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l. INTRODUCTION

The classic result of Gibbard [6] and Satterthwaite [17] demonstrated
that when preferences are unrestricted, essentially the only decentralized
decision procedure or mechanism which will always induce individual
agents to truthfully report their private information is the dictatorial one.
The impossibility of constructing strategy-proof mechanisms has resulted in
a huge literature which has explored many different variants of the basic
result. One variant which is the main focus of this paper is the extension of
the Gibbard—Satterthwaite result to mechanisms which assign a probability
distribution over the set of outcomes for each profile of preferences.
Gibbard [7] characterized the class of such strategy-proof probabilistic
mechanisms or decision schemes. He showed that a strategy-proof proba-
bilistic mechanism is a convex combination of duples and wnilaterals, where
a duple is 3 mechanism which assigns positive probability to at most two
alternatives, and a unilateral is one in which a single individual is a
dictator.”

Such a mechanism need not satisfy ex post Pareto optimality, that is, it
may assign a positive probability to an alternative a which is worse than
another alternative b for all individual. Hylland [9] showed that even if
probabilistic mechanisms are allowed to uilize information about indi-
vidual cardinal utilities, the only strategy-proof probabilistic mechanisms
satisfying ex post Pareto optimality (or even unanimity) are random dicta-
torships, in which each individual is assigned a fixed probability of being a
dictator. Hylland also showed that if the stronger requirement of ex ante
Pareto optimality is imposed, then only dictatorial mechanisms can satisfy
strategy-proofness. See also Nandeibam [15] and Duggan [4], who
provide proofs of the random dictatorship result when the mechanism is
allowed to use only ordinal information. By way of an illustration, if there
are two individuals 1 and 2 and two alternatives a and b such that 1 prefers
a and 2 prefers b, then the random dictatorship where a and b result with
equal probability seems a good solution. If, however, a third alternative ¢ is
available which is ranked second by both individuals, then it is not so
obvious that the random dictatorship is an attractive way to solve the
problem. Thus, although in some situations random dictatorship may be
an improvement compared to deterministic dictatorship, it is generally
speaking not considered to be an appealing solution.

It is clear from the literature on deterministic mechanisms that the pos-
sibility of constructing non-dictatorial strategy-proof mechanisms depends
crucially on the domain of individual preferences as well as on the structure
of the set of feasible outcomes. Perhaps the best illustration of this is the

? See also Barbera [ 1, 2] for rated resulls on probabilistic mechanisms.
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case where individual preferences are single-peaked and the range of pos-
sible ocutcomes is one-dimensional. Moulin [14] shows that (under anony-
mity) a strategy-proof mechanism selects the peak of the median voter after
addition of phantom voters, i.e., fixed ballots. This result has been extended
to probabilistic mechanisms by Ehlers ef al. [5], who show that in a strat-
egy-proof probabilistic mechanism the fixed ballots are replaced by fixed
probability distributions.

While single-peakedness makes sense in a variety of economic and poli-
tical models, the assumption that the set of outcomes is one-dimensional is
unduly restrictive. In many cases, it makes sense to assume that individual
rankings of outcomes depend on several characteristics. For instance, each
outcome may represent levels of public expenditure on different public
goods such as defence, education. Alternatively, outcomes may represent
locations of different public facilities, alternative tax proposals, and so on.
Given a fixed available budget and monotonically increasing convex pref-
erences such situations can be modeled by assuming single-peaked pref-
erences on a higher dimensional set of alternatives.

Several recent papers have focused on the characterization of strategy-
proof (deterministic) rules when outcomes are multidimensional and pref-
erences satisfy some generalized notion of single-peakedness. An early and
influential paper was by Border and Jordan [ 3], who assumed that indi-
vidual preferences are star-shaped. In this context the smaller domain of
spherical preferences was considered in Kim and Roush [11] and Peters
et al. [16]. Zhou [19] considers a larger domain by assuming that pref-
erences are convex and continuous. Moreno [13] extends Zhou's result by
restricting the domain of individual preferences to satisfy monotonicity.
The main result of these papers is that the dictatorship result emerges once
again if the range of outcomes is multidimensional.*

In the present paper, we move away from the setting of Gibbard [7, 8]
and Hylland [9] by assuming that the set of alternatives is some convex set
in R* with k = 1, and that preferences are strictly convex and continuous
with a unique peak. We then show that the only strategy-proof probabilis-
tic mechanisms satisfying wnanimity (if all individuals have the same pref-
erence, then the common best outcome is selected with probability one) are
random dictatorships. Thus, we show that the extension to probabilistic
mechanisms does not allow us to completely escape the negative conse-
quences of the original Gibbard—Satterthwaite result even when the domain
of the mechanism is restricted to preferences which are more appropriate
for a large variety of political and economic models. As a byproduct of our

4 Le Breton and Sen [ 12] derive decomposition resulls on strategy-proofess when the set
of alternatives is multidimensional and preferences are separable. See Sprumont [1E8] for an
insightful survey on strategy-proofness in multidimensional environments.
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analysis, we also derive a result which is very close to the main result of
Zhou [19].

The model and the main resulis are formulated in Section 2. In Section 3
we derive random dictatorship from unanimity and strategy-proofness for
the case of two agents. The n-agents result s derived in Section 4, by
mathematical induction based on the two-agent result. It is worthwhile to
note that to perform the induction only strategy-proofness is needed. In
Section 5 the deterministic case is considered, and Section 6 concludes.

2. MODEL AND MAIN RESULTS

The set of alternatives is denoted by 4. Throughout, it is assumed that 4
is a non-empty convex subset of some Euclidean space R*. The dimension
of 4, denoted by dim( 4), is the dimension of the smallest affine subset of
R* containing A.

The set of agents is denoted by N, where N ={1, ..., n} for some natural
number n.

