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Further Constructions of Resilient Boolean Functions
With Very High Nonlinearity

Subhamoy Maitra and Enes Pasalic

Abstraci—Umne well-known method of generating key stream
sequences for stream ciphers is to combine the outputs of several
linear-feedback shift registers (LFSR) using a comhbining Boolean
function. Here we concentrate on the design of good combining
Boolean functions. We provide resilient Boolean functions with
currently hest known nonlinearity. These functions were not
known earlier and the issues related to their existence were posed
as open questions in the literature. Some of the functions we
construct here achieve the provable upper bound on nonlinearity
for resilient Boolean functions. Our technique interlinks mathe-
matical results with classical computer search.

Index Terms—Boolean functions, correlation immunity, nonlin-
earity, resiliency, stream ciphers.

I INTRODUCTION

ONSTRUCTION of comelation immune and resilient

(balanced correlation immune) Boolean functions has
been an nterestng rescarch area from mid 1980s [20], [21],
[9], [2]. [19]. These functions have immediate applications
in stream cipher systems. Very recently, Sarkar and Maitra
[18] have provided weight divisibility results on comrelation
immune and resilient Boolean functions which, in wrn, present
nontrivial upper bounds on the nonlinearity of such functions.
Similar kinds of results related 1o weight divisibility and upper
bounds on nonlineanty of resilient and correlation immune
Boolean functions have also been presented independently
by Tarannikev [22] and Zheng and Zhang [25] Currently,
the weight divisibility results have been setded by Cardet [4]
(see also the work by Carlet and Sarkar [3]) for resilient and
correlation immune Boolean functions involving the algebraic
degree as well.

These weight divisibility results have direct consequences for
the upper bound on nonlinearity of these functions and a bench-
mark indesign of such resilient Boolean functions has thus been
settled. In the other direction, construction of these funclions
achieving the upper bound on nonlinearity strengthens the tght-
ness of the upper bound results.

In a more practical direction, these functions have immediate
applications in stream cipher eryptosystems. A standard model
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of stream cipher [20], [21], [ 7] combines the outputs of several
independent linear feedback shift register (LESR) sequences
usmg a nonlinear Boolean function o produce the key stream.
This key stream 1s bitwise XORed with the message bil stream
to produce the cipher. The decryption machinery 15 identical 1o
the encryption machinery. Getting the kind of Boolean func-
tions which we propose here provides the best possible tradeoff
among the parameters important o resist the known cryplan-
alytic techniques (see [21], [12], [10], [3] and the references
therein).

1t is now well accepled that for a Boolean function o be used
in stream cipher systems, it must satisfy the properties of bal-
ancedness, high nonlinearity, high algebraie degree, and high
order of comelation immunity (see Section 11 for definitions).
All of these parameters are impornant inresisting different kinds
of attacks. Also, it is not possible o get the best possible values
for each of these parameters separately and there are cerain
tradeoffs involved among the above parameters. Siegenthaler
showed [20] that for an »-variable balanced function of degree
o and order of correlation immunity w1 < e = 1 — 2), we
have m + d = — 1 iknown as Siegenthaler’s inequality in
the literature ). Recently, the exact nature of the tradeoff among
order of comelation immunity, nonlinearity, and algebraic de-
gree has also been mvestigated [ 18], [22], [25]. [4]. [5]. [26].
Eadier, a series of papers (see [19], [8], [14], [17] and the ref-
erences therein) have approached the construction problem by
fixing the number of variables and the order of correlation im-
munity and then trying to design balanced Boolean functions
with as high nonlineanty as possible. However, the most recent
papers [18], [22], [25]. [4]. [5] [15]. [11] concentrate on the
construction of functions achieving the upper bound on nonlin-
eanty.

It should be noted that the current results in construction of
resilient functions, achieving upper bounds on nonlinearity, con-
centrate on high order of resiliency. In fact, for n-variable, r-ne-
silient functions, when the value of v is in the range v 2> § — 2
all of these functions have three-valued Walsh spectra. However,
the functions we consider here are of low order of resiliency and
the Walsh spectra are not three-valued.

In this paper, for the first tme we construct S-variable,
l-resilient Boolean functions with nonlinearity 116, Earlier,
all the &-variable resilient functions of different orders {except
order 1) with maximum possible algebraie degree and maximum
possible nonlinearity (equal to the upperbound) were known. We
here close the issue by proving the case for order L as well. Our
construction uses 3-variable Boolean functions with nonlinearity
11 asinput and then concatenate two such functions o constructa
t-vanable unbalanced first-order comelation immune function
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with nonlinearity 26. From such a function we provide a
construction of an 8-variable unbalanced first-order comrelation
immune function with nonlinearity 116, We then exploit a
randomized search technigue using bit manipulation and hinear
transformation to get an S-vardable, 1-resilient function with
nonlinearity 116. The construction of this function was posed
as an opén question i [ 18]

We also present anew algorithm for modifying degree nonop-
timized L-resilient functons into degree optimized ones. We use
this for the construction of 1-resilient, degree » — 2 functions
on o ovariables, n > 12 even, which gives betler nonlinearity
than that presented in [17]. In partcular we could construct
highly nonlinear 1-resilient functions on 10 variables, which
gives functions with nonlinearity 45% and algebraic degree
and 5. The construction of such functions has been left as open
questions i [ 18] We also provide a method wo construct degree
optimized rn-resilient functions (v = 1) from a special class
of degree nonoptimized m-resilient functions considered in [6].

We conclude with n-vanable, me-resilient functions for
1= yno=l % — 20 An existing recursive construction [22], [15] is
analyzed in detail which generates resilient functions on higher
number of variables from resilient functions on lower number
of variables. We identify important functions (the l-resilient
functons we (ind here and the functions from [17]) as initial
inputs o these recursive constructions. As example, we use
the (%, 1.4, 1167 functions in desired form o construct the
(11, 4, 7, 476} functions. Also, using the functions of [17] as
mnital ones, we provide a method o constroct Jre, v, e—e—1,
=l gl ?] functions when 2n — %m = 3 mod 4. In
particular, for ro = 3, aconstruction of (v, 3, n—4, 2»—L 2%
functions is provided. For this order of resiliency, the functions
in this series either attain the same quality results or supersede
all previous constructions in terms of nonlinearity value.

