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Abstraet. Inasequencing problem with linear time cost, Suijs (1996) proved that it
is possible w achieve first best. By first best we mean that one can find mechanisms
that satisfy efficiency of decision, dominant strategy incentive compatibility and
budget balancedness. In this paper we show that among a more general and natural
class of sequencing problems, sequencing problems with linear cost is the only
class for which first best can be achieved.
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1 Introduction

In a sequencing problem there is a large multi-unit firm with each unit in need of
the facility provided by a particular repair and maintenance unit. The repair and
maintenance unil can service only one unit at any given time. Therefore, units which
remain unattended, incur a cost for the time they are down. In this framework, the
firm’s role is that of a planner wanting to service the units by forming a queue that
minimises the total costof waiting. Each unit’s cost parameleris private information.
The objective of the firm is to determine the order in which the units are 10 be
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serviced. The presence of private information implies that the firm has an incentive
problem. Sequencing, as an incentive problem, was studied by Dolan (1978). He
provided a mechanism which 15 incentive compatible but not budget balancing.

There is a vast literature on incentive theory under incomplete information sug-
gesting that under guasi-linear preferences the achievement of truth-telling and
efficiency is possible. The pioneering works of Groves (1973); and Clarke (1971)
have established the existence of aclass of mechanisms, the so called Groves mech-
anisms, where all individuals have a dominant strategy 1o reveal their information.
Moreover, the truth-telling outcome leads to efficiency. Green and Laffont (1977)
has proved the unigueness of Groves mechanism in the public goods problems.
Holmstrivm (1979) has proved that if the domain of preferences in the quasi-linear
framework is “smoothly connected”, that is, if the domain is rich enough, then
Groves mechamsms are the only mechanisms that are dommant stralegy mcenbive
compatible and efficient in terms of decisions. However, Groves mechanisms are
in general not balanced, that is, there are preference realizations where aggregate
transfers are non-zero. The budget imbalance of Groves mechanisms, in the context
of public goods problem, is shown in Hurwicz (1973); Green and Laffont (1979);
Walker (1980). Hurwicz and Walker (1990) proved the impossibility resull in the
context of pure exchange economies, that is, economies in which there is no pro-
duction and in which there are no public goods or other extemalities. The damaging
nature of budget imbalance of Groves mechanism, in the public goods context, was
analysed by Groves and Ledyard (1977). They had shown, vsing a very simple
maodel, that an alternative procedure based on majority rule voling may kead to an
allocation of resources which is Pareto-superior to the one produced by Groves
mechanism. However, Suijs ( 1996), by assuming costs to be linear over time has
proved that a sequencing problem is first best implementable. A sequencing prob-
lem is first best implementable if it is possible to design & mechanism that satisfies
truth-telling in dominant strategies, efficiency of decision and budget-balancedness.
Further, he conjectured that linearity of the costs is crucial for this result.

In this paper, sequencing problems with more general and natural class of cost
functions is analysed. The main result of this paper is that, a sequencing problem
is first best implementable only if the cost function is linear over time. Thus, while
Suijs (1996) proved that for first best implementability of a sequencing problem
it is sufficient to have a linear cost, we prove its necessity. If the cost function is
linear then the relative quene position of any two units is independent of the pref-
erences revealed by the other units. Suijs (1996) conjectured that inde pendence of
this sort, which we define as independence property in this paper, is crucial for first
best implementability. However, we show that this type of independence is not the
only requirement that drives first best implementability in a sequencing problem.
There exists other cost functions, like exponential costs, that satisty independence
property. For first best implementability it is also necessary that the cost function
satisfies a nice combinatorial structure. Therefore, the necessity of the indepen-
dence property and the combinatorial structure of the cost function together imply
that a sequencing problem is first best implementable only if the cost function is
linear.
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This paper is arranged in the following way. In section two, the model is de-
veloped. Section three is the main secton of this paper where, among other things,
the necessary condition for first best implementability is dedved. Section four con-
cludes the paper

2 The model

LetN=11.2,..., n } be the set of units of a multi-unit finm in need of the facility
provided by a particular repair and maintenance unit. Each unit j € N has a cost
parameter #; € &, that belongs to an interval in the non-negative orthant R of
the real line R. Each unit j € N also has a servicing time s; that belongs to the
positive orthant By of the real line. Let O(5;:8;) = 6,F(5;) + 3; measure
the cost of waiting 5; € Ry perods in the queue for unit § € N with cost
parameter (or unit type) #; & Ry Here the mapping F' : Ry, — Ry is the
time dependent cost function and (3, is a fixed cost w unit 7. We assume that the
form of time dependent cost function F(5;) is identical for all units and that F is
continuonus and strictly increasing in 5. Let F be the class of continuous and strictly
increasing time cost functions. Observe that 5; depends not only on the servicing
time s; of unit j but also on the servicing time of the units serviced before it
The firm’s aim is o find an efficient quewe, that is, a quene that minimises the
ageregate cost. By means of g permutation « on N, one can describe the positions
of each unit in the quewve. Specifically, o; = F indicates that unit § has the Eth
position in the quene. Let X be the setof all possible permutations of N. We define
Plo,ji=[pe N—{j}|g; > o] tobe the predecessor set of j in the quene o =
{7y, ..., 0, ) € B Given a servicing time vector 5 = (s, ..., s, and a quene o,
the cost of waiting in the queune forunit j € Nis O[5, (a):8;) = 8, F( 5(a)) + 3,
where 5;(o) = ZI’EPI:a._.I] s+ &;. The utility of unit j, with cost parameter #;, is
given by Ujlo t:8) = v; — C(S;(a); 8;) + ¢ where v; is the benefit, derived
by unit j, from the service and £ is the transfer that it receives,

Letd = (fy,..., G185, 801,000, .1 be a state of the world or a profile and
let {H_:.H__,:I be another profile of the form (8, .., 81,6058 41,-- ., .., where
both ¢ and (67, 8_;) belong to ™. Consider the problem of the firm whose objec-
Live is to minimise the aggregate cost of waiting in the queue. A queue o* £ X,
given s, is efficient or minimises aggregate waiting cost if o £ argmingcx
> en ClS8 (e ):8;). Throughout this analysis, the servicing time vector s =
(51,...,1 s.) 15 assumed to be common knowledge. If the firm also knows § =
(8,0 @71, then it can calculate the efficient queve and service the units accord-
ingly. However, if #; is private information to unit 7, the firm’s problem is to design
a mechanism that will elicit this information truthfully. Formally, a mechanism M is
apair {o t), where o : O™ — Fand t = (#,.. ., te) 10" — R™ A sequencing
problem under incomplete information iswrittenas 2 = (N, FL(&: R ), where
N is the number of units of a firm in need of the facility, F & F represents the cost
of each unit of the firm, which takes identical functional form for all units j & N, &
is the type space of each unit representing the cost parameter and By | is the space
of servicing time for each unit. Under M = {a t}, given all others” announcement
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#_;. the utility of umt j of type #;, when its announcement is #,’, is given by
Ry i S i B
Uilo(8y,8_), 1087 ,0_4),8,) = v; — C( S (c (8 ,0_,)8;) + (8, ,8_4).

