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Maximum Nonlinearity of Symmetric Boolean Functions Il. PRELIMINARIES

on Odd Number of Variables The set of alln-variable Boolean functions will be denoted Ry, .

An n-variable Boolean functiof is a mapf: {0, 1}* — {0, 1}.0One
representation of is as a binary string of lengtii”.
Forn > 1, letT,, be a2" x n matrix defined as follows:

Subhamoy Maitra and Palash Sarkar

Abstract—n this correspondence, we establish that for odch, the max-

imum nonlinearity a(lzhievable by ann-variable symmetric Boolean func- T — 0 forn =1
n— n — b} et

tionis 2®~* — 272 and characterize the set of functions which achieve L1
this value of nonlinearity. In particular, we show that for each oddn > 3, -0
there are exactly four posslible symmetric Boolean functions achieving the .
nonlinearity 2”~* — 2 2 . D T ¥

Index Terms—Algebraic normal form, nonlinearity, symmetric Boolean T, = (1) R forn > 1.
function.

: Tn—]
L1
|. INTRODUCTION

An interesting subclass of Boolean functions is the set of symmetfier0 < ¢ < 2" — 1, letu; denote theth row sz?' The truth table
functions, where the output of the function depends only on the weidRf z?]n "f'V”a“alb'e Bool.ef;m functiorf, denoted byr’, (f) is defined to
ofthe input vector. Another combinatorially important class of Boolea ¢ the following matrix:

functions is the set of bent functions introduced by Rothaus [6]. An f(uo)
n-variable bent function achieves the maximum possible nonlinearity (u1)
among alln-variable functions. Further, by its very definition [6], a T.(f)=|Tn . . 3
bent function can exist only it is even. :
An n-variable symmetric Boolean functighcan be represented by flugn_y)

a bit array of length: + 1, denoted by¢(f)[0, ..., »] and defined in

the following manner: Thus, the functionf can be uniquely represented by the following

binary string of lengtr2"™:
ret = S s ) @ Flua)e Fun). oo fluzno).

where the weight oy, ..., X, isi for0 < i < n.
Letn > 3 be odd andf be ann-variable symmetric Boolean func-
tion. In this correspondence we show the following.

By f¢ (respectively,f/”) we denote the function obtained by bitwise
complementing (respectively, reversing) th& length binary string
representingf. The truth table representation for Boolean function

n—1 i i i i i i
1) The maximum possible nonlinearity gfis 2"~ — 2”5 . described earlier is conventionally used by electrical and electronics
_ _ engineers (see, for example, [4]).
2) The following are equivalent. Given twon-variable functionsf,, fi, by F = fo fi we will denote

n—1

a) The nonlinearity of is equal t2"~' — 272 the (n + 1) variable function whose truth table is defined in the fol-
b) re(f) is a contiguougn + 1) length substring of0011)*.  lowing manner:
¢) The Walsh transform fof is three-valued and takes the ,
1 _ Tn(ff))
values0, 2" 2 . Toni(F) = | 1 ()|
d) fisaquadratic function,i.e., the algebraic degreg isf2.
3) A consequence of either 2b) or 2d) is that there are exacf[;'?“s’ the string representationBfis simply formed by concatenating

four possible functionsf which achieve the nonlinearity t€ String representations gf and f; . ,
n—1 Definitions (2), (3), and equation (4) suggest that the “new” variable

Hn—1 5
2 —22 X,.41 for the (n 4+ 1)-variable functionF is “placed to the left” of
For evemn, the set of symmetric bent functions has been completelje old variablesy.,. ... X;. For this reason, we find it more intu-
characterized in [7]. The characterization is very similar to the case fé¥e to use the notatiod’ (X, 11, Xn, ..., X1) instead of the more

odd . More precisely, the characterization for eveitan be simply €OmMmMon notationF’ (X1, ..., X., X,.+1). However, this is really a

n—1 n—=2 H H . .
obtained on replacing“Z" by 2”7 in the above, with the added minor point and th.e ac.tuall choice of notation depgnds on the way one
fSeIs comfortable in thinking about Boolean functions.

restriction that for bent functions, the Walsh transform is two value . . . .
i Another important representation of a Boolean function is by

(4)

(£22). a unique multivariate polynomial over GE). More precisely,
f(X., ..., X1) can be uniquely written as
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of variables in the highest degree monomial with a nonzero coefficieie prove
is called the algebraic degree, or simply degre¢.cfhe ANF of the )