II. PRELIMINARIES

Definition I: A Bookan function on y» varnables may be
viewed as a mapping from 40, L} into {0, 1} By £2,, we mean
the set of all Boolean functions of n vanables. We interpret a
Boolean function f{X.. .... X,) as the output column of its
truth table [ ie., abinary string of length 2

F=[F00, 00 0, fL 00 F0 L,
B e o |

We also use the notation f[a]. which corresponds to the wth
entry in the function’s truth table. To save the space we also
represent this binary string of length 2% as a string of hexadec-
imal digits of length 2—_' = 2"~2 For binary strings 5. 5. of
the same length A, we denote by #5005 = 5o (respectively,
#1857 # 5470, the number of places where 5 and 5. are equal
irespectively, unequal). The Hamming distance between S, S
is denoted by 405, Szl ie.,

81 S2) #5052l
We also define
'?J.:d'i.Hj_- ‘;2} = #';51 =5 - #';Sl % *‘-'-'1?,.'1
Note that, wd{ S, 523 — A — 2al{5, 5a). Also, the Hamming
weight or simply the weight of a binary string 5 is the number

A2

of ones in 9. This is denoted by wt {87, An n-variable function
Jis said to be bafanced if its output column in the truth table
contains equal number of 0°s and 1°s (e, wt (/) =327 1),

Definition 2: The addition operator over GF {2} is denoted
by +. An n-variable Boolean function f{ ¥, .... X, ) can
be considered 1o be a multivarate polynomial over GFi2).
This polynomial can be expressed as a sum of fth-order
products (b < & = n] of distinct variables. More precisely,
JUX oo X)) can be wrillen as

ant P oo D XXt b X X
il L
where the coefficients ag, ai;, ..., ayz2...q € {0, 1}. This repre-
sentation of § is called the algebraic normal form (ANF) of f.
The number of varables in the highest order product tenm with
nonzero coefficient is called the algebraic degree, or simply the
degree of f.

In this paper, we will use concatenation of Boolean functions.
Consider f), fo © £, 1, and [ € £ . Then by concatenation
of fi and f:, we mean that the output columns of the truth ta-
bles of [, f2 will be concatenated to provide the output column
of the truth wble of an w-vadable function. We denote the con-
catenation of fi. fa by fi||fs. Thus, § f1 f» means that in
algebraic nommal form,

P G | e IR
_ﬂtu.f'l'i_Xl-. Ead Xra—l:'-

Also, for the complement function of f we use the notation [,

e, f =14 /).

Definition 3: Functions of degree al most one are called
affine functions. An affine function with constant term equal
to zero is called a finear function. The set of all w-varable
affine (respectively, linear) functions is denoted by Ain)
irespectively, Livn}). The nonlinearity of an n-variable function
fis

el fy = min [dif, g0
Awy '

1., the distance from the set of all n-variable affine functions.

Definition d: Let X — (X, ... X, and w
both belong o {3,117 and

0. P
k'-‘*'l:--- ‘ :-J-'.'.'_:I

A= A P RN

Let £{.X) be a Boolean function on « variables. Then the Walsh
transform of f{X 1 is a real-valued function over {1, 1} that
can be defined as

wo ot

Wolw) = B TS

Mote that Wlw) = wed( [, 1), where I, denotes the linear func-
tion on n variables given by (] Y} = w - A For a Boolean
function f, we define

NZ([) = {w[Wylw) # 0}

where H'r is the Walsh transform of [,



Definition 5 {9): A function f{ X, ...,
correlation immune (CL) il 15 Walsh tmansform  satisfies
Wela) = 0, for 1 = wtie) < . Note that J is balanced
iff W0y = (i Balanced sth-order correlation immune
functions are called ro-resilient functions. Thus, a function
FONL o0 XNy s meresilient i its Walsh transform satisfies
Welw) b for 0 = asf(w) = e

N1 i srth-order

Al this point, we recall two important properties of the Walsh
spectrum.
1) The first one is referred 1o as Parseval’s equality [7], and
it states that for any Boolean function | = &2,

> ) =2
wit{ M, L}

2y The second one 15 a more recent result [ 18] concerning the
weight divisibility of the Walsh spectrum. According to
this result, for any m-resilient (respectively, w-ClL) func-
tion [ £ €2, we have Wi{w)=0mod 2772 (respectively,
2=y, for any w from [0, 1]™. Moreover, involving the
algebraic degree the result is as follows [4], [3]. For any
m-resilient (respectively, in-Cl) degree & function [ &
£, we have

i &

Wolw) = Bmod g2+ 2

(respectively, 27111 ==Y, for any w from {0, 1}°.

By an {n, we, of, o) function we denote an re-varable,
mre-resilient function with degree d and nonlinearity x. By
(. O, ol 2 function we mean a balanced n-variable function
with degree o and nonlinearity . By [r, vo, o, o] funclion we
denote an p-varable unbalanced correlation immune function
of order m, nonlinearity v, and degree o. In the above notation,
a component is replaced by a “—" if it is not specified, e.g.,
im, m, —. &1 if the degree is not specified.

Let us now clearly clanfy the exact upper bounds on the non-
linearity of resilient Boolean functions from the weight divisi-
bility results. We use the term nlinise{n ) to denote the maximum
nonlinearity of an w-vardable Boolean function. It is known that
for » even, nlmax(n) = 2*71 — 297! [16] and the functions
which atain this nonlinearity are called bent functions. How-
ever, the problem remains open for odd w. IUis clear that the bent
functions cannot be comelation immune. For the r-odd case, 1o
wrile the upper bound on the nonlinearty of resilient functions,
we assume here that the functions attaining the maximum pos-
sible nonlinearity pliax{x! may have the comrelation immu-
nity property. Asexample, for n = 3. 7. the maximum possible
nonlineanties are 12, 56, respectuvely, [1]. [13] and we get re-
silient functions, e.g. {5, 1, 3, 123, {7, 1, 5, 560,07, 2, 1, 36}
[17]. [15]. at those nonlincariies. We first consider the case of
iw, ey e, o) functions.

1) If e is even, and m + | %’ = 7 — ¥, then

1 _2:l'1'1+'|'|'_.I 'I; ﬂ_ll

a2 :
2y I noas even, and m + L%_ < 7 — 2, then
p<on=l 2E-1l  gmililEEr=

3y If w15 odd, and

nbnax(n) > 2! — gmtl+lt——
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then

e R | 21||.+'I+|_L_:.'—2JI

4y I ne 15 odd, and

nlmax(n) < 2 L__gm L

=]

then .1 is the highest multiple of pri—l=L* =51 which is
= nlmaxn,

To simplify the scenario, ket us now explain the result for
{n, . s — i — L, o) functions. That is the case when we con-
sider the maximum possible algebraic degree (the funcions op-
tumizing the Swegenthaler’s mequality ).