Definition 2.1. A sequencing problem 2 = (N F (G@: R, ), is said to be im-
plementable, if there exists an efficient rule 0% - 8" — X and a mechanism
M = {o* t) suchthat, forall j € N, forall (8;,8,") € O%andforallf_; € 9",
Ui(a™ (@), t;(0):8;) = U(a®(8,.0_,),1;(8,/,0_;):8;).

This definition says that for any given #_;, unit j cannot benefit by reporting
anything other than it's wue type. Inother words, ruth-telling 15 adominant strategy
for all units. Moreover, implementability also means that in each state the quewe
selected is an efficient one.

Definition 2.2, A sequencing problem (2 = (N, F (9 B, )}, is first best imple-
mentable, if there exists a mechanism M = {o% t) which implements it and such
that, forall 8 € 9", § . gt (#) = (.

Thus, asequencing problem is first-bestimplementable if, it canbe implemented
in & manner such that aggregate transfers are zero in every state of the world. In
such problems, incomplete information does not impose any welfare loss,

We define the mmmimum cost function C @ @7 = @" — R. For a state ,
with announcement 8, Co™(8):8') = 3, C(S;(c"(#)): 8]), where o*(#) €
ATGININ e o Z_.IEN C'(5;(a):8;). For simplicity of notation, we write the min-
imum cost function Cla®(d):8) as C{#). In other words, C{#) represents the
minimum cost when announced state # is also the troe state.

Definition 2.3. A mechanism M = {7, t) is a Groves mechanism if, foraff j e N
and for aff # € @7,

ti(8) = —C(6) + C(S,(o*(6)):8,) + 7 (6_,) (2.1)

In a Groves mechanism the transfer of any unit § £ N, in any state #, is the
negative of minimum cost C{#) less the costof unit § upto a constant ~; (#_ ;). The
utility of unit j with a Groves transfer is its benefitv; less the minimum costin state
& plus the constant. 1t is well known that such a transfer results in dominant sirategy
incentive compatibility because the firms’s objective of minimising the aggregate
cost is now an objective of unit  as well and this is wue forall j € N,

Remark 2.1. A sequencing problem 2 is implementable if and onfy if the mecha-
nism is a Groves mechanism. This result is not new in the literature. Under relatively
weak assumptions, on the domain of preferences, Groves mechanisms have been
shown, by Holmstriim (1979 and more recently by Suijs (1996, o be the only
ones Lo satisfy implementability condition. The domain of any sequencing problem
2 = (N.F.(&;Ri. ), with F € F, satisfies Holmstriim’s definition of “con-
vex” domains.! Moreover, the domain of preferences in a sequencing problem also
satisfies Suijs’ definition of “graph connectedness™ (see Suijs (1996)). Thus it fol-
lows, from theorem 2 of Holmstrim ( 1979) and theorem 3.2 of Suijs (1996), that
sequencing problems are implemented uniquely by Groves mechanism.

! If the domain of preferences is “comvex™ then it is “smoothly connected” (see Holmstriim 1979).



Achieving the first best in sequencing problems ™

The main difficulty with Groves mechanisms is that they are not balanced for
a broad class of public decision problems (see Green and Laffont (1979), Walker
( 1980)). The question of whether or not Groves mechanism can first best implement
sequencing problems is addressed in the following section.

3 Main result

Consider a sequencing problem 2 = (N, FL(&:; Ry ). Let the servicing lime
vector be s = (s51,..., sy ) and let the state be #. Consider a particular queue
T = 00500 o). withoy = o; + Lin state 8. Let P(o; 3. 1) = [pe N — {j.1} |
o, < min{o;, o1} and & = ZP‘EP(H:J-T] By = 0. Consider a different queue
', oblained by interchanging only the quene positions of j and [ In other words,
gfi="lor i a,,) is such that, oy, = o for allm € N/{j, I}, o = o7 and
a; = a;. The difference in total cost is given by Cl{o:8) — Clo";0) = #{F(s +
si+8) — Fle+s1)} —0{F(54+s; + s1) — F(5 4+ 5;)}. This interchange will
lead 1o an increase (a decrease) in total cost if, Cla; 8] < (=)C{a":#), that is, if
& > (QFELEITRGR - Let f(5i5j, 1) = Fiisad—Fis oy - Therefore,

the ratio function (& s;. s7), plays an important role in determining the efficient
queue. In particular, the numerator of the ratio function f{% s, 5 ) measures the
increase in the time cost of unit {if unit j is served ahead of unit ! given that unit {
is already incurring a costof &+ s;. Similarly, the denominator of the ratio function
Fla s, 81) measures the increase in the time cost of unit 7 if unit { is served ahead of
unit § given that unit j is already incurring a costof 34 5. Independence property,
defined below, is a restriction on the ratio function f{5 s, 1),

Definition 3.4. A sequencing problem 12 = (N, F_(9; R, ), with cost function
F € F, satisfies the independence property, if there exists a map g - Ri e 4L B
such that, for all § = 0, for all s; > 51 > O and for all §,0 € N such that j # 1,

£ s, 81) = gl ).

If a sequencing problem 2, with cost function F, satisfies the independence
property then the relative quene positions of any two units j and [, with given £, 5,
and #;, 51, is independent of the preferences of all other units. In particular, if &, 5,
and #;, s; are such that %:- = gl 5. s1), then for all servicing time vectors and states
with given (s, 5 ) and (8, #), efficient queve o willimply that 5 (a*) < Si(a "),
that is, o} < o7 In the next paragraph, we provide some examples of sequencing
problems that satisfy the independence property and one example of a sequencing
problem that fails to satisfy the independence property.

