Letting s → 0 in (4.3) and (4.4), it follows

u ≡ v in Ω.

�

The proof of the Corollary 1.2 is immediate. Observe that since f is C1

and Rη commutes with ∆G, then Rηu satisfies the equation

∆GRηu + f ′(u)Rη(u) = 0

in Ω. Furthermore, Theorem 1.1 implies that Rηu ≥ 0 in Ω. But Rηu �≡ 0
in Ω. Hence the maximum principle implies that Rηu > 0 in Ω. �

5. A symmetry result.

We begin by defining a special class of functions and domains in the Heisen-
berg group:

Definition 5.1. We say that a function u defined on Hn is cylindrical if
there exists ξo ∈ Hn such that v(ξ) := u(ξo ◦ ξ) is a function depending only

on (r, t), where r = (x2 + y2)
1

2 . We say that a domain C ⊂ Hn is a cylinder

if there exists a cylindrical function Φ such that ξ ∈ C ⇔ Φ(ξ) < 0.

Observe that a Koranyi ball is a cylinder. Also, the Euclidean ball
{(z, t) ∈ Hn : |z|2 + t2 ≤ constant} with center at the origin belongs to
this class. However, a Euclidean ball centered at a point other than the
origin need not be a cylinder in Hn.

In this section we prove a symmetry result for positive, cylindrical solu-
tions of semilinear equations defined on a “cylinder”(as defined above) in
the Heisenberg group Hn. The proof relies on the maximum principle in do-
mains with small measure and the adaptation of the moving plane method to
Hn. This method was used for the first time in the setting of the Heisenberg
group in [4].

In the rest of the section, without loss of generality we will assume that
ξo occurring in the definition (5.1) is 0.
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Theorem 5.1. Let C be a bounded cylinder in Hn defined by a function Φ.

Let u ∈ C2(C) ∩ C(C) be a positive, cylindrical solution of the equation

∆Hu + f(u) = 0 in C(5.1)

u = 0 on ∂C(5.2)

where f is a Lipschitz function. If Φ(r, t) = Φ(r,−t) then u(r, t) = u(r,−t)
on C.

Proof. The proof relies on the adaptation of the moving plane method to
Hn. Let Tλ = {ξ ∈ Hn : t = λ} denote the hyperplane orthogonal to the t-
direction and let Rλ(x, y, t) = (y, x, 2λ− t) denote the H-reflection (see [4]).
We shift the plane from infinity towards the domain, i.e., we decrease λ until
it reaches the value λ0 such that the plane Tλ0

“touches” the boundary ∂C.
For λ < λ0, let Dλ = {(x, y, t) ∈ C : t > λ} be the subset of C cut off by

the plane Tλ. Define uλ = u ◦Rλ on Dλ. Since u is cylindrical, so is uλ and
further uλ(r, t) = u(r, 2λ− t). Moreover, since ∆H is invariant with respect
to the H-reflection (see [4]), it follows that uλ satisfies Equation (5.1) in Dλ.

Now consider the function wλ = uλ − u in Dλ. It satisfies the equation

∆Hwλ + c(ξ)wλ ≤ 0 in Dλ(5.3)

with the boundary conditions

wλ ≥ 0 on ∂Dλ.(5.4)

Let δ be the constant appearing in Proposition 1.3 corresponding to the
operator L = ∆H + c of Equation (5.3) on C. Observe that here c(ξ) is
bounded since f is Lipschitz. For λ < λ0 and sufficiently close to λ0, we
have meas (Dλ) < δ. Hence by the maximum principle 1.3, it follows that
wλ ≥ 0 in Dλ.

We claim that wλ ≥ 0 in Dλ for every λ > 0. For otherwise, let µ =
inf{λ : ws ≥ 0 for λ < s < λ0} and suppose µ > 0. By continuity, wµ ≥ 0.
Further since u is positive inside Ω, the maximum principle implies that
wµ > 0 in Dµ.

Let K ⊂ Dµ be a compact set such that

meas (Dµ \ K) <
δ

2
where δ is the constant chosen above. Since K is compact and wµ > 0 on

K, there exists λ near µ and 0 < λ < µ such that

wλ > 0 in K.(5.5)

Further we may choose λ such that

meas (Dλ \ K) < δ.