A (single-peaked strictly convex continuous) preference r on 4 is a tran-
sitive and complete binary relation on 4 with the following properties:

(i) There is a unique p(r) e 4 with p(r) ra for all ae 4. The point
pir) is called the peak of r.
(i) Forall a, be 4 with arb and a# b and all Ae R with 0 <i<1
we have [Aa+(1—4) b] pb, where p denotes the asymmetric part of r.
(iii) For every ae A the sets B(a,r) := {be A: bra} and {be A: arb}
are closed.

The interpretation is as usual: arb means that an agent with preference r
weakly prefers a to b, and aph means that « is strictly preferred to b. The
set of all preferences is denoted by 2. More frequently, the notation R; will
be used to denote a preference of agent i € N, with corresponding asym-
metric part £, and symmetric part or indifference relation ;. The condi-
tions on R, imply that the upper contour set B(a, R)), i.e, the set of
alternatives weakly preferred to a by an agent with preference R,, is not
only closed but also strictly convex and that its boundary (indifference
curve) consists exactly of those points b e 4 with bla.

A (preference) profile is an element R=(R,, ..., R,)) of Q"

Let the set 4 be endowed with the usual Borel g-algebra, and let M(4)
denote the set of all probability measures on 4.

A probabilistic mechanism u: QY — M(A4) assigns to each profile of pref-
erences B =(R,, .., R) a probability measure g{ R) =p(R,, ..., ) on 4.
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Henceforth, we will simply use the term mechanism. For a Borel set B A4,
p{R)B) can be interpreted as the probability that the chosen alternative
will lie in the set B if R is the profile of preferences and g the mechanism
that is used. It is assumed that any set B = 4 occurring in the sequel is a
Borel set. Instead of u(R)({x}), where x € 4, the notation u(R)(x) will be
used.

Note that a mechanism as we have defined it uses only ordinal informa-
tion about individual preferences. This is in contrast to Hylland [9] who
considers the larger class of mechanisms which can in principle use cardinal
information.

DeFmamion 2.1, A mechanism g is strategy-progf’ if for all R=
(Ry,...B)e2¥ allieN,all R eQand allae 4

H(R)(B(a, R)) = p( R, R))(B(a, R)),

where (R_,, R}) denotes the profile obtained from R be replacing agent i’s
preference B, by R).

In words, a mechanism is strategy-proof if no agent can increase the
probability on one of his upper contour sets by not reporting his true pref-
erence.

At first sight, this may seem a somewhat unusual definition of strategy-
proofness. Consider, however, the following alternative and perhaps more
familiar approach, which resulis in the same strategy-proofness condition.
Let the individuals have von Neumann—Morgenstern (vINM) utility func-
tions by which they rank alternative probability measures. Assume that the
mechanism can only use ordinal information so that individuals can only
announce preference orderings. Then it s natural to call a mechanism non-
manipulable only if the individual has no incentive to announce, say, R
instead of his true preference R, no matter which particular VWM utility
function represents R,. This is possible if and only if the individual cannot
increase the probability on one of his upper contour sets corresponding to
R by reporting R]. Put differently and in accordance with the familiar
characterization of first degree stochastic dominance, by misreporting the
mechanism produces a probability distribution that is first degree stochas-
tically dominated by the one that results from reporting the true preference.

For a probability measure m € M (4) denote by supp(m) the support of
m, i.e., the set

supp(m) := {a € A: m(B) = 0 for every open B = A witha e B}.

For a profile R=(R,, ..., R)) denote by PO(R) the Pareto optimal set for
R ie,



STRATEGY-PROOF FROBABILISTIC MECHANISMS 397

PO(R):={aeA:forallbe 4andi e N,
if bPa then thereis a je N with aPb}.

DeFmarion 2.2 A mechanism g is Pareto optimal if supp{u( R)) <
PO(R) for every Re QV.

DerFmarion 2.3 A mechanism g is wnanimows if for every profile
R={r,. .., r), where r e 2, we have u( R)( p(r))= 1.

Obviously, unanimity is implied by Pareto optimality.

DerFmamion 2.4, A mechanism g is called a random dictatorship if there
are nonnegative numbers 4,, ..., 4, € B with 3 ,_, 4 =1 such that for every
ReVandevery Bc A:

H(R)(B) =Y, 41,(p(R)).
ieN
Here, 1, denotes the indicator function of B, i.e., 1,: 4 — {0, 1} is defined
by 1;(a)=1if a e Band 1,(a) = 0 otherwise.

The main result of this paper is the following theorem.

TueoreM 2.1. Let dim(A4) =2 and let p: @~ — M(A) be a mechanism.
Then p is strategy-proof and unanimous, if, and only if, g is a random dicta-
torship.

The condition on the dimension of 4 in Theorem 2.1 cannot be omitted.
See Moulin [14] for the one-dimensional deterministic case, and Ehlers
et al. [ 5] for the extension to the probabilistic case.

The proof of Theorem 2.1 will be given in Section 4. First, in Section 3,
the two-agent case will be considered. For this case, we first show that
unanimity and strategy-proofness imply Pareto optimality. Next, random
dictatorship will be derived from the combination of Pareto optimality and
strategy-proofness.

3. THE TWO-AGENT CASE

In this section we prove Theorem 2.1 for the two-person case. The if-part
of the theorem is obvious (for any number of agents).

We start with two lemmas that deal only with Pareto optimal curves and
not yet with the mechanism g The first lemma provides a parametric
description of Pareto optimal sets.
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Lemma 3.1, Let R=(R,, R)eQ" with p(R)# p(R,). Then there
exists a  homeomorphism @ [0,1] = PO(R) with ®0)=p(R,),
@81y = p(R,), and for all 0 < ¢ <" < 1: ®(1) Pop®(t") and ™) Pyp®().