Consider a sequencing problem ' = (N, F'_(9: R )}, for which the cost
function is linear. Therefore, for the sequencing problem 2, F'{z) = a1z + ay,
forallz € Ry anda; > 0. Observe that for £, f1(5, 5, 5) = }: = g'(5.51).
forall § > O andforall s; > & > (). Therefore, £2' satisfies independence property.
Suijs (1996) conjectured that the independence property of alinear cost sequencing
problem 2 plays a crucial role in its first best implementability. Consider the

? Observe that & = () & Plog, i) =g,
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sequencing problem 2% = (N, F*, (8: R )}, where the time cost function is
exponential, that is, F*{z) = ae” 4 ap, forall z € R, and a; > (. In this
problem, f*(&s;,5) = i = g5, 8 ), for all § = 0 and for all 5; >

— ol
. i L

s = (. Therefore, £2° also satisfies the independence property. In general, all
sequencing problems 2%, with cost function of the form F*z) = a;c® + ag,
where a; > Oande = 1, satisfy the independence property since f*( &5, 5) =
% = g"(&;, 5 ), forall & = 0and for all 5; > s > (. Thus, the set of
sequencing problems, satisfying independence property, includes non-linear time
cost functions. Consider 4 sequencing problem 29 = (N, F7 (6; R, ,)), where
Fi(z) = 72 for all z € R, . In this problem, given 5; > s > 0, the ratio
fl&s,8) = :—‘IL{I - ﬂ%} is not independent of 5. Therefore, 29 fails 1o
satisfy the independence property.

Theorem 3.1. A sequencing problem 12 = (N F (8: R ), with F' € F, is first
best implementable if and only if the cost is linear and there are at least three units.

a
—e"I

The if part of the theorem is due to Suijs (1996) and hence we omil its proof.
We now state three lemmas and prove two of them. These lemmas are necessary
for proving the only if pant of Theorem 3.1, For these kemmas, some more notations
and definitions are introduced. Consider two profiles # = (6, ... #,) and §" =
{1 e 6,). We define, for 5 C N, atype 8;(5) =8, if j & S and 8;(5) = 8} if
j & 5. Therefore, for each § C N, astate 8 5) is of the form (#4(5), .. ., 8. (50,

Lemma 3.1. {Walker 1980). A sequencing probfem 12, with F' € F, ix first best
implementable only if, for all pairs of profiles {8.8'} € 9" = 8", 3 o (- 1)!51
Ci{a(5)) = 0. -

Given the form of the Groves transfer (2.1), balancedness requires that the mini-
mum aggregate costis (n— 1) type separable, that is, (n—1)C(#) = Z_.IEN Yilf—j).
Thus, it follows that for all pairs # = (#,,..., ) and & = (8], ..., &Y ern
(—1)SICH(5)) = g Tjen Tsen(—1)1513(0;(8)) = 0. We now verify
that Lemma 3.1 holds for a sequencing problem 2 with three units. Observe that
balanced Groves transfer implies that

C(#) = 5{mn(fz, ) +72(f1.03) + vz (b, 62)} (3.2)
for all § = qél ._F.ig. Fj»gjl £ &% Now consider any two states # and 8 and the sum
3 (—1)FIC(8(8)) = C(81,62,85) — C(6},6,65) — C(6y, 65, 65)
SCM
—C(0.02,85) + C(08].05.05) + O8], 62,8
+C(6,.65,8;) — C(6,, 6, 8,).
By substituting the right hand side of (3.2), afier making all the relevant adjustments,
in the sum 3~ g (—1)1¥1C(6(S)), we get the result. Now one can easily check

this result for sequencing problems with other unit sizes. Lemma 3.1 will help prove
the next two lemmas.
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Lemma 32. A sequencing problem (2, with F € F, ix first best implementable
only if, forall 5 € R, 4,

i{—lj""l ”_ P(k3) =0 (3.3)
k1

k=1

Before giving a general proof of Lemma 32, we first provide a general en-
terion for calculating an efficient quene when servicing costs are identical for all
units. Using this criterion, we provide the proof of Lemma 3.2 for a sequencing
problem 2 = (N = {1,2 3}, F,(9:R;4)} with three units. This will help in
understanding the general proof. Consider a servicing time veclor & = (5 =
§ 8y = & 8y = &). Given the servicing time vector s, caleulating the efficient
queue in each state § = (0, 02.83) € O is quite easy if the types of differ-
ent units are non-identical. For example, if a state # = (#,.02.83) € @° &
such that 85 = #; = #, then g: > i%:ﬂij%:ﬂ:t:; = fl& &8 = 1 and
ﬁf = fls:5,5) = 1, forboth & = sand § = [). Therefore, the efficient quene in state
& = (#,02, 85), with given q:rvin.ing cosl veclor § = (5 = &, 83 = 5,83 = &),
is a*(f) = (a7 () = 3,05(0) = 2, a5(0) = 1). In general, if units have identical
servicing costs and non-identical types, then efficient queue, in any stale #, can
be obtained from the ascending order of unit types in that state. That is, in state
6, if the types of units j and [ are such that 8; = #;, then o7(#) < o7 (#). This
is the general criterion, with identical servicing cost and non-identical types, for
finding an efficient queue in any sequencing problem 2 = (N, F.(&; R, )) with
FeF?

To prove the lemma for three units, we consider any two profiles § = (8 s, 83)
€ @ and ¢ = (0],05.0,) € O satisfying the following condition: #] >
), = 8, > 6 > 6 >46; Forall 5 C N, we consider profiles #(5) =
(61(5), 82(5),03(S)) where 8;(S) = 8;if j ¢ S and 8;(S) = & if j € 5.
We then caleulate

Z( 1)I¥1C(8(S)) = C(8y,82,05) — C(6],62,05) — C(8y, 8, 03)
SCN

—C(6y, 02, 0%) + C(6,,85,05) + C(6], 62, 85)
+C{’H1.’Hg. 3:| o C{Hl 1921 'FEEII'

We use the general critenon with identical servicing cost and non-identical types,
specificd in the previous paragraph, to find the efficient quene in the eight dif-
ferent states. The minimum costs in these states are: Oy, 82, 83) = 6, F(5) +
Ao F(28) 40, F35),C(07, 02, 05) = H{F{.H:I+HEF{23:|+H3F{HH],Iff-'{Hl.H;._H,ﬂ =
i F(25) + 0,F(5) + 63 F(35), C(t .0, 8,) = ,F(25) + 8.F(33) + 8, F(5),
C(8, 05, 03) =8, F(5)+6,F (25)+ 83 F(. h:l B, 85 =0 F(5)+8:F(358)+