. . . . n—2 . n—2
function F' defined in (4) is as follows: 2" —eLd(fi, 1) <27 4

F(Xpi1, Xy oo, X1) = (1@ X)) fo( X, ..., X1) for any! € L(n — 1). The proof is by contradiction. There are two
aX, X,, ..., X;). cases to consider.
+uh A1) Case 1: Let, if possible
Functions of degree at most one are called affine functions. The non-
linearity of ann-variable functions, denoted by:!(f), is defined as

nl(f) = min (d(f. 9))
g€L(n) 271,71 — ¢ S d(fle, Il) — d(fh l) + d(fg, l) S 21;71 Fe (6)
whereL(n) is the set of allz-variable affine functions and( 7, g) is . I 2
L . . § N [) = 2 “— € — o, ).
the Hamming distance between the two strifigg of length2™ . Also, ;J(S;ng,d%fi ;2,_2 —_i— 4y f’-\ls;’d\(Nfe ?et?c,) _tlf f§ ;l})fi ([i)(fNO,W’
by wt (s) we denote the weight (number of ones) of the binary string-”: "’ — ert BEAEELR (f2, D),
. nd hence we get

d(fi.hH=2"""—e—t<2" > —¢

for somet > 0. Sincell € L(n), from (5)

LetX = (X, ..., X1),@ = (wn, ..., w1) € {0, 1}", and 2"t f e+ 2t < d(fif2. 1) = d(F, I°).
(X, W) = Xpwn & --- & Xywi. Let f(X) be a Boolean function

? A H c H H 3 n—2 _
onn variables. The Walsh transform 6fX) is a real-valued function SN¢e/"! € L(n), this contradicts (5). Thus(f1, I) > 2 i

over{0, 1}" and is defined as (see [3], [1]) Case 2: Again assume, if possible
; (X, Adfi, )=2""4e4+t>2"7F¢
Wi(@) = Z (_1)f(XJJ(X, )
Xef{o, 1} for somet > 0. The functionF* = f{ f5 has nonlinearit2" ! — ¢

. . andd(f{, 1) = 2"~? — e — t. This is not possible by Case 1. Thus,
Let f, g be two n-variable functions. Bywd(f, g) we denote the d(fi, 1) < 272 4 e,

number of placeg’ andg are equal minus the number of places they ance we getl(f1) > 2"~2 — ¢. To see the last statement, note

are unequal, i.exd(f, g) = 2" — 2d(f. g). The quantityW; (&)  thatif f, = f,, thenni(F) = 2ni(f,). O
is related towd(-) by the following relation:W;(w) = wd(f, lz),
wherelz is the linear function defined ds(X) = (X, @). We state the following simple result which will prove to be useful

The set of alln-variable symmetric Boolean functions will be de-later.
noted byA,,. Recall from (1) that am.-variable symmetric function
can be represented by a binary string of length+ 1) and is denoted
by re(f). Similarly, given a binary string of length(n + 1), we define

Lemma 1: Let f € A, with re(f) = agar -+ an—1a, andf be
written asf = fo f1 f» f3 where eaclf; € A, _». Then

the extension of, denoted byx(g), to be a symmetric functiofi of a) re(fofi) = ao---an b) re(f2fs) = ar---an
length2" as c)re(fo) = ao -+ an—2 d) re(f1) = re(f2)
. e re(fz) =asz--a,. =i An_i.
F(Xa, ..., X1) = glwt(X,, ..., X1)].

Proof: First note that it is enough to prove a) and b). ket=
The mapsre(f) andex(g) are one-to-one correspondences betweefn f1 andg: = f2 fs. The functionsye andg: are obtained fronf as
n-variable symmetric Boolean functions and binary strings of lengfallows:
(n+1).

The notation0011)* denotes the one way infinite string go(Xu—1, s X1) = f(Xu =0, X oo, Xa)

gl(X,th ey Xl) :f(X,L = 1, ){ufl, ey Xl)

001100110011~ - - —_ .
From the definition of-¢() it is clear that fol) < ¢ < n — 1, we have

formed by repeatedly concatenating the strifg1. re(f)[i]=1iff re(go)[i]=1 and forl <i<n, we havere(f)[i]=1
iff re(g1)[7 — 1] = 1. From this we get a) and b), respectively.