1y If mois even, and m > 0 — 2, then o < 201 — amtl

122

2) Weiseven, and m < 8 — 2 then o < 27 — 23-1

21‘"—].

[l =1

P L aqm4l

3 If wois odd, and olmaxin) then

R L L it 2:.-.-+'I

4) If nis odd, and nlmaxin) < 2°71 — 2+ then = is the
highest multiple of 27+ which is < ulmax{n).

The above upper bounds will help in comparing the quality of
our results. Next we present astandard tec hnique of constructing
correlaton immune functions [ 14]. The method is as follows.
We will refer to this method as the LT-method thioughout this
paper.

Given a function | © £),, we define

Sy = [w € [0, 13| Welw) = 0}
where Wy is the Walsh transform of [ If there exists » lin-
early independent vectors in Sy, then one can construct a non-
singular w > 7 matix By whose rows are lincarly indepen-
dent vectors from Sy Let, Oy = h’_f ' Now if we construct
afunction [*{ X = f{C: X, then both [ and [ have the same
nonlinearity and algebraic degree. Moreover, Wy} = 0 for
wi (w) = 1, where W is the Walsh transform of f'. This en-
sures that [ is first-order correlation immune. Also, if [ is bal-
anced then {7 is balanced and hence |-resilient.

II. CONSTRUCTION OF {8, 1, &, 1161 FUNCTIONS

In this section, we present the constuction method of an
(% 1, 6 116 function. For this purpose we first consider how
to construct a [6, 1, 3, 26] function with weight 30, Next we
provide the construction of an [3. 1, 5. 116] function having
weight 124, Using these [%, 1, 5. 114| functions, we present the
constructionof {4, 1, ¢, 1167 functions. Note that we use asim-
ilar kind of idea for the constructions of a [6. L, & 26] function
(see[15])and an 5'5, 1, 4, IlL'r] function (see [ 11]). However, we
choose the weight of the functions with more care in this initia-
tive.

A. Construction of |6, 1, 5, 26| and |5, 1, 3, 116| Functions
Consider a fi-variable funcuion v with algebraic degree 5 and
nonlinearity 26, Note that by proper permutation of the input
variables, the function & can always be written as {1 Xaif; |
Kpha where fiq, by are S-variable functions with algebraic de-
gree 3. Concentrate on a specific degree 3 term in the ANF of k.
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Clearly, there 1s one vanable X; which 1s not present in that de-
gree 5 term. Let us consider some permutation of the input var-
ables such that X; goes to Xy Then , by fixing ¥g = 0, we get
the function fe- and putting Xy = 1 we get the function hg. 1t is
clear that the algebraic degree of Fp, frx must be 5.1t is also im-
portant to note that the nonlinearities of both &, Ay must be 11.
The functions fiy, ko are of degree 5 and hence of odd weight.
This redsults in the nonlinearity of iy, iz being odd. Now if the
nonlinearity of either &y or A is less than L1, then the function
v cannot have nonlinearity 20,

We mitally concentrate on [1, Table 1], where there are
just four out of 49 equivalence classes with nonlinearity 11,
These functions are also of weight 11. Consider such a function
Bl Now, there are linear functions ! of S-variables, such that
iy, 1 = 15 and hence wl (BY + 10 = 15, In this manner, we
can select four H-variable functions from four different repre-
sentative classes [1] which are of nonlinearity 11 and weight
13. The choice af weight 15 function is from the motivation that
they are closed to balancedness, and its importance will be
clearer in the next subsection. Lel the representative funclions
be as follows, which we present as output column of the ruth
tables in hexadecimal format:

fly = HBLEEEAS ha = BEH3E50E,

fra — G3EFT240 feo — T24EB3E1,
Thus, concatenating each representative of the fth class, + =
- -, &, with all nonsingular affine transformations applied to
Beoooey dowe will get a lot
of G-variable functions & with weight 30 We will choose those
with nonlinearity 26. Now, if the function f has wdf, ) value

L,
a representant of the jth class, §

zero with six independent linear functions, then we can use the
LT-method as described in Section 11 to get [6. 1, 5. 26] func-
tons with weight 230, At this point let vs explain the following
technical result.

Proposition [: Let i be an p-vanable Boolean function with
algebraic degree of = 2 and nonlinearity . Consider the func-
Licn

{j[_Y'_. saa _Y_.-,L+2:| X_.“+2X_.“+1 + .Ir.'-::__Y]_, say _Yﬂ:l
i.c., the truth table of g is of the form h||&||#([f. Then g has
degree o and nonlinearity 2% + 2.
Progf: Note that for any affine function A £ A{n | 2),
we can write N in any one of the forms |2 7| 2| )75 2182
TN 1 where 1 € Aind. Now consider A = {])I]|1||f. Then,
el Xy =l FL||FL||E_, I
dlfe, D4l O d(h, D+ diR, D)
=2dih, L+ dih, D+ dih, 1
= 2y + 2™
The result is similar for A of other forms as well. This gives the
nonlmeanty result.

Since gy is of the form [ ¥-, ... X.42) XX
FRIX, ..., Xy, the algebraic degree of 1 is the same as the
algebraic degree of 1. O

Now weconcentrate on |3, 1, 3, 116] functions. We recall the
construction method provided in [11]. Let i be an [n, 1, o, i
functon, where nis even. Consider the function

.‘J’::A-'_: sy A-:-a+2:' = ut:-a+2ut:-a+l = h'r‘);l: 1y A-HJ

i.c., the truth table of g is of the form a||A||4]|A. From Proposi-
tion 1, the nonlinearity of g is 2" + 2. Now concentrate on the
following {r | 2} =[x | 2) matax ; interms of the LT-method
as given in Section 11

L1 N RO I § T B
oo ., . 01 10
a0 o - 1T 00

L T O BV B 1
o1 a0 0
I T R V I VI VN 1

Consider X = (X, ..., X, 1o and we interpret it as a
column vector here. From [11] the function g'{ X = g{¢2, X))
is an [n— 2, 1, d, 2" — 2| function. Also, if the weight of &
is . then the weight of g is 2 4+ 2y, and 4 has also the same
weighl.