* Itis guite easy to ohserve that if units have identical types thenone can easily impose a tie breaking
rule to calculate the efficient queve. It is important to note that finding the efficient queve is quite
difficult if the servicing cost is different for different units and if the cost function does not satisfy the
independence property. For such costs one cannot find an algorithm for caleulating the efficient quene.
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ALF(28), C10,, 85, 0,) =0, F(35) 405 F(5)+05 F(25) and finally, C(#], 85, 85) =
# F (&) + 0, F(28) + #,F(35). After appropriate substitution and simplification in
> scnl— lj'l'qlc':ﬂ{gﬂs wi gl

. 31\
Y (—1)Flew(s) = {6 - i}Z: (1 l)mz.ej (34)

SCN k=1

From the construction of the profiles # and &, we know that §; # #. From
Lemma 3.1 we know that for first best implementability it is necessary that ZE‘CN

(—1) |"|C(,HQS‘ = 0. Therefore, from Eq. 3.4, it follows that ¥,_,
(—=1)5=(,Z ) F(ks) = 0. Thus, we have proved Lemma 3.2 for a sequencing
problem with three units.

Proaf of Lemma 3.2, To prove the lemma, we first construct two profiles and then
apply Lemma 3.1. Consider a servicing time vector where the servicing time ofeach
unit is the same, that is, consider 5 = (s = & .. s, = &) Let 8 = (8,..., ]
and & = (#,..., &1 be any two profiles satisfying the following condition:
@ =8> =8 =68 >0 > ... > 8, Forall § C N, we consider
profiles 8(5) = (8,(5),...,8;(5),..., 8,(5)), where 8,(5) = 8, if j ¢ 5 and
#;(5) = #if j € 5.Since the servicing costs are taken to be identical forall j € N
and unit types are non-identical, we use the general criteron to derive the efficient
queue in each state. Observe that, forall § © N — {1}, with profiles (8. #_(5]).
ai(th,8_.(5)) = |S|+l-Th“-“sZH;N;{1}{—1:||H|C{SL{U“{H1-.H—L{Sjﬂiﬁ]l:‘ =
Zl'f,;I;J{—ljl-‘fl{';gl‘]F{{iSi + 1)#)#, . Moreover, for all § C N such that n € 5,
that is, for pmﬁlu; (8, 0 _n (S0, ah(8, . 0_,(5)) = |5| and hence, it follows that,

Soen(-DEO(Su(o" @0 (S)):8) = St (1E()
F(|§|%)#.,. Finally, for all othertypes z; € {6a,....0,.6,....8,_,1 =T, if the
sets g, .., ny, |, all subsets of N — {7}, are such LhaLr:r (x4, 8_;(my)) =k
forallg € {1,..., p}, then 3 0, (—1)™ F(ks) = {}mauu, g=1(—1)™ =0.

Thus, forall z; € T, ¥ g3y (= 1) FIC(8; (0% (2, 8_;(S))); 2;) = 0. There-
fore, the sum 3~ - (—1)!¥IC(#(S)) is independent of all z; € T. Combining all
these observations we get

SRR RS _,"._*_la ;
> (ees) = -0y 0 (1) R 69

SCN

Applying Lemma 3.1 and using #, # &}, in condition (3.5) we get condition (3.3).
O

Condition (3.3) in Lemma 3.2 i1s acombinatonal condition on the time cost function
F'. The meaning of this condition will become explicit from the following discus-
sion. Define A{h)Fix)as AR\ F{z) = Flz+ k) — F{z). Thus, A(k) F{ z) mea-
sures the increase in me cost as one moves from time = to time = + fi. Using this
definition observe LI'JaLz_"L{;r::IF{J:I F{’J_r:l F(z). ‘iimila.rly, A?(z)F(x)is given
by A%(z) F(z) = A(x)[A(z) F(z)] = A(z)[F(2z)— F(z)) = F(3z)-2F(2z)+
F(z). We can similady derive A EQI:IF{J'II _”'I.d'{ IIF{J':I and so on. It is now quite
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easy to verify that condition (3.3) can be rewrittenas 3 (— 1)1 (17 ) Flkz) =
A Y2\ F(z) = 0. Thus, F satisfies Lemma 3.2 if the (n — 1)th order difference
15 2Er0.

Remark 3.2. The most obvious implication of Lemma 3.2 is that for a sequencing
problem with two units, condidon (3.3) holdsonly if, forall 2 = 0, F{z)— F(2z2) =
0, that is, F{z) = c. However, F(z) = ¢ forall + = (), is a violation of our
assumption that F is swictly increasing in By . Therefore, there does not exist a
sequencing problem {2 = (N = {1, 2}, F. (&; B4 )). with strictly increasing F,
that satisfies condition (3.3) in Lemma 3.2, Thus, a sequencing probfem with two
wnity ix not first best implementable .

Remark 3.3. Another implication of Lemma 3.2 is that for a sequencing problem
= (N =1{1223}F{(8:R:})}, F{€ F) must be linear. For a sequencing
problem with three units, Lemma 3.2 implies that, for all z € Ry, Flz) +
F(3z) = 2F(2z). From this condition it is obvious that, if F € F, then F = F',
where Fl{z) = ayz + agy forall z € R, . Therefore, Lemma 3.2 proves that if
there are three units then a sequencing problem is first best implementable only if
the cost function is linear.

Lemma 3.2 is not enough to prove the only if part of Theorem 3.1 for a se-
quencing problem with more than three units. For example, consider 29 = (N =
11,2.3.4}, F9 (@: Ry )}, such that the time cost function F9 € F is quadratic.
Thus, the function F¥ is such that, for all z € R, |, F9(z) = ay + a;7 + ag7”
and F4(x+ &) = F9(x), for all k = 0. It is obvious that for a sequencing problem
with four units, ¥ € F satisfies condition (3.3) of Lemma 3.2, To prove the only
if part of Theorem 3.1 for sequencing problems with more than four units, we need
another result which is summarised in the next lemma.

Lemma 33. A sequencing problem 2 = (N F (8. R ) with at feast four
units is first best implementable only if it satisfies the independence properiy.