On Dλ \K, wλ satisfies the differential equation (5.3) with boundary condi-
tion wλ ≥ 0 on ∂(Dλ \ K). Since meas (Dλ \ K) < δ, by Proposition 1.3 it
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follows that wλ ≥ 0 on Dλ \ K. Therefore, wλ ≥ 0 on Dλ. From (5.5), the
strong maximum principle implies that wλ > 0 in Dλ. This contradicts the
definition of µ. Hence µ = 0; which completes the proof. �

Remark. It is clear from the proof that we don’t use the fact that the
solutions u are cylindrical, we only use that u(x, y, t) = u(y, x, t). Hence the
theorem holds true under this weaker condition on the solution. Almeida
and Ge ([1]) use a similar condition, precisely if x = (x1, . . . , xn) and y =
(y1, . . . , yn) they suppose that u(x1, x2, . . . , y1, y2, . . . , t) = u(y1, x2, . . . , x1,
y2, . . . , t).

6. A Maximum principle for locally subelliptic operators.

Here we prove a maximum principle for locally subelliptic operators, using
the idea suggested by T. Coulhon. We first recall the definition of subelliptic
operator from [18] and [12].

An operator L is said locally subelliptic in Rn if for an open subset Ω of
Rn, we can write

L =

n∑

i,j=1

1

h(x)

∂

∂xi

(
h(x)aij(x)

∂

∂xj

)
(6.1)

where the coefficients aij and h are C∞ real valued functions on Ω, h is
positive and the matrix A(x) = (aij(x)) is symmetric positive semidefinite

for every x ∈ Ω.
Further L satisfies a subelliptic estimate: There exists a constant C and

a number ε > 0 such that all u ∈ C∞
0 (Ω) satisfy

‖u‖2
ε ≤ C



∫ n∑

i,j=1

aij(x)
∂u

∂xi

∂u

∂xj
h(x) dx +

∫
|u(x)|2 dx


(6.2)

where

‖u‖s =

(∫
|û(ξ)|2(1 + |ξ|2)s dξ

)1/2

denotes the standard Sobolev norm of order s.
Clearly, if A is a positive definite matrix, then L is an elliptic operator

which satisfies (6.2) with ε = 1. Examples of L include the operators which
can be written as sum of vector fields satisfying Hörmander’s condition. In
this case, ε = 1/2. See [12] for other examples.

Let ρ denote the distance function canonically associated with L which is
continuous and defines a topology on Rn (see [12] and references therein).
We denote this space M = (Rn, ρ).
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The gradient associated to operator L is defined as

∇L(u, v) =
1

2
L(uv) + uLv + vLu(6.3)

see [18]. We denote

|∇Lu| = (∇L(u, u))1/2.

Almeida and Ge proved a weak comparison principle (Theorem 2.1) in [1]
for n−dimensional manifolds (M, g) for the elliptic operator defined locally
as

Lu = −
∞∑

i,j=1

1

(det g)1/2
∂

∂xi

(
a′(|∇u|2)(det g)1/2gij

∂u

∂xj

)

where a ∈ W 2,∞((0,∞))∩C0([0,∞)) is such that a′(t)− 2(a′(t))−t ≥ α > 0
for some α > 0.

Their proof relied on the following Poincaré type inequality: For an open
subset M ′ of M , there exists two constants γ, C > 0 such that if vol (M ′) ≤
γ, then

∫

M ′

|ψ|2 d vol ≤ C vol (M ′)2/n
∫

M ′

|∇ψ|2 d vol, for all ψ ∈ H1
0 (M

′).(6.4)

We will essentially show that an inequality similar to (6.4) holds for the
operator L on M.

Proposition 6.1. Let BL(ξ,R) ⊂ M denote a ball with center ξ and radius

R (with respect to the distance ρ). Then for every nonempty compact subset

Ω of B(ξ,R), there exists ν > 0 and a constant C0 depending only on B(ξ,R)
such that

‖f‖2
2 ≤ C0 meas (Ω)ν‖∇Lf‖2

2 for every f ∈ C∞
0 (Ω).(6.5)

Here, ∇L is the gradient associated to L.