Proof. This result is intitive and therefore its proof will only be
sketched. For re [0, 1] let »*(f) be the unique point on the boundary of
the upper contour set B p(R, )+ p(R,)—p(R,)), R)) where agent 2's
preference is maximized. Existence follows by applying Weierstrass'
Theorem to a continuous representation of R that is to be maximized on
the compact set B(p{R,)+i(p(R,)—p(R,)), R;), and uniqueness follows
by strict convexity of the preferences. Then ¢"(¢) is a Pareto optimal point
and every Pareto optimal point can be obtained in this way. The last two
claims in the lemma follow by construction, and this also holds for the fact
that " is a bijection. Continuity of @® and its inverse can be derived by
applying the Maximum Theorem for correspondences. ||

A simple consequence of Lemma 3.1 is the following result.

Lemma 32. Let R=(R,, Ry), R' = (R}, R,) e Q" with p(R,)= p(R)),
PR = p(RY), and PO(R)= PO(R). Then for all ae PO(R) and every
ieN: Bla, R)nPO(R)= B(a, R)) n PO(R).

Proof. 1If p(R,)= p(R,) the lemma is obviously true. So suppose
PR # p(R,), let ae PO{R) and let @® and @ asin Lemma 3.1. Let i e N,
without loss of generality i=1. Let ¢ ¢ e[0,1] with %) =a and
@"(1')=a. Then Lemma 3.1 implies Bla, R,)n PO(R)={p™(s):0<s<1}.
Also, {p*s)0<ss<it}={p®(s)x0<s<r}, and B(a, R))nPO(R)=
{o"(s): 0= s <1'}. This completes the proof. ||

We now assume that p: Q% — M(A) is a strategy-proof and unanimous

mechanism, where dim(4) =2 and, without loss of generality, & ={1,2},
and show that g must satisfy Pareto optimality.*

Lenma 33, Ler dim(4) =2, n=2, and let yu be a wunanimous and
strategy-proof mechanism. Then y is Pareto optimal.
Proof. Before proving the main statement of the lemma we first prove

the following;

Cram 3.1. Let Re QY. Then u(R)B(p(R,), R, ) B(p(R,), R,)) = 1.

¥ The arguments in this prool, like in many of the subsequent prools, are supported by pic-
tures. The benefit is that the proofs are easier to read (and write) than purely symbolic proofs.
The price is extra carefulness in interpreting the pictures.
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Proofof Claim. By unanimity and strategy-proofness,
L= p(Ry, R} B(p(R;), R,)) < p( Ry, R,)(B(p(R;), R,)),

50 that

H(Ry, Ry )(B(p(R;), R,)) = 1.

Similarly one derives

(R, B ) B(p(R,), R;))= 1.

The claim now follows. ||

In order to prove the lemma, ket Re QY. If p(R,)=p(R,) then we
are done by the Claim, so assume pi(R,)# p(R,). Let x be a point in
B(p(R,), R)) n B(p(R)), B,)\PO(R), then by the Claim it is sufficient to
show that there is a neighborhood of x that is assigned zero probability by
#(R). Choose a Pareto optimal point a such that x is outside B(a, R:) but
so close to Bla, R,) that the latter set can be enlarged to a strictly convex
closed set B' for which x is an interior point but which coincides with
Bia, R;) outside a small neighborhood of x. Let h#£a be a point in
POIR) n Bla, R,) so close to a that B ~ B(b, R)) = Bla, RB,) nB(b, R)).
This implies, in particular, that x is outside B(b, R,). Construct a new
preference R, with peak p(R.) = b, such that B' = B(a, R)) (such a pref-
erence can always be constructed by multiplication of B® with b as center).
See Fig 1 for this and for an illustration of the rest of the proof. We will
prove that

H(R)(B(a, R;)) = p(R)(B(a, R:)), (1)
which together with the Claim will imply that

H(R)((B(a, Ry) \ Bla, R,)) n ((B(p(R, ), R,) n B(p(R,), R,))) =10

ie., the eyeshaped area in Fig. 1 containing x is assigned probability 0 by
p(R). In particular there is a neighborhood of x that is assigned probability
(), as was to be proved.

We are left to show (1). By the Claim and by strategy-proofness

#(R,, Ry)(Bla, Ry) n B(b, R,))
= (R, Ry} Bla, R})) = p(Ry, R,)(B(a, Ry)). (2)
Since, by construction, Bla, R,) =8 = Bla, R,),

#(Ry, R, )(Bla, R3)) = p(R,, R;)(B(a, R,)). (3)
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FIG. 1. Proof of Lemma 3.3,

By strategy-proofness

H(R,, R, )(B(a, R,)) = p(R,, R;)(B(a, R,))

hence by the Claim and since Bla, BY)nB(b. R))=B n Blb R)) =
Bla, R:)n B(b, Ry)

H(Ry, R:)(Bla, Ry)) = p( Ry, Ry ) Bla, R3)). (4)
By applying, respectively, (4), (2), and (3) we have

#(Ry, R)(Bla, Ry)) = p( Ry, R;)(Bla, R))
= p(Ry, R )(Bla, R3))
..:"'?*F{R!I: RZ}{.B{H!: R2}}

from which (1) follows. |

In view of this lemma, we will henceforth assume that the mechanism is
strategy-proof and Pareto optimal.

In the next lemma it is proved that the probability measure assigned by
the mechanism g depends only on the Pareto optimal set.

Lemma 34. Let R=(R,,R,), R = (R}, R}) € Q¥ with p(R,)= p(R}),
p(Ry) = p(RY), and PO(R) = PO(R'). Then u(R) = u(R').