Before proving Lemma 3.3 we introduce some more relevant definiions and
observations. Consider the servicing Lime veclor s = (s, ..., s ). We define the
sumof servicing timesof all units p € N—{j, [} as M(jl) = Z,,
jand [, with servicing time s; and s respectively, ety € [0, M(j1)] be a number
suchthat f{rn: s 5) = fly s, s). forall y € [0, M(j1)]. Note that riz ; always
exists since fly: s, 1) is continuous and we are considering all  in the closed and
bounded interval [0, M(j1)]. We define H{s) = fl;s;,5) forall j € N and
forall { € N — {j}. Therefore, H(s) is at least as large as the highest value that
the ratio function f, comesponding o F, can take given the servicing lime vector .
Similarly, ket iy € [0, M (j1)] be a number such that v s, 50 < flys s, 8)

20503 Fp For units

4 In general for a sequencing problem 27 = (N, F'm (8: R, . }) having polynomial time cost
11
functions of order m {that is F™{x) = ¥ a;7°) where m < n — 2 satisfies condition (3.3). Thus
i=1)
if we have 1 sequencing problem with three units, then polynomial of order m = 1 that is, F = F!
satisties condition (3.3). If we have o sequencing problem with four units, then polynomials of order
m o= [1,2}, thatis, F = F' and F' = F7 satisfies condition (3.3) and so on.
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forall y € [0, M{31)] and we define L(s) < f(im;1:5;, %) for all j € N and for
alll € N —{j}. L{s) is at most as small as the lowest value that the ratio function
f can take given the servicing lime vector s. Using the numbers H{s) and L{s),
we make the following observations about the efficient ordering.

Observation [1]. Given the servicing time vector 5 = (s, ..., s, if for any

two units j and [, T;'I- = H{s), then from the construction of H(s) we know
that H{s) = fl&s;,s), for all § € [0, M{jI)]. Therefore, E—: > fl&: 5,51,
for all & € [0, M(jl)] since 3= > H(s). Thus, given s, if g > H(s), then

a8, 0,0_;_1) < o} (8;,6:,0_; ). forall 8_;_; € "2,

Observation [2]. Given the servicing time veclor 5 = (s, ...,/ s, 1 for any
two units § and [, {;—I' < L{s), then from the construction of Lis) we know that
Lis) < f($;3, ‘ir:l for all & [0, M(51]]. Thcn:lbn:, z—: < flé sy, 5. forall § €
[0, M50 HIDLL < L(s). Thus, given s, if 5 7 < L{s) then oj(8;,6;.6_; ;) >
s {H_,,Hr,H__,_,::I,ﬁJr:effH__,_,- e @" 2

These two observations will be used in proving Lemma 3.3,

Proaf of Lemma 3.3, Consider a sequencing problem 2, with at least four units,
that fails to satisfy the independence property. To prove the lemma, we show that
for such a sequencing problem 2, there exists a servicing time vector s and there
exist profiles, for which the condition in Lemma 3.1 is violated. Since 12, does
not satisfy the independence property, there exist s; > 52 = () and an appropriate
selection of interval [0, A|, such that, the mtio function f{y; 51, 52) 15 monotonic
and non-constant in i, whenever y € [0, A}, Given that F is continuous and stractly
increasing and the denominator of f(y; 51, 52 is non-zero, for all i, it follows that
fly: 51, 52) 15 continuous, monotonic and non-constant in y € [0, A]. Therefore,
ony € [0, Al fly: s, 52) satisfies at least one of the following four conditions:

1. There exists B € (0, A), such that f{y; s, s2) 1s constant in g, if y € [0, B)
and strictly increasing in y, whenever y € [B, A|.
. fly: 51, 52) 1s swictly increasing in v € [0, 4],
3. There exists I € (0, A), such that f{y: sq, ‘fg:I 15 constant in y, if y £ [0, B)
and strictly decreasing in y, whenever y € (B, A.
4. fly: 51, 52) is strictly decreasing iny € [0, 4],

I

We consider each of these conditions in different steps.

Step 1. In this step we consider condition 1. Since the sequencing problem under
consideration is the one that fails o satisfy the independence property, we construct
profiles in such a way that the relative queve position of two particular units, with
given types, change as the type of other units change. This type of construction
leads to a violation of Lemma 3.1.

Let 5, and sy, in condition 1, represent the servicing time of units 1 and
2 respectively. Let the servicing time of unit 3 be 55 = 4 — I and the ser-
vicing time of all other umits j € N — {1,2,3} be 5; = _B. = 3 Thus,

]

the servicing time veclor is given by & = (5;, 82,83, 8,. ..,/ £). Note that the
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servicing time vector is constructed in such a way that (n — 3)5 + 83 = A
From condition 1 and from the construction of 5 it follows that f(ks; sy, 52) <
FlhE + s3;50, 82) and fhs s, 80) < flA;s,8e) forall k € {0,..., n— 3}
and flks 4+ szis.82) < fldisi,s) forall ko€ {0,..., n—4}. Laa D =

(mazf((n — 3 & sq,82), fl(n —4)5 + 53151, 52)], fA; 51, 52)). Note that the
interval always exists since maz{(n — 3)5, (n — 4)5 + 53} < A implies that
maz(f((n—3)5 51, 8), flin —4)5+ s3;51,52)] = f(A: 5, 52)). Consider two
numbers x,(1) and x4 1), such that, z,{1) € D, (1) € Dand z,(1) < x3{1).
Observe that since s; > s2. x,.(1) > 1, for all v € {a,b}. Using the numbers
z,(1) and z5( 1), we define 2{2) = 1z, (1)L(5) and 2(3) = (1) + x5 (1VH(5).
Consider two profiles 8" = (8 = z,.(1).65 = 1,85 = =(3),..., & = z(3))
and 8" = () = 1.8 = 2(2),....8, = z(2)) where v € {a,b}. Define, for
5 C N, atype 87(5) = #7if j ¢ S and 87(5) = H; if j € 5. Therefore,
for § C N, a state #7(5) is of the form (#7(5). ..., #(57). Now we consider
the terms containing #7(= x,.(1)) in IhL sum ZQCN{—U'H'C{H"{SJJ. From the
construction of =(2) it follows that — _lf_T < L{5). Therefore, from Observation