Hence, if we start froma [6, 1, 5, 26] function &t with weight
30, it is possible to construct an [8, 1. 5, 116] function 5" with
weight 124, To get an (8, 1, 6, 116) function we will modify
these [%, 1, 3. 116] functions.

B. Anix, 1,6, 116) Function
Let f bean 8, 1, 5, 116] function with weight 124, Select
any fourbits £, 42, v3, 5y of [ suchthat [[i-] = 2] = flra] =
Fléi] = 0. Then construct a function g such that
o[t1] = aliz] = glis] = glis] =
and g is equal to  for all other bits. Note that g is balanced.
Now check the nonlinearity of f. I it stays at L16, then we try
to find out a set of right independent nonzero linear functions of
S-vanables and if such a set exists, we use the LT-method used
in Section 11 to get an (8, 1. —, 116) function. We know [4],
[5] that the maximum possible nonlinearity of an w-variable (0

T

even), m-resilient (me = § — 23, degree o function is

o 1 _ g8 L gmbli|B=F=t]

Thus, the degree of an {8, 1., 116) function must be §,
since if the degree 15 less than 6, then the nonlinearty will be
at most 112, Hence any {5, 1, —, 1167 function must be an
(8,1, 6. 116) function.

Let us start with the [6. 1, 5, 26] function

M — BR1AGC1YEEDIBERD

which has weight 300, From this we get the [%. 1. 5, 116] func-
tion of weight 124
1E111E11FEEEE]1 1EEFE1111EE111E1EL
BTTTaTREERTEERTTTRETTTTa8RE8RTTY.
Then we use this %, 1,3, 116] function to get one {5, 1,6, 116)
function
SFAFCE3EEE2E0RT 135 150040B4T 25125
CABADERDLZEAARADACDOCE T CABERF21Y .

Let us now  highlight why we are more careful about
the choice of the weight of correlation immune functions
[G, 1.5, 26], |4, 1.5, 11G). Note that the weight of the
[%. 1. 3, 116] function is 124 and we need o change (0 o 1)



TABLE 1

MONLINEARITY RESULTS FOR &-WARIABLE RESILIENT
BOOLEAN FUNCTIONS

Tt 1 21 3 4 a

@ | 116 | 112 | 112 | 96 | 64

=

only four positions in its truth table to get a balanced function.
If the weight of the &, 1. 5, 116] function is chosen further
away from 128 (the weight for balancedness), then we need 1o
change more bit posiions o attain balancedness and, in that
case, preserving the nonlinearity at the same value LLG would
have been less probable. Thus, in this construction method the
weight 124 of the [8, 1. 5. 116] function plays a crucial role.
This in tum justifies the choice of weight 30 for the |6, 1, 5. 24
function.

This construction completely solves the maximum nonlin-
earity 1ssue of resihient functions on eight vanables. Table 1
shows the maximum nonlinearity & cormesponding o each order
of resiliency v, Note that, for S-varable functions, it is pos-
sible to construct resilient functions achieving the upper bound
on nonlinearity for each order. Also, it is very clear from [22],
[4], [5] that all these functions possess the maximum possible
algebraic degree {7 m) where yv is the order of resiliency.

IV, DEGREE OPTIMEEATION OF RESILIENT FUNCTIONS

In this section, we discuss a construction of degree opti-
mized resilient functions from degree nonoptimized resilient
funcuons with minimum decrease in nonlinearity. We start with
the following technical result conceming the construction of
l-resilient degree optimized functions.

Theorem I: For any l-resilient degree nonoptimized func-
tion %7 with nonlinearity »d{ {7, it is possible 1o obtain a
new degree optimized L-resilient function f7{¥) having non-
lincarity il 7% © fnl{ 1, nli f1 _ 1} by complementing four
suitably chosen bil positions in the truth table of f.

Proaf: Without loss of generality, we suppose that the
function {{ X} depends on the variable X,
Let us assume that there exist e, 3 € {0}, 1471, such that
flee, M 7 Flon 1)
fia 0y # fE, 1)
and
Flen, 0) £ £, 0).
That is. flee, 0 = F(3, 11 and e 1) = F{57 00 Note that
by fler, ) we mean o, X, = () The existence of such e,
s left to the end of the proof.
For convenience, we denote

K= 4o, 1), (o, 1), (3, 0), (3. 1)},
Let us construct a function 7 Y) defined by

i JiX. Ng K
o) {1+5Lﬂ1 X eK.
Under the assumptions above, we prove that * is a l-resilient
degree optimized function.

1829

Clearly, f~ is balanced since § is balanced. Also, it can be
checked that the functional value of the four inputs in K has
contribution 0 in the caleulation of both W (w0021 and
W lw) yrig=1- Thus,

W (at) wiwi=1 = Wl ] ws =t = 1
Hence, f~ is also first-order correlation immune. Thus, £ is
I-resilient.

Combining the weight divisibility results [18] with the fact
that we changed 4 bits in the truth table of £, it can be deduced
that

pd{ 0 [ndi 3 0l 3+ 4},

Next, we prove that the function £5(X} is a degree optimized
function, i.e., deg! /) = n — 2. The ANF of the function | can
be expanded as

HXy=r00 . 014+ X001 X))
+ ML, A 1= e e )
S o e R (N ot T S |

e

[ P PR
AL+ N4 4 e, 1)

':_I:1 | "'- ik ;' Ty “ | -"'-:-:- ., }'-n.

o
-

[ ST Y|
oo+ F(3, 03

E ::_1 + }-L-_ = J.-:'i‘_:' ER ::_1 + X.'-&—l + .'.:'jlﬂ—_:'

'

X L
TR )
3 !:.l + ‘Y'_ L -’..j?'_ :I rEr !:.l + X."Jt—l + .':.j'fl—-_.:l —YTI

T SR

o fL L, DX - X

e

The ANF of (X)) will be given by
FUX) = ) + gl X )1+ X
+ yl:f‘-t].' oy :.:r‘_l.:lXﬂ
FRiX, ..., Xy '_:'[1 | }L-n::
R

= _f()l.j + {I{Xl P X_.-I._]_j + M;)LI]_._ 55 5g )ﬁ...-‘_]_}.