Proof. By Lemma 3.1 the Pareto optimal set PO(R) is homeomorphic
to the interval [0, 1], and @® maps sets of the form [0,¢] (r€[0,1]) to
sets Bla, R)) n PO(R) where a =@®(r). Therefore, in order to prove that
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Ry

Ry~
B, R”‘w

FIG. 2. Proof of Lemma 3 4.

the measures pu(R) and p(R') coincide, it is with Pareto optimality of u
sufficient to prove that for every a e PO(R)

H(R)(B(a, R,)) = p(R')( Bla, R,)), (5)

because such sets generate the g-algebra restricted to the Pareto optimal
curve PO(R). Construct a preference R, € £2 by constructing upper contour
sets as follows. For every ae PO(R) define B(a, R):=B(a, R)n
Bla, RB)). For x ¢ B{p(R,). R)) ket ¥ be the point on the line segment con-
necting p(R,) and x with X p(R,) ie, ¥ is on the boundary of
B(p(R;), R,). Let i(x)>1 be defined by x=p(R,)+Ax}Z—p(R,)).
Then define B(x, R,) as the set of those be 4 for which there is a
y€B(p(R,), R)) with b= p(R,)+Hx)y—p(R,)). (In words, the upper
contour sets B(x, B,) are obtained by inflating the set B(p(R,), R,)) by
an appropriate factor =1, with p(R)= p(R,) as center.)) It can be
checked that indeed R, e Q. Furthermore, by construction, PO(R,, R;) =
PO(R,, R))= PO(R). See Fig. 2. By strategy-proofness, Pareto optimality,
and Lemma 3.2, for all a e PO(R),

MRy, Ry)(Bla, R,)) = p(Ry, R,)(B(a, R))) = (R, R,)(B(a, R,)) (6)

as well as

H(R,, R,)(Bla, R,)) = p(R,, R,)(Bla, R,)) = p(R,, R,)(B(a, R,)). (7)
By combining (6) and (7) it follows that

H(R,, R,)(B(a, R,)) = p(R,, R,)(B(a, R,)).
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Similarly one shows

u(R,, R,)(B(a, R,)) = p(R,, R)(B(a, R,))

and

H(R,, R:)(Bla, R,)) = u(Ry, R)(B(a, R,)).
Combining these three equalities yields (5). ||

The next lemma is the crucial step in the proof of Theorem 2.1 for the
two-person case. It shows that, if the Pareto optimal set is a line segment
then all probability is assigned to the end points, ie., the peaks of the
preferences. By “conv” we denote ““the convex hull of™.

Lemma 3.5. Let R=(Ry, R:)e Q" with PO(R) =conv{p(R,), p(R:)}.
Then p(R)(p(R,))+ p(R)(p(R;)) = 1.

Proof. The proof will be by construction. For this construction it is
assumed that k=2, hence 4 = B2 The general case can be obtained by
embedding this construction in higher dimension.

For convenience, assume p(R,)=(0,0) and p(R,)=1(1,0), so that
FPO(R) is the line segment with endpoints (0, ) and (1, ). Define the set
C cR* by

C:={¢,meR: 0=, p=p5(1-5)},

where y =0 is sufficiently small such that C = A4; this is possible because
dim{A4) = 2 implies that there is some point x € 4 with (without loss of
generality) positive second coordinate and convexity of 4 then implies
conv{x, (0,0), (1, 0)} = A. See Fig. 3 for the set C and for an illustration of
the remainder of the proof.

Choose numbers 0 <a < fi =1. To prove the lemma, it is sufficient to
prove

u(R)(conv{(at, 0), (B, ) }\{(2, 0), (B, 0) }) = 0. (8)

Let § be an arbitrary number strictly between o« and § and let 4 be the
point in C with first coordinate 4. Also, let £ be the straight line through 4
and the point (a, 0).

Construct a preference R, € Q with p(R,) = p{ &)= (1, 0) and such that
the following two conditions are satisfied:

(i) At every point of intersection of an indifference curve of this
preference with the interval conv{(0, 0), (1, 0)} there is a line of tangency
at this indifference curve parallel to £
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FIG. 3. Proof of Lemma 3.5,

(i) At every point of intersection of an indifference curve of this
preference with the curve C there is a line of tangency at this indifference
curve which intersects the (relative) interior of conv{(0, 0), (1, 0)}.

For the indifference curves of R, one may take a collection of (skewed)
ellipses; an actual description is rather tedious and therefore omitted.

Next, choose a point f on the curve C between (0, 0) and the point 4.
We construct two preferences R, and R} in Q with p{R,)= p(R}) =(0,0)
and such that the following three conditions are satisfied:

(iii) At every point of intersection of an indifference curve of R, with
the interval conv{(0, 0}, (1,0)} there is a line of tangency at this indif-
ference curve parallel to £

{iv) The indifference curve of R, through (a, 0) passes also through
the point .
(¥v) At every point of intersection of an indifference curve of R| with

the curve C, this indifference curve is tangential to the indifference curve of
R, through the same point.

For the construction of R, one may take again (skewed) ellipses. The
preference R) can be constructed in this way in particular because of
condition (ii): the lines of tangency there separate (0, 0) and (0, 1).

By construction of these preferences, it follows that

PO(R) = PO(R,, R,) = PO(R) = conv{(0,0), (0, 1)} and PO(R}, R,)=C.
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By strategy-proofness,
H(R}, Ry)(B((2, 0), R,)) < u(R)(B((2, 0), R,)). (9)

In view of Lemma 34 we may write u(8) for a subset B of C or of
conv{(0, 0), (1, 0)}, suppressing reference to preferences as long as the
peaks are (0, 0) for agent 1 and (1, 0) for agent 2, and the Pareto optimal
sets are C or conv{(0, 0), (1, 0)}. Thus, (%) may be written as

plarc of C between (0, 0) and f) < p(conv{(0, 0), (2, 0)}). (10

Because this construction can be made for any point § on C between (0, 0)
and d by adapting the choice of R,, (10) implies that

u({(&, 1) € C:0 <& < 3}) < p(conv{(0, 0), (2, 0)}). i)
In an analogous way one can show
(€. e C: 3<E<1}) < pleonvi(f, 0), (1,0)}). (12)

By (11), (12), and the fact that u(C) = u(conv{(0, 0), (1,0)}) =1 it follows
that

ui{d}) = pleonvi(a, 0), (B, 0) 1\ {(2, 0), (B, 0)}). (13)

Because (13) can be derived for any point 4 on C with first coordinate
strictly between o and fi, the right-hand side of (13) must be equal to 0.
Hence, (8) holds and the proof is complete. ||

The preceding result is extended to arbitrary profiles in the following
lemma_ In particular, it follows that the mechanism must be “peak-only:™
it depends only on the peaks of the reported preferences.