[2] it is obvious that, for all § € N — {1}, such that j € N — {l} and j € 5,

oy (07, 07,(5)) < of(#].02,(5)). Similarly, from the construction of (3] we

el Jr;l]] = H(5). Thcn:ﬁm:, from Observation [1] it is obvious that, for all § C

N —{1},suchthatj e N—{1,2}andj ¢ 5, o7(6].67,(5)) > a8, 02,(5)).
Now consider all possible § € N — {1}, such that 2 ¢ 5. We start with § = ¢,
that 1s, #7(5) = §". Note that since (3] = z.(1) +.r A1V H (&) and z.(1) = 1,
z(3) = H(5). Therefore, for all j € N — {12}, HL = x(3) > f(d:5,52),
for all 5 € [0, M(j2)]. Thus o5(#") = ai(8), forall j € N — {1, 2} Again,
from the construction of =, (1), it follows that %rL = x.(1) < f(A;s,s:). There-
fore, given o3(#") > o(8") and o7 (#") > oj(87), forall j € N — {1,2}
and x,.(1) < flA;sq,52), we obtain that o {H 1l =n > ayf") = n—1L
From the construction of x, (1), we also know that, 5 #,_ = z,.(1) > maz[f({n —
3% 51, 82), flin—4)5+ 53151, 52)|. Therefore, if S C N—{1}, 5 # dand2 ¢ 5,
then o (87 5)) < a5 (67(57). Combining all these observations and simplifying
the sum 37 gopg g1y (— VISIC(8, (o (07,87 ,(5))): #), we get for all 7 € {a, b},

(5]

S (=EICE(8) =z (V[F(s1+ 52+ A) = Flsi + A+ Z  (36)
SCMN

where Z is the sum of terms that are independent of 7,.(1), inthe sum ¥ o o (— 1)1
C(#"(5)). From Lemma 3.1 we know that for first best implementability of (2, it
is necessary that 3 o (—1)¥1C(87(8)) = 0, for all r € {a,b}. Therefore, it is
obvious that for first best implementability it is necessary that

> (=nHlcEe(s) - > (-1)lcEts) =0 (3.7)
SCN SCN
Simplifying condition (3.7) using (3.6), we get
{za(l) — 2 (1)} F(s1 + 52 + A) — Fs:1 + 4)| = (3.8)
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Condition (3.8) cannot hold since from the construction of x,.(1) and from our
assumption that F is strictly increasing in R, it follows that the left hand side
of condition (3.8) is stricily negative. Therefore, if condition 1 holds then, given &,
there exist profiles for which Lemma 3.1 is not satisfied. Observe that when unit
U's type is #] = @,.(1) and that of unit 2 is 85 = 1, the construction of profiles
#_1_5(S).forall S C N — {1, 2} are such that:

L oy (07,605,607, _o(S)) > o3(0,05,607,_5(5)).if [S = ¢| (that is, if the state
is #7(8) = #") and

2. o%(07,05, 67, _4(S)) < o3(8,65.0",_5(8)), forall [S € N — {1,2} and
8 # ¢l

Therefore, the change in relative queve positions of units 1 and 2, given their types
7 and &% respectively, with the change in the types of other units is crucial for the
resull.

Step 2. Inthis step we consider conditon 2. Let s and 52 in condition 2 represent
the servicing time of units 1 and 2 respectively. Let the servicing time of all other
units j € N—{1.2} bes; = ﬁ = & Therefore, the servicing lime veclor is given
by & = (s, 82,5 & ..., 5. By replacing s5 in Step [1] with 5 and by following the
same steps we gel the resull

Step 3. 1o this step we consider condition 3. Let s; and ss, in condition 3, repre-
sent the servicing time of units 1 and 2 respectively. Let the servicing time of unit
3be sz = A — B and the servicing time of all other units j € N — {1, 2,3} be
8= % = & Thus, the servicing time vector is given by § = (s, 52, 53, 5, ..., ).
From condition (3) and from the construction of &, it follows that, f{k& s, 52 =
flhs + s3:51,52) and flk&s1,50) > fldis, e forallk € {0,....n — 3}
and flks + s3;51,82) = flAd;sy, s, forall k e {0,..., n—4}. Let D =
(flA; 51, 5), min[f((n — 3)8 81, 5), f{(n — 4)5 + 53151, 52)]). Note that the
interval always exists since mand(n — 3)& (n — 415 + 53} < A implies that
min(f((n — 3)& 51, 52), fl{n—4)5 + 53551, 52)] > f{4; 51, 52)). Consider two
numbers x,( 1) and x4 1), such that, =,{1) € D, z3{1) € Dand z,(1) < x3(1).
Mote that since s; > s2. 7,.(1) = 1, forall » € {a,b}. Using the numbers z,(1)
and zg(1), we define, 2(2) = 2z, (1)L(5) and 2(3) = x3,(1) + z4{ 1) H (5). Con-
sider two profiles 8 = (87 = z,(1),8% = 2(3),65 = =(3),.... @ = x(3)) and
& =8 =18 = 1,8, = z(2),...,¢, = z(2)) where r € {a,b}. Define,
for 5§ C N, atype 85(5) = 87 if j ¢ S and 67(S) = &, if j € S. There-
fore, for each § C N, a state §7(5) is of the form (#7(5), ..., 85(5)). Now we
consider the terms containing #7(= z.(1)). in the sum ¥ ;- (= 1)/ *1C(#7(S)).
Consider all possible § € N — {1}. From the construction of z(2) and from Ob-
servation [2], it follows that, for all § © N — {1}, such that, j € N — {1,2}
and j € 5, o7 (0],07,(5)) < o (#].07,(5)). Similady, from the construction
of 2(3) and from Observation [1], it follows that, for all § © N — {1}, such
that, j € N — {1} and j ¢ S, o7(6].87,(5)) > of(6],67,(5)). Now con-
sider § € N — {1}, such that, 2 £ 5. First we consider & = {2}, that is, we
consider the state #7(5) = (0] = z.(1),8; = 1.8 = =(3), ..., & = z(d)).