IHl. M AXIMUM NONLINEARITY FOR ODD 7 The following result establishes the maximum possible nonlinearity

One standard way to achieve highly nonlinear functions on oddr symmetric functions.
number va.rlables is Fo (:oncatenat_e1 two @t functions. The nonlm-_rheorem 1: Letn be odd and € A.. Then
earity obtained by this process2S™" — 2 2 . We show that for -
symmetric functions on odd number of variables, this is the maximum nl(F)<2" ' —272
nonlinearity achievable and further characterize the set of functions

which achieve this nonlinearity. Our proof is in two parts. In the first _ Proof: The proofis by induction on odd.
n—1 The induction base is = 1. Forn = 1, there are four Boolean

; . fcon—1
part, we prove that the maximum nonlinearity 4 2 2 tFlulnctions and all of them are affine. Hence, the nonlinearity of any

and in the second part we characterize the functions achieving this _. . . .
. . ; - ¥ function on one variable i8 and, thus, the statement of the result is
nonlinearity. To prove the first part we require some prehmmargatisfied forn — 1

results. Assume the result holds for some odé- 2, i.e., the maximum pos-

Proposition 1: Let fi, fo € Q,—1 andF = fifo. If ni(F) = sible nonlinearity of n — 2)-variable symmetric functions B3 —
2::: — ¢ for somee in 0 < € < 2", then bOtW{l(fl)j ﬁgfz) z 2”7 We claim that this forces the maximum possible nonlinearity
2 P_ro;fMgriiz\é?zri(ly)l i f;iir}einel("i‘tl ;Oid)xéftzh)at:fér an_Ai. for n-variable symmetric functions to &% * — 2“3 . This claim

: ) - ' yAIm s proved by contradiction. Suppose the claim is false and there ex-

L(n), we have . i . . n—1 .
ists a functionF’ in A,, such thatl(F) > 2”7 — 272 . We write
2" e <d(F, ) <27 e (5) F = fofif2fs, where eaclf; isin 4,,_o. From Lemma 1 d), we have
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re(f1) = re(f2) and hencef; = f.. Thus,F is of the formf, f f fs, We now prove 13 2) and 3). Sincé’ € A,,, we canwritef" asF’ =
where fofffa, wherefy, f, f3 are symmetric functions of — 2 variables.
We show by induction on odd > 3, that F’ is a contiguous: + 1
length substring of1100)* and also the Walsh transfori of F'

41
takes only the three distinct valuds: £2 2 .

Fo(Xn 20 oo, X1) =F(0,0, Xn_2,.... X1)
F(Xu 20 X1)=F(0,1, Xp_o, ..., X1)

=F(1,0, X,—2, ..., X1) We first show that
f3(‘Y“—'—77 ) ‘Yl) :F(lv 17 lYn—‘Z,a sy ~¥l)- 7L1(f) = 2n73 — QWT_%
. n—1
Define Sincenl(F) =2"~' — 272 , using an argument similar to the proof
G(Xn, Xno1, Xneo, ...y X1) of Theorem 1, we have
= F(.Xn @D anl, 1 D ‘X’nfh .Xvn,fz, ceay ‘Yl). "[(ff) 2 27172 _ 2%

H t t n—3
Clearly, G can be obtained fronf’ by an affine transformation of Howevernl(f f) = 2nl(f)and soul(f) > 2"~ —2"% . Also, using

the variables and hendé and G hav_e the same nonlinearity. Write 11,0 0rem 1, the maximum possible nonlinearity fdna— 2)-variable
G = gog1, Wheregy, g1 aren — 1 variable functions. Then . o n—3 ) s n—3
symmetric function i2" ™" — 272 andsoni(f) =2"""—-2"2 .
go(Xn-1, ..., X1) =G0, X,,_1, ..., X1) By the induction hypothesis we can assume thdtf) is a con-
=F(Xno1, 16 X0o1, Xuzas .oy X1), tiguousn — 1 Iengthns_tfbstrlng 0f1100)" and the Walsh transform
g(Xuor, .., X1)=G(1, Xy, ..., X1) values off are0, £2 2 . Thus, the possible forms ot( f) are
=F(16 Xuo1, 16 Xuor, Xz, ..., X1). 1) g1 =001100---,
2) ¢, =110011---,
Further 3) g3 =01100---,
go(O, ‘Xvnfz, ey Xl) IF(O, 1, Xn,fz, ey Xl) 4) g4 = 10011 e
=f(Xn_2, ..., X1) LetG = re(F) = xgy, for somex, y € {0, 1}. Using Lemma 1,

we get thaty must be one of;1, g2, g3, g«. We now show that the

=F(1,0, XYooz, ..., Xi) following must hold:

:gf)(l Xn—?, ey 1Y1)

; _ _ A) If g = ¢1, thenz =1 andy = b,
g1(0, )&n_g, ey )&1) :F(L 1, )&n_z, ey 1Y1)

B) If g=g¢o, thenx =0andy=1-1b,

ZfS(le—2a ...,X1), C) |fg=gg, thenw:Oandy:b,
n(l, Xpn_o,...., X1)=F(0,0, X;,_2, ..., X1) D) If g=g4, thenz =1landy=1-0,
=fo(Xn—2,.... X1). wherep = (r=medt

Note that it is sufficient to show A) and C). This is becayse= ¢
andgs = g5 andex(xhy) andex(2°h°y“) have the same nonlinearity
for anyn — 1 length bit stringh. Here, we prove only A), the proof of

Wl(fF) = nl(go) > 2" 2 — 2%' C) being similar. We have to prove that the other combinationsasfd

. y result in lower nonlinearities. I andy have the values given in the
Sincenl(ff) = 2ni(f), we havenl(f) > 2"~ — 2"5". This con- conditions then itis easy to check titis ann + 1-length contiguous
tradicts the induction hypothesis. [ Substring of( 1100)* and hence achieve the required nonlinearity.

Now we turn to the proof of A). We only prove for the condition
For an odd number of variables, the first characterization of functions_ 1 = 0 mod 4, the casex — 1 = 2 mod 4 being similar. Since

achieving maximum nonlinearity is described in the following result,, — | = ¢ mod 4, we have

Thereforego = ff andg, = f3/o.
Using Proposition 1, we get

Theorem 2: Letn > 3 be odd and” € A,,. Then the following are re(F) = x00110011- - - 0011y.

equivalent.
no1 Letso = re(fo), s3 = re(f3) andt = re(f). Therefore,
D) al(F)=2""1-2"2 .

2) re(F) is a contiguous + 1 length substring 0f1100)*.
3) The V\'{a+llsh transform of is three valued and takes the values
0,422 .
A consequence of 2) is that there are exactly four possible functiondit s = 100110011 - -- 11001 (of lengthn — 1) and! be a linear func-

n— tion such thatvd(ex(s), I) = a. We now rule out the three possible

A,, achieving the nonlinearitg" ' — 272 . . o
Proof: The proof of 3)=-1) is obvious. The proof of 2-1) is options except the case= 1 y = 0.Inthe rest Of the proof, by (®)
we denote the number of times a Boolean ek true.

also easy and can be seen by the following argumentrt@f) = S PRUN ) .
do-+an. We write F asF = fi f>, wherefy. f» € 4,_; and by Th(;i.se_l.l—y—(). Let#(ex(s)=1)=ay and#(ex(s)#1)=a>.
Lemma 1l a)and bye(fi) = ao---an—1,7e(f2) = a1---a,. Then a'_alﬂ_fh'_ _ o _

re(f1), re(f2) are both contiguous length-substrings of0011)*. Now #(exr(so) = 1) = a1 +1 and#(ex(so) # 1) = a» —1and so
Using the characterization in [7], it follows that bogh gnd fo are wd(fo, 1) = wd(ex(so), 1) = a+ 2.

bent. Hence, botl; andf. have nonlinearitg” 2 — 2%. SinceF
is formed by concatenatingy andf:, the nonlinearity of is2" ' —

n—1

273 . wd(fa, 1) = wd(ex(ss), 1) = —a

t =00110011---0011
so = 200110011 ---001
s3 =0110011---0011y.

Also,
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sincess = s° wheny = 0. By the induction hypothesis, the WalshHence by the induction hypothesis, the Walsh transforms of fyctind
transform values of are0, +2°7 . Let! be such thatvd(f, 1) = [ are three-valued and take the vaItﬂ)est? . Now using (7) we
Then complete the induction step for the Walsh transfornfof O
wd(F, 1) = wd(fo, 1) + 2wd(f, 1) + wd(fs, ) =2+ 2 = From Theorem 2, we get a characterization of the class of symmetric

functions with maximum nonlinearity for odd number of input vari-
ables. It is well known [1] that in a symmetric Boolean function ei-
ther all thekth-order terms are present or all are absent at the same
_ time. Thus, the algebraic normal form of a symmetric Boolean func-
which contradicts:/(F) = 2"~ -2 2. tion f can also be represented by:as 1-length bit vectora( f) (the
Case 2w =0, y=1: Inthis cases=(so)"". Letl be anondegen- reduced algebraic normal form @, wherera(f)[k] € {0, 1} and
erate linear function on an odd number of variables and hBneé“. ra(f)[k] = 0 (respectively]l) means that all théth-order terms are