Lemma 36. Let R=(R,, R,))eQ". Then p(R) p(R)))+pu(R) p(R;))
=1 Moreover, p(R)(p(R}))=p(R)(p(R,)) and p(R') p(R3))=
w( R p( R for any profile R =(R,, B)) e 2V with p(R)) =p(R)) and
P(Ry) = p(Ry).

Proof. Construct a preference R, € 2" with p(R,)=p(R,) and
PO(R,, R,)=conv{p(R)), p(R,)}: such a preference can easily be con-
structed because every line of tangency at an indifference curve of R,
through a point of intersection with conv{p(R,), p(R:)} obviously separa-
tes p(R,) and p(R,). See Fig.4. Then, by Lemma 3.5, there are 0 <a, < 1

with a+f =1 such that u(R,, R,)(p(R)) =a and u(R,, R,)(p(R;)) = f.
By strategy-proofness, for every a € PO(R) with a £ p(R: ):

H(R)(B(a, R,)) = p(R,, R,)(B(a, R,)) = p(R,, R,)(p(R,)) = (14)
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FIG. 4. Proof of Lemma 3.6,

Analogously one proves that for every a € PO(R) with a £ p( R, ):
H(R)(Bla, Ry)) = f. (15)

By (14) and (15) it follows that p(R) p(R)))=a and u(R) p(R,)) =f§.
This completes the proof of the lemma. ||

An immediate consequence of Lemma 3.6 is the following proposition

ProrosiTion 3.1, For every pair x, yved with x#y there are non-

negative real numbers o, B, summing to 1, such that p(R)x)=o and
w( R ¥) = B for all profiles B e 2% with p(R)) = x and p(R,) = ».

The next proposition is the final step in the proof of Theorem 2.1.

Prorosimion 3.2, Let dim(4) =2, n=2, and let p: QY — M(A) be a
mechanism. Then p is strategy-proof and Pareto optimal only if g is a
random dictatorship.

Proof. Let x, x', ye 4 with x # x" and let o, f and &', §' correspond to
x, y and x', y, respectively, as in Proposition 3.1. It is sufficient to prove
a =a' (The case where the peak of agent 1 is fixed and that of agent 2
varies is similar.) We distinguish two cases.

Case (i). yéconvix, x'}.

In this case there are preferences R, and R| in £ with p(R))=x and
p(R))=x" and such that y ¢ B(x", R)) and y ¢ B(x, R)). Let R, e 2 with
p(R;) = y. Then by strategy-proofness
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a = p( Ry, R, N B(x', R,))
= u(R), R,)(B(x', R,))

= p(R, R, )(B(x, R))
= u(R,, R, )(B(x, R}))

=d.
Thus, o = a'.
Case (ii). yeconv{x,x'}.

In this case, choose a point x" ¢ conv{x, x'}, which is possible because
dim{A4)= 2. Let «" and " be the numbers as in Proposition 3.1 corre-
sponding to the pair x", y. Note that y ¢ conv{x, x"} and y ¢ conv{x’, x"}.
Therefore, applying Case (i) twice yields « =a" and 2" =", so that again
a =a'. This completes the proof of Case (ii) and of the proposition. |

Theorem 2.1 now follows from Lemma 3.3 and the previous proposition.

4. THE n-AGENT CASE

This section is completely concerned with the proof of Theorem 2.1 for
the general case with an arbitrary number of agents. This proof will be by
induction, based on the two-person result established in the preceding
section.

For later reference we first state a property and a result familiar in work
on strategy-proofness. A mechanism y: % — M(4) (where N is now arhi-
trary) is called intermediate strategy-proof if for all § = N, all B e 2V with
R =R foralli jeS, all R"eQ" with Rj = R for all i, je § and R] = R,
forallie N\S5,and all ae A:

w(R)(B(a, R,)) = u(R')(B(a, R,)) forall kesS.

Intermediate strategy-proofness means that if the members of a coalition
share the same preference, then no one in the coalition can gain if the
coalition collectively reports a different shared preference.

Lemma 4.1, A mechanism p: @Y — M(A) is intermediate strategy-proof
if, and only if, it is strategy-proof.

Proof. The only-if part is obvious. For the if-part, assume that u
is strategy-proof and let &, B, R’ be as in the definition of intermediate
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strategy-proofness. Take ke &, without loss of generality suppose
S={l,..,k}. Letae 4. Then
#(R)(B(a, R:)) = p(R)(Bla, R,))
= p(Ry, R)(Bla, Ry))
=u(R_,, R1)(B(a, R:))
= p(R_q1.2, R, R:)(B(a, R:))

Zp(R 5 . Ry, RS, .., R))(B(a, Ry))
= p(R')( B(a, Ry)),

where all the inequalities follow from strategy-proofness. Hence, p is
intermediate strategy-proof. ||

Whereas the induction basis for the proof of the general case is the two-
person result of the preceding section, the induction assumption will be the
following.

Assumption 4.1. Dim (4) =2 and n = 3. For every set of agents [ with
cardinality |/| < »n and every mechanism yu: 2’ — M(A) satisfying unanimity
and strategy-proofness, g is a random dictatorship.

In the following series of lemmas, until further notice Assumption 4.1 is
valid, N ={1,2,..,n}, and u: Q% — M(A) is unanimous and strategy-
proof.

The first lemma considers the case where the preferences of two
agents coincide. In that case the induction assumption implies random
dictatorship.