Observe that, for all j € N — {1, 2}, ﬂi = Jflil = H(#), since £(3) = z,,(1) +
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zp(1)H(5) and z4(1) > 1. Therefore, if § = {2}, then o3(87(5)) = ai (87(5]).

for all j € N — {1,2}. We have already established that if 5 = {2}, then

ap(87(5)) = a;(87(5)), for all j € N — {1,2}. From the construction of z.(1),
b

we get, FEF = @ = zp(1) = f{A;s1,52). Therefore, if & = {2}, then given
ze(1) > flA;51,52), 07(07(5)) > o] (67(5)) and o3 (67(5)) > o5(07(5)), for
all j e N— {1, 2}, we get o (8 (5)) = n—1 < a3 (#7(5)) = n. From the con-
struction of 8] = x,.(1), we know that z,.(1) < mun[f{(n — 3)5 51, 52), f{(n —
4)5+ 83151, 52)]. Therefore, for all § € N — {1}, such that, § # Sand 2 € 5,
we get oy (07(5)) = a3 (07 5)). Combining all these observations and simplifying
the sum 3 gop_ 4y (— VIEIC(8, (o (07,87, (5))): 85 ) we get, for all 7 € {a, b},

S (=0FICE(8) =z (L[F(si+ s+ A) - Flsi+ A+ 2 (39)
SCN
where Z isthe sum of terms that are independentof z,.( 1) in the sum ¥ o o (— 1)1
C(#"(5)). From Lemma 3.1 we know that for first best implementability of 12, it
is necessary that 3 o (—1)151C(87(8)) = 0, for all r € {a,b}. Therefore, it is
obvious that for first best implementability it is necessary that

> (=nFleeEs) - > (-1)P¥lcets) =0 (3.10)

SCN SCN
Simplifying condition (3.10) using (3.9) we get
{zall) — 2 (1) HF(s1 + 52 + A) — Fis; + A)| =0 (3.11)

Condition (3.11) is not true since from the construction of x.(1) and from our
assumption that F is strictly increasing in By | it follows that, the left hand side
of condition (3.11) is strictly negative. Therefore, if condition 3 holds then, given
&, there exist profiles for which Lemma 3.1 is not satisfied. Observe that when unit
U's type is #7 = @,.(1) and that of unit 2 is 85 = 1, the construction of profiles
#_1_5(S),forall [S CN — {1} and 2 € S| are such that:
L o} (07,605,087, _o(5)) < o3(07, 8,07 ,_5(5)),if [§ = {2}] and
2. oy (07,05, 07 _5(5)) = o5 (07, 05,67 _5(S)). forall[SCN—{1}and2 &
5.

Therefore, the construction that leads to the result in this step is similar 1o that in
Step [1]. Here, the change in relative queue positions of units 1 and 2, given their
types 87 and # respectively, with the change in the types of other units is crucial
for the result.

Step d. In this step we consider conditon 4. Let s and 52 in condition 4 represent
the servicing time of units 1 and 2 respectively. Let the servicing time of all other
units j € N—{1,2} bes; = ﬁ = & Therefore, the servicing cost vector is given
by & = (57, 82,5, & ..., 5. By replacing 55 in Step [3] with 5 and by following the
same sleps we gel the resull |
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Finally, we come to the proof of the only if part of Theorem 3.1. We show that
the necessity of conditon (3.3) in Lemma 3.2 and the necessity of the independence
property (as derived in Lemma 3.3), for first best implementability of a sequencing
problem together imply that the cost function F must be linear.

Proaf of Thearem 3.1, From Remark 3.2, it follows that for first best implementabil-
ity of a sequencing problem, it is necessary that there are at least three units. For
a sequencing problem {2 with three units the proof of the only if part of theorem
follows from Remark 3.3, To prove the theorem for sequencing problems 2 with at
least four units, we show that Lemmas 3.2 and 3. 3 imply that F = F'. By rewriting
condition (3.3) in Lemma 3.2 in terms of first difference A(z) Filkz), we get

n—1 ;
Y -1kt (’;: f) Alz)Flkz) =0 (3.12)
k=1 '

Consider the ratio function f(y: 22 x). From Lemma 33, we know that, for first
best implementability of the sequencing problem 2, fly: 22, 2) = g{ 2z, x), for
all y = 0. After simplifying the relation f(kz; 22, 2) = g{ 2z, z) we get, for all
ke{l,...n—1} andforallz = 0,

Alz)F(kz) = v* 1 A(z) F(x) (3.13)
where g(2z, ) = + + L% By substituting (3.13) in (3.12) and then simplifying i,
we get, (1 — )" 2 A(z) Flz) = 0,forall z > 0. Therefore, r = 1 simply because
F s strictly increasing implies that A{ 2) F{x) = (. By substituting » = 1 in{3.13)
we get

F{{k+ 1i1z) — Flkz) = F{2z) — F(x) (3.17)
forall kb {1,..., n — 1} and for all = > 0. From condition (3.17) it is obvious
that F' = F'. 0

We have thus derived that a sequencing problem with continuous and stnctly
increasing lime cost function is first best implementable only if the cost function is
linear and there are at least three units. The sufficiency part of the theorem, that is,

3 Forallk e {1,..., n — 2} consider,

A2z} Fkz)

Stk = Vi 20,2) = T

(314

By mwriting A{2x) Fikx) as Az} Fi(k 4+ Lz) + A{z) Fkz) in (3.14) and substituting f((k —
1)z 2¢,x) = g2z, x) = ?l + 1 we pget

= AeIFR) L (115)

Aiz)Fi(k+ 1Lz}

forall & & {1....,n — 2} Solving (3.15) recurssivel y we get
Alz)F(kz) = r* 1 A{z) Fiz) (316

forall k £ {1....m — 1} and for all = = (.
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if there are three units and if the cost function is linear then a sequencing problem
is first best implementable was established by Suijs (1996).

To complete our analysis, we now provide a Groves transfer that first best im-
plements a sequencing problem with linear cost. Consider a linear cost sequencing
problem ' with at least three units. In this problem, F'{z) = ay + a7 and
iy = 0. Consider a servicing time veclor s = (sp,.. ., ¢ s, ) and a state § € 8" Let
the transfer for unit § € N be

i i
BO)=ai Y, Bsi——5D 61 D, 5 (3.18)

pEP(e*(8).4) i# qECQIE )

where Qi(6.7) = {a € N~ {j.1} | ¢ £ P(c" (0).])}

Before providing an explicit form of ransfer (3.18), we propose an algorithm to
caleulate an efficient quewne. Since a sequencing problem with linear cost satisfies
the independence property, calculation of the efficient quewe is very tansparent.
It can be oblained by considenng the urgency index vy = ;l, forall j € N. In
particular, if u; = {:—: == ‘_I—::-, then rJ':{H_l..Hr,H__.._rj < ay (@, 4. 8_;_), for
all #_,_; € &', Ties can be broken by considering the natural ordening, that
is, if wy = w then o} (8,6, 8_; 1) < o7 (0;,6;,0_;_ ,-II if j < f(bL‘L CunLI el
al. 1989). For example, given H!, if state # is such that & D gj > ... = =, then
a* () =(aof () =1, a3(8) =2, .., ai(f) = n). To wrile an prllLlLftrm 1)f[hL

e

transfer for each state # € @™, we consider the “inverse”™ of the order %, suppose

i Bz - iy
i 15 g permutation such that ¢' r: = "rj_ o= T': . Therefore, the wransfer
Rl |.'I 1) miml