Since deg! 1 < n — 2, itis sufficient to prove that degig +
Fel = w — 2 We first note that the terms of order »: — 1 cancel
out each other, i.e. deg(y + h) < no 1L Since o # /7, we have
by 4 Fforsomed i 1., ve— 1 This ensures the presence
of the term X -+ Xy 1% - Xy - inthe ANF of J*{X1.
Thus, degi £ = o — 2 as claimed.

Al last, we prove the existence of e, 7 satisfying the condi-
tions above. Let us denote

Sop= e XD = I B =i fori =1, 1.
Furthermore, let

Soi = {X XL Q=0 fX 1y=1}



and
Sip=4X" X, 0 =1, f(X', 1) =0}

Thus, we want to prove that both Sq; and &1 are nonempty.

Suppose, o the contrary, that /i X, ) = fiX', 1) for all
X' = 40, 1} . Then f does not depend on A, which is a
contradiction to the assumption. Thus, there exists a vector, say
e, such that fice 00 2 Sl 1) Without loss of generality, we
assume flee, ) = 0, be, o & S5 1. We now prove that 57,
15 also nonempty. Suppose that §; o = §. As [ s balanced,

Su.u| = |90 1| Furthermore, since f is a 1-CL function, we also
must have Sy n| +|5n, 1 521+ 510 - Thus, combining
these two conditions, we oblain |55 | = |90 and 9L 5 s
nonempty. This concludes the proof. O

The importance of this result lies in the fact that we do not
put any requirement on degree nonoptimized function . Thus,
il enables us w0 vse a construction that attains the highest non-
linearity value for l-resilient functions not wking into account
the algebraic degree of such functions. Applying Theorem 1 on
such a function we obtain a degree optimized function paying
the price of decreasing the nonlinearity by a constant value of 1
in the worst case.

MNote that m certan cases the degree optimization algonthm
may be extended o higher order resilient functions, i.e., m = 1.
In this case, the number of points to be complemented is 20+
Similarly as in Theomem 1, it can be shown that there exists a
set of cardinality 2! such that complementing the function’s
values in the points belonging to this set would yield a degree
optimized function. However, in general, the order of resiliency
is not preserved. On the positive side, a good example of ap-
plying the degree optimization algorithm, when constructing de-
gree optimized functions of higher resiliency order, is the linear
concatenation method in [6]. Here, an ro-resilient, n-variable
function j is constructed by concatenating 2 ¥ distinet m-re-
silient linear functions in % variables. In this construction, the
nonlinearity value is directly related to the parameter &, and
given by ni(f) = 2% — 2% where £ is to be minimized to
achieve a high nonlinearity value. For convenience, we denote
these linear #-resilient functions by 5,4 =10, ..., 2% * 1,

Theorem 2 (6] For given nand i, o > nr 0 200015 possible
to construct a nonlinear {n, m. o, 2"~ — 2¥=1) function f,
where E: = win &y, is the minimum integer satisfying

"k o ) ) R‘p) —
(m. - 1) (m k2, B (ﬁ‘- = n B

i
Furthermore, the maximum algebraic degree of § depends on &
and, in general, o =% — v — 1. The ANF of function [ is given
by

FOE, By OV

)3

o (R T

{Yj + T..—.r;]'i![-r:(df:l fz::'

where |7 is & decimal representation of the vector —, and X £

{0, 13%, ¥ € {0,1}" *,

Without loss of generality, we assume that given a degree
nonoptimized ri-resilient function f (as constructed by The-

orem 2) there exists o = {0, 11" ™ ! such that
FiXi= No— o+ XL o= (K ey Ui
UL+ A - =& A =0, X Lol

Define a new function [ derived from [ as

. S I m41 0
J[--tl-'}l'j = 'ff'\l' }-‘ ¥ A ¢ .L_I‘:z." D::I'- £ {“' J} +1.|
L L4+ flX) Ae -[[z._ ad; z e {0, 1Pt _I

Theorem 3: Let | be an (n. m, o, 27 1 2%
ton constructed by means of Theorem 20 We assume that
d < n—w — 1 Letfy ¢ L{k) used in the construction
of f be given by [y{Y) = Xy — .- — A1, whereas
b, oo low e are arbitradly chosen distinet ro-resilient
lincar functions on L5}, Then the function [, constructed
above from f, is an {n, m. e — m — 1 @) function. Here,
x € [nll [, ([ £ MLl

FProof: For convenience, let

; 3 fune-

)'.I:)”_, 2,15 /5"1“—1} =A1+--+ -Ym-H-
Then

fo = Al ALY
e e

Ek—'n.l—l
or written in ANF,

-!‘-U[I}L-l, i X;,-:' = :'d:.‘f'_: i .'f;.w+1;l.

Let e = {01, ..., i is an all-zero vector of length . m 1.
MNow, complementing 2™~ bits in f at positions {(z.a), z £
[0. lj”‘+ll corresponds to the use of a new component fune-
tion fy = A[JAl| - |AA in £ Thos, £ = &gl o fue 0y
Since A s w-resilient, A s ie-resilient as owell. Hence, iﬁg 1%
m-resilient and £ is meresilient. Using weight divisibility re-
sults of resilient functions [ 18], we conclude that

wd{ f*) € i Omdi fy L2+,

b —

P =w—wrin— 1. This 15 equiva-
lent to proving that degllp) = & m Tform 2 =< & <0 1
Then, dew( /1 n—k+k—m—-1 w—r—1. We prove this
by induction on k. For convenience, we write & = v+ + 1, for

Liremains to prove that degi [

ieql,2 ..., n—m—2} Let {} denote a functionon £ 4,41
defined by
B = NI A
Se—, - am—
i

Thus, we need to prove that degifl)s = ¢

1) Base case of induction, i = 1. Then iﬂ = A A Clearly,
=1HX o X 1+ o 2o dies, (£ Alm + 2) and
dealil) = L.