Levma 42, There are nonnegative real numbers 4, 4, ..., A, summing to
1, such that for every R € Q" with R, = R, and every a € A:

MR a) = Al (p(Ri))+ Z} Al (P(R)). (16)
Proof. In order to prove (16) define f: 2V — M(4) by

A(RY(B) := p(R,, Ry, Rs, ..., R,)(B)

for every B € @V and every Borel set B. Unanimity of u implies unani-
mity of ji and intermediate strategy-proofness of g (cf. Lemma 4.1) implies
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strategy-proofness of i By Assumption 4.1, 7 is a random dictatorship,
which implies the existence of 4, 4,, ..., 4, asin (16). |

The next lemma considers the same situation as in Lemma42 and
establishes a limited form of peak-onliness, namely for the case where
agent 2 changes his preference but not his peak.

Lemma 43, Let ReQV with Ry=R, and let 1, A, ... A, as in
Lemmad 2. Letr e Q with p(r)= p( R:). Then for everya e A4,

H(R 5, r)(Bla, Ry)) = i+ i 43 Laga, ry (POR,))- (17

Proof. Let a e A. Strategy-proofness of g implies that

u(R) B(a, Ry)) = pu(R 2, r)(B(a, Ry)),
hence by (16)

#(R..z,r}fﬁ(a,ﬂz}}$1+f: A Lpga, ) (POR,))- (18)

i3

On the other hand, because R, = R,, strategy-proofness of g also implies
that

(R 2, r)(Bla, Ry)) = p(R_y 3, r, r)(Bla, Ry)),
so by (16)

U(R 3, (B, RY)Z i+ S 4l ny(PR)). 19)

im3
Now (17) follows from (18) and (19). ]

Before proceeding we need to introduce some additional notation. For a
profile R=(R,, ..., R,) e Q2" and an agent i € N we define an ordered par-
tition (N, ..., Ni) of N as follows. For all ije N; and i EN} with
jfefl, .k}, j<£ we have p(R, ) P, p(R,). For all je {1, ... k} and all
iy, IjE.N' we have p(R; ) ], p{R, ). In other words, N} mnsnsts of those
agents with peak equal to the pcak of agent i (so in particular i e N}), N3
consists of those agents with peak different from but closest to the peak of
agent i, ..., Ny consists of those agents with peak at maximal distance from
the peak of agent i, everything measured according to the preference of
agent i. Note that this partition depends on the preference R, but for
brevity this dependence is suppressed in notation.



STRATEGY-PROOF FROBABILISTIC MECHANISMS 409

The following lemma extends the restricted form of peak-onliness estab-
lished in (17). More precisely, it states that there is a random dictatorship
whenever the peaks of at least two agents coincide.

Lemma 44, Let ReQ¥ with {1,2} =N, and let the numbers
A Ay oo Ay be as in Lemma 4.2, Then for everyae A,

U(RY(@) = A1y (pRN+ Y. Il (HR)). 20)

=3

Proof. The proof of (20) will be by induction on j=1, ... &k, where
(N}, Ni,...,N}) is the ordered partition corresponding to R,.
First, taking a = p( R,), (17) implies that

HR(p(R))=p(R){p(R):ieND =i+ Y 21

ieNViLY

which proves (20) for a = p(R,), i.e., for the peak of the agents in N!. This
is the basis of the induction argument.

As induction hypothesis, let je{2, ..., k}, and suppose that (20) holds
for every alternative a equal to some p(R,) forieN| u---U N} . We wish
to show that (20) also holds for every alternative o equal to some p(R,) for
EEN:U---UN;.

Let £'e N}, and £e N|. For every be 4 with p(R,) P,bP, p(R,) it
follows by (17) and changing the roles of agents 1 and 2 there:

H(R)(B(b, R))) =4+ i 43 Lo, r (POR,)) = A+ 2 Ay

Fe(N VLI O N v o N

Hence, the total probability assigned to the upper contour set Bib, R,) is
by the induction hypothesis equal to the total probability assigned to the
peaks within that set. Thus, (20) holds for every a e 4 with aP, p( R,).
Similarly, (17) implies that

PRYB(p(R,). R ) =i+ ¥
feiN VL Ny N
Hence, denoting by dB( p{ B,), R,) the boundary (indifference curve) of the
upper contour set B( p{ B;), R;), it follows that

[
1

H(R)(EB(p(R;), R,)) = % A
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In order to complete the induction step it suffices to show that for every
aedB(p(R,), R,), if a¢{p(R)ieN|] then a¢supp(u(R)) and if
ae {p(R):i € N}} then p(RN@) < X,on!.ny-a 4

For the first case, suppose a¢{p(R)ieN;} but aesupp(u(R)).
Construct a preference r e 2 with peak pir)= p(R,)=p( ) and with
some upper contour set B(b, r) containing the peaks of all agents in
Niu-- -uN;.., but of no other agent, and also containing a neighborhood
of @ in which there is no peak and which has, say, weight £ = 0 under u(R).
By (17) it follows that

HR 2, r)(B(b,r)) =i+ v i

PNV LI TN weu
Furthermore,

H(RYB(b, 1)) = p(Ry, Ry, ... R)B(b, 1))

=1+ A+e
T TR B VUYL SURNY

-1
=i+ A
FeN VLI oM LN

=p(R 5, r)(B(b, r)),

where the first inequality follows again by (17). This is a violation of
strategy-proofness and, thus, completes the induction step for this case.

For the second and final case suppose de{p(R):ieN;} and
HRWA) > 2o vl pimyma s S8Y H(RN@)=3X,o n'. pimy—a 4 +& where £>0.
The proof for this case is analogous to the proof of the first case. Construct
a preference r € 2 with (as in the first case) p(r) = p( R, ) = p(R,) and con-
taining the peaks of all agents in Nju---UuN|_,, but also containing the
alternative 7 (where the peak(s) of some ageni(s) in N; is (are) located),
and containing no other peaks. In a similar way as in the first case a viola-
tion of strategy-proofness is obtained. |

For convenience of notation, Lemmas 4.2, 4.3 and 4.4 havwe been for-
mulated and proved for agents | and 2, but of course they can similarly be
formulated and proved for arbitrary agents i and j. For further reference
this is now stated as another lemma.