(3.18) can be rewritten in terms of the inverse ordering p as

) iy
f.r“:ﬁ.]l:"ﬁ':l =018,k (ZHI‘UL]) — Z 'HI“:”] Z 5 ulr) (3.19)

e ke g#Ek :1: :
forallk e {1,2,_.., n}. It is quite simple but tedious to show that these transfers

add up to zero, thatis, 3, f.0k)(#) = 0. Instead of proving this result formally,
we concentrate on other important aspects. In the discussion that follows, we pro-
vide a detailed analysis of balancedness and incentive compatibility of the ransfer
scheme (3.19) for a linear cost sequencing problem with three units.

Consider a sequencing problem 2 = (N = {1,2.3} Fl.(&;R,,)). In

this problem, for each state § € ©%, with 21 = Ze2 = Hem

eee 2 ghie e SEEL e pelg:
ing the Eq. (3.19), t,(1)(0) = —a18u2)5u3). tu2)(8) = a1buin)(su2) — $u)
and t,5)(8) = a1{f,1) + Oui9)) 5003 — 000115402 We now verify that this
transfer scheme is incentive compatible. Consider a servicing vector s = (5 =
3,80 = 2,83 = 1) and let the type vectorbe 8 = (f = 1.8 = 2.8; = 3).
Observe that, given = and &, u; = l? < w = % =1 < ug = 38
Therefore, o*(#) = (of(f) = 3,05(0) = 2,05(8) = 1) and the

3
1
transfers

[ .
 Recall thatuy = =2 forall j € N.
)
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dre fll:"Hj = f“r[;g]l::'ﬂj = vl'.i'-ll::'ﬁl;g +Hg:|.‘€1 —vl'.i"lH;gHg = 1:]{}1, fjl;ﬁlj = f_l'iiz]l:.'H:I =
aifly(sz — 51) = —3ay and #3(0) = f,1(0) = —aifhs; = —Gay. Observe that
Zj:t (8 = Z';:_:l tuk(#) = 0. Given 5 and true type vector 8, we consider
all possible deviations by unit 1 from its true type #; and argoe that the benefits
to unit 1, from all these deviations, are non-positive. Define Bt 8,: 82,857, 10
be the benefit derived by unit 1 by dm-'iaLing from its true Lype & o #, given
that the other two units have announced (85, 85). Therefore, B(d,, 8,:05.85) =
Uy(a® (8, 02,830, 81 (81,00, 85): 8 — Ly (® {H:I t1(8);81). Consider a deviation
by unit 1 from #; to any type #] < 3. Note that, under this deviation, u; =
% <1 <uy =1 < ug = 3 Therefore, o*(6},02,05) = (o(6],02,05) =
d Ty, e B2) = 2,03(0]. 8:,85) = 1) = o"(f) and hence #,(#, 02, 85) =
ty (8. Thus, B{#],#; 02,851 = 0. Consider, the deviation by unit 1 from #; 1o any
type #% € [3,9). Note that, under this deviation, uz =1 < u; = ‘i!. < ug = 3.
Therefore, o* (6, 8, 85) = (a7 (8], 02, 85) = 2,a5(07, 0, 03) = 3, az(0%, 0,
g1 = 1) # o*(#) and hence # (87", 02, 03) = a1 0z s —s2) = Jag # H(0) = 9a;.
Thus, B{#Y, 81:0a,83) = a1y ss + (0 s, 03) — (8] = 20 + 30y — 90y =
—4day < (. Fimally, consuder LhL deaLmn Hi = 0. Note that, under this deviation,
uz = 1 < ug = 3 < u; = . Therefore, o {H" JBa. 8] = {u’liﬁ'l fa. ) =
]..vI'J'El::'HIli.'Hg.H;gj = d.vl']'jl:Hll.Hg. 1:| = 2:| ?E o |:'F.I|:| and hence f'll:'Hl.Hz.'ﬁl;gj =
—IJL'H;g.'fg = —{ivl'.i'l ?é fll:"Hj = ‘.-']I'.i'l. ThUS, Bl::'HIE.Hl:'Hg._'H;ij = f}19[{.‘1’2 + .'1’;5:| +
fl{'Hii.'Hj.'ﬁl;gj— t () = 3a; — Gay — 92y = —12a; < (). Therefore, for unit 1 with
type &y, Bld, 08,851 < 0, for all 8, # &), By applying similar arguments we
can check that neither unit 2 nor unit 3 can benefit by deviating from their true Lypes.
Therefore, the transfer scheme is both budget balancing and incentive compatible.

4 Conclusion

We can make a comparative study of a linear cost sequencing problem with that
of the classic incentive problem of non-excludable public goods where, like the
sequencing problem, the set of decisions is finite. In the public goods problem the
decision is whether or not 1o produce the public good. The public goods problem is
not first best implementable because the budget balancedness condition cannot be
satisfied in all states of the world. The reason for budget imbalance is the extemality
that an individual can impose on the remaining set of individuals. Here, an individ-
ual, by changing his announcement can change the decision of all other individuals
i see Green and Laffont 1979). While for the linear cost sequencing problem, the ex-
ternality that can be imposed by a unit on the remaining set of units is more *subtle’
and is captured by the independence property. If a unit is allottied a position & in the
queue in some state, then by changing its cost parameter the unit can either change
the cost of the units serviced before it (that is its predecessor set) or the cost of
the units serviced after it (that is its successor set). The unit cannot simultaneously
affect both the predecessor and the successor sets. This sort of externality, which
is certainly less severe than the externality in public goods problem, is one of the
crucial requirement for first best implementability of sequencing problems.
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The analysis presented in this paper achieves something more. In this paper we
have proved that the type of externality that is present in the linear cost sequencing
problem is also present in a sequencing problem where the cost function is expo-
nential. In addition to this type of extemality we need anice combinatorial structure
of the cost function. This additional need makes linear cost sequencing problems
the unique class of first best implementable sequencing problems.
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