2) We assume that the statement is shown fory — 1 — 1, ie.,
sl FRE
degiti ™ =j 1.
3) We prove now that degdll) = 7 for 5, © £20m01. We

wrile ET.II = 'i%__lgf'.l for Iy € Livn + 3. Sinuu.tlg-:gfié_lj =
4 land deg{ly)=1, we conclude that deg(f =4, O



Example 1: We use the extended degree optmization
algorithm to construct & {7, 2, 4, 48} function saring {rom a
(7.2, 3, 48 function provided in [6]. Forn = 7, m = 2, and

the minimum value for £ is £ = 5. According o the eadier
discussion, let us choose o=k —  distunet 2-resilient linear
functions, say ly, ..., by, given by fy = X + Yo | A,
L Xi+X+X.. L X+X-—-N 0 Xa+X+Xs

Define f: [0. 1}7 -+ {0, 1} as
fX.¥)= 3 M+l n)gil Q)

Tl 1)

where [r] is a decimal representation of vector 7. It is easy to
verfy that [ isa (7, 4, 3, 48] function. Let o = {0, 0, 0, 00
By complementing the values of | in points {y. o) for ¢ £
10, 1}, we construct a (7, 2, 4, ») function f*, where & &
140, 4%, 36}, It can be checked that in this case & = 18 yields
a (7. 2, 4, 43 function.

Note that the maximum possible nonlinearity of a T-variable,
Z-resilient, degree optimized function is 36. Such (7, 2, 4, 54}
functions were constructed in [ 15] using a computer search.

Exampfe 2: Now we consider the construction of degree
optimized Z2-resilient 11-varable functions. The best known
nonlinearity for this type of function is 954, i.e., a function
(11,2 & 4984} has been reported in [17]. Here, as in the
previous example, we start with an (11, 2, 6, 992) funcion g
constructed by means of method i [6]. Applying the extended
degree optimization algorithm on g, that s, complementing

2% L = % bits satisfying the conditions above, we obtain an
(1L, 2. 8, =) function g*, where 2 < {984, 892, 1000}, Thus,
even if the worst case s considered, 1.e., & = 951, we oblain

the same quality result as i [17].

V. 1-RESILIENT FUNCTIONS ON EVEN MUMBER OF YV ARIABLES

Mow we concentrate on L-resilient Boolean functions on
higher number of variables. First we present a technical result.

Proposition 2: Let k bean {n, 1. &, & function, where o =
2, Consider the function

PX o Kpga) = Nz | ALAL 0 X))
i.c., the truth table of g is of the form % #||7[|7. Then g is an
in42 1. d 2" 4+ 22 function.

FProof: The nonlincanty and algebraoe degree results
follow from Proposition 1. Since A is l-resilient, & is also
L-resilient. Thus, it is easy to see that g = f||#]|%||% is also
1-resilient.

Initially, we start with degree nonoptimized functions and
then provide a modification to get degree optimized resilient
functions. We already have (8, 1, 6, 281 — 23 4+ 232 func-
tions. Thus, using such a function as the initial one we get the
following result.

Theorem 4: For even n = 5,11 15 possible 1o construct
(15,1, 627 2% g} 2y
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Proof: Givenani{m, 1,6 2™ ' 2% +2% 2} function

we can use Proposition 2 o gelan

(rm+2.1,6 2™ 4 aam-L_a% 4 o¥-h

— am+l mfd

. +2E_2\|

A
function, which is the inductive step. The initial condition is
proved using the (&, 1, 6. 2% ! 2f 128 2= 1167 function.
O
Putting vt = 1} from Theorem 4 we get a {10, 1, 6, 4348
function, which has also been placed as an open problemin [ 18],
[15]. Also, this function has an important significance in lerms
of weight divisibility resulis. From the weight divisibility results
[4]. [5]. it is known that the maximum possible nonlinearity of
an r-variable, w-resilient, degree o function is

R 25 1 .-}|11+]_+|_-1-l::u-'-!-_—gj

For the {10. 1, 6. = function, & = 10, m = 1, d = i, and
hence the maximum possible nonlinearity is 2% —21 - 2% = 455,
Thus, the nonlinearity 454 15 the maximum possible nonlin-
earity of any {10, 1, 6, % function. Hence, this result in turn
shows the tighiness of the upper bound on nonlinearity obtained
from weight divisibility resuls [4], [5].

MNote that the construction of Theorem 4 provides functions
with algebraic degree 6. We modify the construction in The-
orem 4 10 construct T-resilient n-variable (n = 10% functions
with maximum possible algebraic degree (r — 23, The function
{#, 1, 6, 1167 is already optimized with respect to algebraic de-
gree.

Mext, we tum our attention back to the construction of 1-re-
silient degree optimized functions.

Theprem 5: For even = 14, 1L 15 possible 1o construct
{n, 1, n—2, 271 — 2% 4 27—? _ 4) functions.

Proaf: The proof follows from Theorems 1 and 4. Here

we consider the minimum possible nonlinearity. O

Remark 1: Using Theorem 5, 1t 1s possible o gel a
{10, 1, &, 451 function. A result with the same guality is
available in [17, Theorem 9] Now it s important o note that,
in the proof of Theorem 5, we mentioned that this is the keast
possible value of nonlinearity in our construction. In fact,
we exhausted all possibilities by changing two pairs of valid
positions as in the prool of Theorem 1 for a {10, 1, &, 444
function and found that the nonlinearity stays unchanged at
488 in some cases. Thus, we could construct {10, 1, 8, 488)
functions, one of which is completely described as follows:

SF4FCGTEER2E0BT 135 159C4BB4T20 128
SF4FCE35EERB0BT 155150904884 725121
6F4FCG3EFEEZE0BT 1351 5004BB4T2012E
SORCIOBEALIDTFABECAEAGZE4AREDATDS
CABASI2DDIEAARADAODOCY Y TCEBEF2Y
CABASG2DD2EAAS4D20D0OCHTTCAREF 217
CABASSEDD2EAASADI0DOCATTCABEF217T
ShYEGCD22DAEBLTE26F2F 3688374 100ES,
This 15 a better result than [17, Theorem 9] In general, there 15
a possibility of getting {n. 1.n» — 2,2™ ! — 2% 2% T
{r, 1, — 2, 27~ _ 2% L 25-7 1 4) functions, if one can
select proper positions.
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Note that in [17], l-resilient functions with nonlinearity
ve—d _ 9% 4 952 could be achieved for n = 12, However,
the maximum possible algebraic degree for that construction
1% T’E' + 2 [17, Theorem 7|, which 1s much less than the opti-
mized degree (n — 2). Here we concentrate on functions with
optimized degree only.