Lenma 4.5 Let i, je N with i # j. Then there are nonnegative numbers
Ay and &, for every ke N\{i,j} with A, +¥ vy 4 =1 such that for
every Re Q" with p(R,)= p(R;) and every a € A:

(R a) = dlpay(@)+ % Aljyey(a).
kaNh {i, 1)
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Our next task is to show that the weights J,; and 4, as in Lemma 4.5 are
consistent in the sense that they are independent of the specific choice of
agents { and j. Before we can do this we first need an auxiliary result on
profiles with all peaks different.

Lemma 46, Let Re QY with all peaks different and i, je N with je N&.
Let A and A (ke N\{i, j}) be as in Lemma4.5. Then for every ae A with
P(R)) e B(a, R))

HRY(Bla, R)) =hy+ ¥ Alag my(P(R)). (22)
ka MY, 1)
Moreover,
pRY p(R)Y=4,  forevery ke N\(N;uN;). (23)

Proof. Let ae A. By strategy-proofness (letting agent j deviate from R,
to R} and Lemma 4.5

H(R)B(a, R))< (R, R)(Bla, R))=4y+ ¥ Alyur)(p(R)).

ke N EL )

On the other hand, also by strategy-proofness (letting agent i deviate from
R to R)) and Lemma 4.5,

p(R)(B(a, R))= p(R.., R)(B(a, R)) = dy+ Y Almari(p(R)).

ke AL )

These two inequalities imply (22).

The proof of (23) 5 analogous to the proof of Lemma 44, now using
(22) with a = p(R,) instead of (21) as induction basis, and also using (22)
here in the role of (17) there. We omit the details. ]

The announced result on consistency of the weights is the following.
Levmaa 47, There are nonnegative real numbers 4, 4,, .., A,, summing

to 1, such that for all i, je N with i # j and all Re Q" with p(R,) = p(R))
and all ae A:

p(R)a)= Z j'klz.urﬁ*:;(“}- (24)
ke ¥
Proof. We distinguish two cases:n=3 and n = 3.
Case (1), n=13.
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Ha

Pl f3)

FIG. 5. Proof of Lemma 4.7,

Call the numbers as in Lemma4.5 for the pairs {1,2}; {2, 3}; {1, 3}
respectively: Ay;, 45 Ay, 413 A3, 4,. We show that 4, +4; = 4, for every pair
{i, j} with i # j, implying (24).

Consider a profik R=(R,, R,, R,) e 2" with all peaks different, with
Ni={3},N;= {1}, N3 = {2}, and with (see Fig. 5

B(p(Ry), R;)n B(p(R,), R,) n B(p(R,), Ry) = (. (25)

By Lemma 4.6, in particular (23), applied three times (for the pairs {1, 2},
{2, 3}, and {1, 3}) it follows that u(R) p(R;)) = 4 everyie {1, 2, 3}]. Sup-
pose xesupp(u(R)) for some x ¢ {p(R,), p(R;), p(R;)}. By Lemma 4.6,
U(R)B(p(Ry), R)) =As=1—4, so it follows that xe B(p(R:),R,).
Similarly, one derives x € B( p(R,), R;) and x € B( p(&;), R;). This contra-
dicts (25), hence supp(u(R))={p(R,), p(R,), p(R,)}, which implies
Ai+4, =4, foralli#j.
Case (1i). n>=>3

Consider pairs of agents {i, j} #{i", j'}, i# j, i’ # ', and call the corre-
sponding numbers as in Lemma 4.5: A, 4, (k #1, j) for the pair {, j} and
i, A, (k1 i) for the pair {i', j'}.

Suppose k¢ {i,j} v {i',j'} then i, =i, which can be seen by consid-
ering a profile R with p(R,) = p(R,), p(R,) = p(R; ), and p( ;) # p( R,) for
all £e N\ {k}. To complete the proof it is sufficient to show that
A+ 4, = 4,. To show this assume additionally ', j' ¢ {i, j} (this is possible
since n > 3) and take a profile R' with p(R}) = p(R)) # p(R;) = p(R}) and
with n—2 different peak locations. Then Lemma 4.5 applied twice yields
A+d=4; 1

The next and final lemma basically completes the induction step in the
proof of the only-if part of Theorem 2.1.

Lenvmaa 48 Ler 4y, ..., 4, be the weights as in Lemma 4.7, Then for every
profile BRe QY and everyagent i e N, p(RY(p(R)) = 4,
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Proof. Let Re@" and (without loss of generality) i =1. We also
assume that p(R,) is in the relative interior of the set 4 (we use this
assumption in Case 2 below). The general case follows immediately by
strategy-proofness.

If not all peaks in R are different the proof is done by Lemma 4.7. So
assume that all peaks are different. We distinguish three cases.

Case 1. Thereis an agent je N with 1 ¢ N4,

In this case Lemmad6, in particular (23), implies (even)
HR)(p(Ry)) = 4.

Case 2. There is no agent j as in Case 1, but there is a pair {j, k} with
j#kand 1, keNi.

In this case, consider a profile (R_,, R}) with p(R} )¢ B(p(R,), R)) and
p(R)) close to p(R,). (Such a preference R| exists because by assumption
p(R;) is in the relative interior of the set 4.) By Case 1, for this profile
wiR RO p(R)))=4,. Because p( R)) can be chosen as close to p(R,) as
desired, strategy-proofness implies p( R) p(R,)) = 4,.

Case 3. Foreveryje N\{1} we have I{ ={1}.

In this case, Case 1 (for i = j instead of i = 1) applies to very agent j+# 1,
so that p(R)( p(R;)) =4, for every j# 1. Moreover, Lemmas 4.6 and 4.7
imply that u(R)(B(p(R,), R))) =4,+ 4, for every j # 1. Take two arbitrary
agents # 1, say agents 2 and 3. We distinguish two subcases.