Hence

n—1 nn—
d(F, M) =2""1-2"2 —1<2" -2

Then absent (respectively, present). Foe A,,, the following result relates
wd(fs, 1) = wd(£35, 1) = wd(fo, I"°) = wd(fo, 1) = b the vectorse(f) andra(f).
(say). Since there are exac#y—* linear functions such that = I°, it Theorem 3: For f € A, letus considey = re(f) andg = ra(f).
cannot be the case thati( f, 1) = 0 for all such functions as otherwise Then
this would violantglParsevaI’s theorem. So, we can chéasech that i )
wd(f, 1) = £272 Now two cases arise gli] = (Z q[k‘]( )) (mod 2)
k=0

i) wd(f, 1) = 2" L If b > 0, then consider
whered < i <nand0 < k <.

+
wd(F, 11l =22 +2b

and ifb < 0, then consider
n+1
wd(F, IFUI%)y =272 + 2b.

i) wd(f, 1) = 275 If b > 0, then consider

41

wd(F, I°11°)=-2"2 —2b
and ifb < 0, then consider
n+1
wd(F, llll)=—-2"2 —2b.

Therefore either

n—1
A(F, 1) < 2"t =272
or

n—1
A(F, 1117y < 2" =272
and so

n—1
nl(Fy<2' ' =272

which is a contradiction.

Case 3:ir=y=1: Inthis casavd(fy, 1)=a andwd(fs5, I)=—a.
Let! be such that the last bit é¢fis 0, i.e., nondegenerate on an eve
number of variables and hen¢é = . Thenwd( fs, 1)

Proof: Since all vectors of the same weight have the same output
value it is sufficient to consider an arbitrary input vector of weight
for 0 < ¢ < n. We now compute the output value corresponding to
such a vector. All terms in the ANF having terms of length greater than
i must necessarily evaluate@oNow consider terms of length with
0 < k <4, andg[k] = 1. Then, exactl;{,i) number ofk-length terms
(out of the total(}}) number oft-length terms in the ANF) will evaluate
to 1. From this the proof follows. O

This expression provides an algorithm to generate eijhieom ¢
or g from g. If ¢ is known, it is easy to gej from direct calculation.
However, ifg is known, thery needs to be generated recursively. That
is, for calculating;[¥], all the values of[0], ..., ¢[k — 1] need to be
calculated. As example, if is known, thery[0] = ¢[0]. For the next
step
- 1
1] = qlk mod 2) = ¢[0] + ¢[1] mod 2
g[1] ngz[](,J ( ) = q[0] + q[1]
and sincey[1], ¢[0] are knowng[1] can be calculated. In this manner,
all the bits ofy can be calculated. Now we provide the algebraic normal
form of the symmetric functions on odd number of variables with max-
imum nonlinearity. We show that the algebraic degree of the sym-

Ir‘netrlc functions in Theorem 2 Birrespective of the number of input

variables.

Now combining the technlques of the above two cases we can showheorem 4: Let ' € A,, for oddn > 3. Then the following are
thatnl(F) < 2"~ -2 nz , which is a contradiction. equivalent.
We now complete the |nduct|on step for the Walsh trarnﬂonﬁof 1) re(F) is a contiguousgn + 1) length substring of0011)*.
We show that¥;. is three valued and takes the valliest2 2~ . We 2) The ANF of F’ is given by
have proved thate(F') is a contiguousn + 1) length substring of

(0011)*. Using Lemma 1, itis not difficult to see that this forees 1o ) F(Xi.....X,) = @ XX, | e éXi D e
andre( fs) to be bitwise complements of each other. Hefice= f5. / T ) N
Let! € L,. Thenl is one of the forms

Ly, LSS, WLISTS, LWISEL
for somel; € L,_». Sincefo = f5 we have

1<i<y<n

where,b, ¢ € {0, 1}.