For even w > 12, the currently best known nonlinearty
achieved by 1-resilient functions [17, Theorem 8] with max-
imum possible algebraic degree (n—27is 2"~ — 2% Ly where
i 15 the maximum possible nonlinearity of an (£ 1}-variable
L-resilient function with algebraic degree (2 — 3], We estimate
woas 232 — 252 _ 4 [18], the upper bound of nonlinearity
for an (% Ti-variable function which is T-resilient. So,
the currently best known nonlinearity achieved by 1-resihient
functions [ 17] with maximum possible algebraic degree (n 20

is 271 — 2w 423 2Rt g

We here achieve the nonlinearity 2" 1 2% 1 2% 2 Jfor
L-resilient functions with maximum possible algebrmic degree
3 P
b — 21,

Hence, considering the functions with maximum possible
algebraic degree, we find that foreven n = 12, the nonlinearity
achieved in this paper for 1-resilient Boolean functions (alge-
braic degree s — 2)is 2~ — 27 —23—2 _ 4_which is strictly
greater than the nonlinearity 27—4 — 2% 4277 _23-7 _ 4
achieved in [17] for 1-resilient Boolean functions (alge-
braic degree w» — 2). The constructions (%, 1, &, 1161 and
(1001, 8, 4588} provides better nonlineanity than [17] for the
£, 1) and also these are placed as important open
questions in [ 18]

Ciasts o =

V1. FUNCTIONS WITH ORDER OF RESILIENCY m > |

Here we analyze an existing construction techmgue [22],[15]
for generating resilient functions on a certain number of vad-
ables from functions on a lower number of variables, Note that
the construction of [22] has been funher extended in [23]. [24].
S0 far, the baswe construction [22], [ 15] has been utihized i con-
struction of resilient functions with high oders {m = § — 2).
Here, we utilize the construction for low order of n:sili[‘nuy as
well.

This construction was first proposed in [22] and then modi-
fied in [15]. The construction provides {x | 3)-vanable, {m 2)-
resilient functions from re-variable, ro-resilient initial functions.
In[22], the requirement was two initial functions with some spe-
cific properties and this was later modified in [15], where the
requirement was only one initial function. This initial function
[15] has w be in desired form. Let us now sta with the defini-
tion and basic construction method [15].

Definition 6: An (n, nme, f, =) function f is in desired form
if it is of the form | = {1 4+ X} + X, f2, where [0, j5 are
{n— L, o — 1, =) functions,

Construction I (15 Let § bean (n, we, d, =) function in
desived form, where [}, fo areboth {n— 1, v, o — 1, — ] func-
tions, Let

= IS
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or writlen in ANF
I'= ﬂt.'-:_+2 R ﬂ‘fr++l -+ Jr'
Let
{7 = h F‘r“ﬁ
In ANE the function € is given by
G={14+X o+ Yo A+ e A oY e+ A
In the language of [22], the function & above is said to depend
quasi-linearly on the pair of variables [ Y, 1., Y, 1] We con-
struet a function H in w + 3 variables in the following way:
H =14+ X, ) F 4+ X, afq.
Then the function H constructed from fisan (n | 3, m | 2.
o + 1, 2% 4 A4 function in the desired form.

For the functions &G, we have NZ(IINNZ(G =W e,
the set of nonzero Walsh coefficients of the constituent functions
of IF are disjoint. This has been clearly mentioned in [15]. How-
ever, it is not very clear what is the relationship among N 2( f 1,
NZUF, where fi, fa are the constituent functions of the initial
function [. We will look into this problem in the following.

where 7 = f1||f, and  h = fi|fo.

L

Pmoposition3: Letin > 5 —Z2and [bean{n, mn, n—m—1.
2=l 2+ function indesired form. Also, f = {1+ X1+
Koo, where [ fooare [re— 1, w, ne — e — 2, =) functions.
Then NZ[ fi} ™ NZ( fa) = .

Proof: Note that,
wllfi) = nll f)
Given the upper bound on nonlinearity of a resilient function
8L wd(fi] < 2 2 271 Thus, ni(f) = 27 = o=
The nonlinearity for fo is the same. Also from [ 18] we know
that the Walsh spectraof [, f1, fo are three-valued 0, 1212

Now consider NZ(f,) n NZ{fay £ @ Then there exists
an {n — 1L'-variable linear function ! (may be degenerate) such
that aedf £, ) # 0 and also wdi fa. £ 3 0015 both wd f L 0,
well f2, 11 are of the same sign, then the Walsh spectra of § will
contain the value —2™+ or —2™+3 which is a contradiction.
I el F- . O3, wwadi fo. I are of different sign, then without loss
of generality, consider wdd{ [, I' = 2™+2 and wl( fo, [) =

27 Now

i {, X, =1 =i £, 14— awdi{ fo, [h = 278

which 15 again not possible. 4

gn—2 _ gn—2I  qgivt+l

The above proposition guarantees that if we get an n-variable,
weeresilient (m = 4 — 2] Boolean function [ with maximum
possible nonlinearity in desired from, then the constituent func-
tions J1. fa (which are (n — 1}-variable, me-resilient functions
with maximum possible nonlinearity ) will satisfy the condition
NARINNE ) =0

However, Proposition 3 does not always hold for the functions
where the Walsh spectrum 1s not three-valued. This happens in
the following two cases.

1y Consider the range v = 5 — 2, where the functions do

not possess the maximum possible nonlinearity. Then the
Walsh spectrum 1s not three-valued.

2y Consider the range e = % — 2, and the functions may or

may nol possess the maximum possible nonlinearity. Here



the Walsh spectrumis not three-valued irrespective of the
value of nonlineanty, whether it 1 maximum possible or
noL.

There is also a fundamental difference in the resulting func-
tions out of this construction for different order of resiliency.

1y Form = % — 2 if one can start with a desired function
with maximum possible nonlinearity, then the construc-
tion, when repeatedly used, will generate an infinile se-
quence of functions which are of maximum possible non-
linearity.

Form = ‘5 — 2, even if one can start with a desired func-

I
e

ton with maximum possible nonlinearity, then the con-
struction, when repeatedly used, will generate an infinite
sequence of functions which are not guaranteed 1o be of
maximum possible nonlinearity.

We also like to clarify the issue of the nonlinearity of ), f%,
the constituent functions of f. Given the {n, m. &, =) function
F,owe get, both vl i), ndd fa) = o — 2272 Now we have the
following cases.