Observe that when L is an elliptic operator, then (6.5) reduces to (6.4)
with ν = 2/n.

Proof. Observe that, the distance function ρ satisfies the doubling property

(see [12]): There exists a constant d such that

|BL(x, 2R)| ≤ d|BL(x,R)| for all x ∈ M, R > 0(6.6)

where |BL(x,R)| = µ(BL(x,R)) is the volume or Lebesgue measure of the
ball BL(x,R).

We also recall the Poincaré inequality proved in [18] (Lemma 2.4): There
exists constant C such that for every f ∈ C∞

0 (M)

‖f − fR‖ ≤ CR‖∇f‖2 for all R > 0,(6.7)

where fR is the mean of f over the ball BL(x,R).
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Now as in [11], [18], [7] (see references therein) it can be proved that
(6.7) and (6.6) implies the Faber-Krahn type of inequality for M: i.e., there
exists constants a > 0, ν > 0 such that, for every x ∈ M, R > 0 and for
every nonempty compact subset Ω contained in BL(x,R),

λ1(Ω) ≥
a

R2

(
|BL(x,R)|

|Ω|

)ν

(6.8)

where

λ1(Ω) = inf

{
‖∇Gf‖2

2

‖f‖2
2

: f ∈ C∞
0 (Ω)

}
.

In particular, we can conclude from Faber-Krahn inequality (6.8) that for
a fixed ball BL(x,R), R ≥ 1/2, for every nonempty subset Ω ⊂ BL(x,R),
we have

‖f‖2
2 ≤

R2

a

(
|Ω|

|BL(x,R)|

)ν

‖∇Gf‖2
2 for every f ∈ C∞

0 (Ω)(6.9)

= C0|Ω|
ν‖∇Gf‖2

2 for every f ∈ C∞
0 (Ω)(6.10)

where C0 =
R2

a|BL(x,R)|ν is a fixed constant for BL(x,R). �

Using the inequality (6.5) we have:

Proposition 6.2. Let Ω be a bounded domain in M and L be a subelliptic

operator as defined in (6.1). Assume that ‖c‖L∞(Ω) ≤ b. For a subset Σ ⊂ Ω,

there exists δ > 0 depending only on b, Ω and C0 (the constant appearing in

(6.5)) such that the maximum principle holds for L + c in Σ provided

meas (Σ) < δ.

Proof. First choose a ball BL(x0, R) such that Ω ⊂ BL(x0, R) and fix it for
the following discussion. Note that this R depends on Ω. And let Co be the
constant defined in the Proposition 6.1 with respect to this ball.

Let Σ ⊂ Ω and consider the function u ∈ S1,2(M) ∩ L∞(M) satisfying

Lu + c(x)u ≥ 0 in Σ, limx→∂Σu(x) ≤ 0.

Here S1,2(M) is the completion of C1(M) under the seminorm

‖f‖1,2 = ‖∇Lf‖2 + ‖f‖2.

Define u+(x) = max{u(x), 0} and Σ+ = {x ∈ Σ : u(x) > 0}. Then u+

satisfies the equation

Lu+(x) + c(x)u+(x) ≥ 0 in Σ+(6.11)

u+ = 0 on ∂Σ+.(6.12)
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Multiplying (6.11) by u+ and integrating by parts, we have
∫

Σ+

|∇Lu+|2 dx = −

∫

Σ+

c(x)|u+|2 dx(6.13)

≤ ‖c‖L∞

∫

Σ+

|u+|2 dx ≤ b

∫

Σ+

|u+|2 dx.

Now from (6.13) and (6.5) we obtain
∫

Σ+

|∇Lu+|2 dx ≤ b

∫

Σ+

|u+|2 dx ≤ bC0|Σ|
ν

∫

Σ+

|∇Lu+|2 dx.(6.14)

Choose δ < (bC0)
−1/ν . If meas (Σ) < δ then (6.14) implies that

∫

Σ+

|∇Lu+|2 dx = 0.

It follows that the inequalities in (6.14) are in fact equalities with each term
equal to 0. In particular, ∫

Σ+

|u+|2 dx = 0

and hence u+ ≡ 0. �
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