Case 3{a). p(R,)isnot on the straight line through p{ R,) and p{ R, ).
We first prove the following claim (cf. Fig. 6).

Claim. For every £ = 0 there is a set B(z) within an z-neighbourhood of
the line segment conv{p(R,), p(R,)} and a preference R} with p(R}) =
p(Ry) such that u(R_,, R7)(B(e)) = A +4; and p(R_,, RI)(p(R)) = 4a.

Ity

p(fis) @

p{ Ry}

FIG. 6. Proof of Lemma 4.8,
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Proof of Claim. Let £ >0 and construct a preference | such that, first,
Biz):=B(p(R,), R{)nB(p(R,), R,) is within an gneighborhood of
conv{p(R,), p(R;)}, and, second, p(R,) Pip(R,;) for all j# 1,2. Tt still

holds that u(R_,, R )(B(p(R,), R;)) =4, + 4, and p(R_,, RI) p(R;)) = 4,
because these results were independent of the (shape of the) preference of

agent 1. Moreover, Lemma 4.6 implies g B, R} B( p( R,), R =4, +45.
Hence, p(R.i, R)(B(e)) =pu(R.., R)(B(p(R:), R]) n B(p(R), R:)) =
A +4y and p(R_,, R ) p(R)) = 4. |

Now consider the situation as in the claim, for some £ = (0. Take x e B{z)
such that

P(R,) ¢ conv{x, p(R,), p(R,)}. (26)

Suppose that x e supp{p(R_,, £])). Construct a preference R with peak
p(RY) = p(R,) and with some upper contour set B(b, R.) (for some b e 4)
containing a neighbourhood of x, the peak p(R,) (and possibly some peaks
of agents 4, ..., n) but not p(R,). By Lemma 4.6

MRy oy, R, Ry )(B(b, Ry)) = 3 4y
feN: plR) o Bh, B'2)

and by Lemma 4.6 and the assumption that x esupp(u( R _,, R})) it follows
that

H(R_1, R7)(B(b, RY)) = 3 Ay
JeN:plR) e B{b, K1)
This is a violation of strategy-proofness, hence x ¢ supp(p(R_,, R])). This
holds for all x € B(g) for which (26) holds, that is, for all x except in a neigh-
borhood of p(R,). Because this neighborhood shrinks to p( R,) as & goes to
zero, strategy-proofness ( for agent 1) implies that supp(u( R)) m B( p( R,), R,)
= {p(Ry), p(R;)}. Consequently, u(R) p(R,)) = 4.
Case 3(b). p(R,) is on the straight line through p( &, ) and p(R,).

In this case, consider a preference R with peak at distance at most £ > 0
from p( &) and such that p(R,) &5 not on the straight line through p( £,)
and p(R:). For ¢=0 sufficiently small Case 3(a) applies so that
u(R_,, R)(p(R)) = A,. By letting & decrease to 0 and applying strategy-
proofness it follows that g( R) p(R,)) = 4,.

This completes the proof of Lemma 4 8. |

Proof of Theorem 2.1 for arbitrary n.  The if-part is obvious. The only-if
part follows by induction, based on the result of Section3 for n=2,
Assumption 4.1, and Lemmas 4.7 and 4 8. ||
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5. THE DETERMINISTIC CASE

A deterministic mechanism is a map F: 2V — 4 Such a mechanism
assigns a unique alternative to every preference profile. It is called strategy-
proof if for all ReQ¥ all ieN, and all R/ ef2 we have
F(RYRF(R ,, R)). Tt is called unanimous if F(r, ..., r)= p(r) for every
re 2. With a deterministic mechanism F we can associate a probabilistic
mechanism g, by defining u (R} F(R)) = 1 for every Re 2V, It is easy to
check that (deterministic) unanimity and strategy-proofness of F are
inherited by gy in their probabilistic meaning as in the preceding part of
this paper.

From Theorem 2.1 the following result can be derived.

Tueorem 5.1. Let dim(A)=2 and let F: 2V = A be a deterministic
surfective mechanism. Then F iv strategy-proof i and only if there is an agent

ie N with F(R) = p(R) for every Re 2V,

This theorem is close to the main result in Zhou [19]. One difference is
that here we require the range of F to be the set 4 and hence to be convex
—in accordance with the rest of this paper—whereas Zhou [19] imposes
only the dimensionality condition on this range. For a probabilistic mech-
anism g Theorem 2.1 imposes unanimity—it is not obvious how this could
be replaced by such a dimensionality condition. Another difference is that
Zhou allows for the larger set of continuous convex not necessarily single-
peaked preferences.

Proof of Theorem 3.1, The if-part is obvious. Now assume F is sirategy-
proof. We first argue that F is also unanimous. To see this, take r e £2 with
peak p(r) = a, and take R e 2" with F(R) = a (which is possible by surjec-
tivity). By letting the agents change from & to (r, ..., #) one by one and
each time applying strategy-proofness it follows that F(r, ..., r)=a= p{r).
Hence, F is unanimous. Therefore, the associated probabilistic mechanism
pip 18 strategy-proof and unanimous, as mentioned above, and hence py is a
random dictatorship by Theorem 2.1. Because y, always assigns probabil-
ity 1 to exactly one alternative, the statement of the theorem follows. ||

6. CONCLUDING REMARKS

Like earlier papers on probabilistic social choice, the present paper also
reveals an analogy between results on deterministic and on probabilistic
mechanisms. Again in accordance with earlier results, the main result of
this paper does not seem easily deducible from any corresponding deter-
ministic result. An attempt to formalize this apparent analogy between the
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two approaches is made in Keiding [10] by using category theory. While

in

deed a relation can be established in this manner it is not clear that this

also leads to easier or shorter proofs.

if

We conjecture, finally, that the main result of this paper would still hold
the set of admissible preferences were further restricted to only quadratic

(ellipsoid) preferences. However, since this would be obtained at the cost of
some tedious caleulations, we have refrained from pursuing this extension.
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