1y If the function f achieves the maximum possible nonlin-
carity and v = T — 2 then we have »ldi 13, ndf fa)
L

I
e

For m = % — 2, if the function § does not possess max-
tmum possible nonlinearity, then it s possible that ei-
ther of f), /2 may have nonlinearity strictly greater than
o= an—2

Forwe = 5 —2,itis possible that either f) or f> may have
nonlinearity strictly greater than r 2% 2 irespective of
whether it achieves the maximum possible nonlinearity or

3

L

not.

Next we discuss the application of Construction 1 in different
CHSES.

A. Use aof Desired Form

To use Construction 1 on {8, 1. 6, 116) functions, we need
a function in desived form. One way is to get an (3. 1, 6, 116)
function as the concatenation of two (7, 1, 5, 52% functions [,
S Howewver, this 1s not automatically guaranteed. For example,
the (8, 1, 6, 116} function presented in Section 11-B is the
concatenation of two (7, 0, 5, 32} functions, not (7. 1, 3, 52!
functions.

We searched the database of (8, 1, 6, 116} functions and
generate functions with permutations of input varables. Note
that these functions are also (%, 1, 6, 116) funcions. We check
whether these new functions are in desired form. The following
(% 1,6, 1168} function is in desired form with nonintersecting
Walsh spectrum of is constituent {7, 1, 5, 52} functions. The
truth table of the funcion in hexadecimal format is

AOBESE1DELS IB4EFFARZELTTETED205
BT ZAGLIB2ARETECIE4ESEBBALCEEL2E.

This is the way, we found (%, 1, G, 116} functions in desired
form. Thus, using Construction 1, we get an (11, 3, 7, '!}'F’E'j::
function. Note that the previously best known nonlinearity for
an {11, 3. ¥, — ] function is 960 [17, Sec. 6].
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It is of interest to mention the following {8, 1, & 116)
function [ we have found. Here, NZ{f} > NZifa) 7/ 0,
dois a (7.1, 0 52 function, and f3 is {7, 1. 5, 361 This
(% 1, 6 116 function is in desired form with intersecting
Walsh spectrum of its constituent functions. The function is

CFET30A89E220A3A40TOECE01800EEF3
ACHSIDBIFYCCET 1B3CSFDEE165CAY 248,

We list the functions in the series provided by repeated
use of Construction 1. These functions are (%, 1, 6, 116],
(11,3, 7076y, (14, 5, 8, 80000, (17, 7. 00 G4 7080, L., ete
Although these functions do nol allain maximum possible
nonlinearity, the nonlineanty values are superior to all previous
constructions.

Nexl we concentrate on the functions provided in [17, The-
orem 10b] and Construction 1 [22], [15] given above 0 gel
highly nonlinear resilient functions with odd order. This is the
first time where Construction 1 is used for the functions with

e & 2n g generalized manner.

Theorem 6: 1
gl 2$} functions when 2r — Se = 3 ol
Proaf: We start with a p-variable (p odd) function | pro-
vided in [17, Theorem 10b] with order of resiliency 1 and non-
linearity 2~ — 275 _ It is clear that the functions provided in
[17, Theorem 10b] are in desired formas each of [, o are also
T-resilient functions. Also, the algebraic degree of the function
Fisp—2
Thus, given some odd we = 1, we will calculate the value & =

iz As Construction 1 increases the order of resiliency by two

2

15 possible o construct {n, m,n—ne— 1,

incach step and the number of variables by three ineach step, we
have to start with a function on p = w3 vanables and order
of resiliency L. We will then recursively use Construction 1 £
Limes.

Now we will show that this recursive series of constructions
always yield {w;, e, my — e — 1, 271 — e 3 func-
tons. For ¢ = I, we take ng = 3, g = 1. This satisfies the
nonlinearily

2?_“' L_)i- T, =G =2."‘ L_Ev:l

induction. Now assume that
or equal to y. Thus, we can
o= :

This s the base case of the
this 15 true for all + less than

A -
constructing. my, n; —m, — 1, 2% — 2 1 ) fune-
tions. By applying Construction 1 on one such function we get
a

4 S A g =i
('.'I.J;—l?‘~ w2 gy —rng, 2T 44 (3"5 47 ))

function. Note that e, ) = vy +3and v = ey 4+ 20 Now

a Giomi, @
e 1_4 (211_: e ) U 2_2—-;'-1—'“—— b2
: FTCIE S TRy S|
21.'.:_2_2_.—.1._
bl P | e k1
—afipi—L — - 41“

This proves the inductive step.
m |

Now we have | — S5— and p — n — 34 Note that p is odd.
Thus, mn Am—d g odd, which gives 2n 3m | 3= 2 maod 4.
L, 2 — g = 3l 4. O

As an immediate corollary we get the following result putting

i = 5
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Corollary I: For even n K, 1L 15 possible 0 construct
{r, 4, no—d, 277 — 2% functions which are in desired form.

Note that in [17, Theorem 10d], {n, 2, 5 — 3, 27~ — 25}
functions have been reporied. Our result provides the same
nonlinearity with order of resiliency 3. In [18], constructions
of (8 3,1 112y and (10, 3, 6, 480} functions have been
given. These are special cases of Corollary 1. For n = 12,
we gel a (14, 4, 8, 188d) function. This is beter than the
(12,3, 8, 1968 function given in [17, Sec. 6].

It 15 important to see that we can go on repeating Con-
struction 2 and we will get a sequence of desired functions.
These functions will initally stan with the functions with
we = 5 — 2 and then in the latter part of the sequence
they land into m = 5 2. As an example, consider the
sequence (10, 3, 6, 4801, (L3, 5. 7, 3968), (16, 7, & 32 256),
(19,9, %, 2600961, ..., where though the nonlinearities are
nol achieving the upper bound, they provide a very interesting
construction of suboptimal functions with very high nonlin-
earity, which were not known eadier. Also these functions do
not have three-valued Walsh spectra.

VIL CONCLUSION

In this contribution, we present different construction ideas
for resilient Boolean functions with very high nonlinearity. We
mainly concentrate here on low order of resiliency. As spe-
cific examples for small numbers of inpul vardables, we are
able toconstruet (5, 1, 6. 1163, (10, 1. G, 48875, {10, 1. &, 488),
(11,3, 7, 9760, and (12, 3. 8, 1984 functions which were pre-
viously not known, We also provide some generalized construc-
tion methods for functions on higher number of variables. Our
results either supersede or solve important open gquestions posed
in the literature. Moreover, these Boolean functions have imme-
diate application in the design of stream cipher systems.
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