Proof: Letg = re(F) andg = ra(F). We first note that it is
sufficient to prove thay = 0011--- is a contiguougn + 1) length
wd(fo, 1) = —wd(fs, ). substring of(0011)" iff ¢[2] = 1 andg[i] = 0 for0 < i < » and
) i # 2. Thereason forthisis the following. The four possible contiguous
SinceF' = fofffs, we have (n+1)-length substrings afd011)* areg, ¢", ¢°, andg™. The func-

wd(F, 1) = 2wd(fo, I1) or 2wd(f, ). (7) tions corresponding to these strings &te= ex(g), F" = ex(qg”),

Sincere(F') is a contiguousn + 1)-length substring of0011)*, both F* = ex(g"), andF"™ = ex(g™). Since
re( fo) andre( f) are contiguougn — 1)-length substrings df0011)*. F'(Xn, ..., X1))=F(1D X,, ..., 13D X))
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the functions’, F”, I'°, and}""* allhave the same degree. Thisshows 1) The nonlinearity off is equal to2" ' — 2" 5

the claimed sufficiency. We now turn to proving that= 0011--- is
a contiguoug'n + 1)-length substring of0011)* iff ¢[2] = 1 and
qli] = 0for0 < i < nandi # 2.

First assume that[2] = 1 andg[i] = 0 for0 < i < n andi # 2.
From Theorem 3, we havg0] = 0, g[1] =0, g[2] = (5) mod 2 = 1
andg[3] = (i) mod 2 = 1. Further, fori > 4, we have

glil = (;) mod 2 = i ; 1)

=0, ifi=0,1mod4
=1, if i =2, 3 mod 4.

mod 2

For the converse, assume tlyat 0011-- - is an(n + 1) length sub-

string of (0011)*. Using Theorem 3, it is easy to verify thaf0] =
q[1] = ¢[3] = 0 andq[2] = 1. We now show by induction oh that
for & > 3, q[k] = 0. The base for the induction is cleaty= 3 and is

easy to see as mentioned before. The inductive step reduces to show g

q[4j]=ql4j + 1] =q[4j + 2] = q[4j +3] =0,  forallj > 1.

We haveg[4i] = g[4i + 1] = 0 andg[4i + 2] = g[4i + 3] = 1 for
i > 1. Using Theorem 3 and the induction hypothesis, we have

gl4j]=0= (Z qlk) (i’)) mod 2
k=0 ’

= <<42j>q[2] + q[4j]> mod 2.

Since(*') mod 2 = 0 andg[4;] = 0, we havey[4/] = 0. Similarly, it
can be shown thafl4; + 1] = 0. The proofs thay[4j + 2], ¢[4j + 3]

are zero are similar and we only shgi; + 2] = 0. Again, using
Theorem 3 and the induction hypothesis we have

45+2 .
gdj+2]=0= <Z q[¥] <4j:2>> mod 2

k=0

= ((47;— 2)(1[2] +q[4j + 2]) mod 2.

Since(/}?) mod 2=1andq[2]=g[4j +2] =1, we havey[4;+2] =0.
Thus, we get thag[i] = 0 for0 < ¢ < n, i # 2 andq[2] = 1. Thus,
Fisofthe form(P, ., ;, XiX;). O

Combining Theorems 2 and 4 we obtain the following characteriza- 5]
tion of symmetric functions on odd number of variables attaining the

maximum possible nonlinearity.

Theorem 5: Let n > 3 be odd andf be ann-variable symmetric

Boolean function. The following are equivalent.
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2) re(f) is a contiguougn + 1) length substring of0011)™.

3) The Walsrl Er{’msform fof is three valued and takes the values
0,+2x2°2 .

4) fis a quadratic function, i.e., the algebraic degre¢ &f 2.

An important property of Boolean functions is its propagation char-
acteristics defined as_followi Anvariable Boolean functioffi is said
to satisfyPC'(k) if f(X)&f(Xdw) is balanced for all <wt (@) <k.

Theorem 6: Fnorln odd, there exists balancéd € A,, with nonlin-

earity2” ! — 2z satisfyingPC(n — 1).
Proof: Forn = 4m + 1 consider thelm + 2-length stringg =

0(1100)™1 and letF' = ex(g). ThenF is of the formff"¢ where
f is a symmetric bent function ot variables. ThusF is balanced.
Similarly, forn = 4m + 3 consider thetm + 4 length stringg =
00(1100)™11 and letF' = ex(g). Then alsaF is of the form f f"*
R ref is a symmetric bent function chn + 2 variables. ThusF' is
balanced. The nonlinearity is equal to the nonlinearity achieved by the
concatenation of two bent functions.

The functionf is a symmetric bent function. It is well known [3]
that bent functions ofr — 1) variables satisfyPC'(n — 1). SinceF’
is of the formf f"“, it satisfies propagation characteristics with respect
to all then-bit vectors except the all one vector. O
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