410

Efficient Implementation of Cryptographically
Useful “Large” Boolean Functions

Palash Sarkar and Subhamoy Maitra

Abstract—We present low cost hardware architecture for implementing state-of-the-ar theomtical constructions of secure Boolean
functions suitable for stream ciphers. Using a pipelined architecture, we show that it is possible to implement systems which use
Boolean functions of a relatively large number of variables. Our architecture is reconfigurable and provide a universal circuit for a

certain class of secure Boolean functions.

Index Terms—~Boolean function, cryptography, pipelined architecture, reconfigurable hardware, stream cipher.

INTRODUCTION

1
STREAM cipher ayptography is a classical method of
secure information exchange. In this method, the
message is considered to be a bit stream. Encryption is
performed by bitwise XORing the message bit stream with a
pseudorandom bit stream. This gives the cipher bit stream.
Decryption is performed by bitwise XORing the original
pseudorandom bit stream to the cipher bit stream.
Let (M;)imge (Ri)inge and (C7)ing, respectively, be the
message, pseudorandom, and cipher bit streams. The
enciphering operation is the following;

=M, & K, i =1l

The bit stream () is transmitted. At the receiving end,
deciphering is done in the following manner:

CiaRi=MaK &K =M, i =

One of the popular models of hardware-based stream
ciphers is shown in Fig. 1. In this model, the outputs of
several independent Linear Feedback Shift Registers
(LFSRs) are combined using a Boolean function F to
produce the pseudorandom bit stream. At each clock cycle,
each of the n LFSRs produce a bit of output. These n-bits are
combined by the Boolean function F to produce a
pseudorandom bit. Thus, one pseudorandom bit is pro-
duced at each clock cycle and, hence, the rate of encryption
is also one bit per clock cyde. The secret key of the system
consists of the initial conditions of all the LFSRs.

The model in Fig. 1 has been studied extensively in the
literature (see, for example, [12], [13], [8], [1], [11], [5], [10],
(2], [3]. [4]. [14]). The combining Boolean functions must
possess certain cryptographic properties for the pseudoran-
dom bit stream to be secure. Attacks on the model [8], [4],
[13], [2], [3] have shown the necessity for these properties.
On the other hand, active research has been conducted in

+

designing secure Boolean functions (see, for example, [1],
[11], [5] [10], [14]}). Currently, it is well accepted in the
cryptography communiky that using Boolean functions with
suitable parameters will ensure security against all the
known attacks.

The hardware area used in implementing the model in
Fig. 1 has two components:

1. the area used to implement all the LFSRs,

2. the area used to implement the Boolean function.
The area used to implement all the LFSRs is linear in the
number of LFSRs, while the area required to implement the
Boolean function can be exponential in the number of
LFSRs. Let us compute some parameters to get a feel for the
problem. Suppose a 24-variable combining function is used,
where the lengths of the LFSRs are 64 bits on average. Then,
the number of flip-flops required to implement the LFSRs is
only 1536, while a direct implementation of the Boolean
function can require area proportional to 24 Thus, a
straightforward implementation of a 24-variable system is
prohibitively costly.

Many mathematical constructions of secure Boolean
functions are known. For the mathematical theory to be
useful, it is important to translate the theoretical construc-
tions into actual hardware circuits. There is no general
purpose method for doing this. Here, we provide an
effident, low cost method for implementing the recursive
construction presented in [5]. Using our method, Boolean
functions of a large number of variables can be easily
implemented in hardware.

The functions in [5] are built recursively. A function F of
n variables is built up from a function h of &{< n) variables.
We first describe an algorithm which uses a subroutine for
the function i and computes the output of F on an n-bit
input. The time required to compute the output of F is
linear in t({= n — k), assuming that the output of h can be
computed in constant time. The space required by the
algorithm is (1) plus the space required to implement the
subroutine for f.

A direct hardware implementation of the algorithm
requires t clock cycles to produce one pseudorandom bit.
This is clearly macceptable. We require a pseudurandmn

SARKAR AND MAITRA: EFFICIENT IMPLEMENTATION OF CRYPTOGRAPHICALLY USEFUL "LARGE" BOOLEAN FUNCTIONS 411

rLrem, .

l.w
Kortv: €

L L

res nﬂi—

Fig. 1. Stream cipher system.

bit per clock cycle. Thus, our algorithm cannot be directly
translated into a hardware circuit. Instead, we use a regular
pipelined architecture to map the algorithm to hardware. The
pipeline takes t cycles to be filled up and, after that, it can
handle an n-bit input at each dock cycle. For small ¢, there is
no effective degradation in the Ehrr.rughput of the system.

There are t similar stages to the pipeline providing a
uniform design. The combinational circuit of each stage is
implemented by a very small, constant size circuit. The size of
the pipeline is a small fraction of the size of the circuit
required toimplement . For the 24-variable Boolean function
example given in Section 4, i (a 10-variable Boolean function)
is implemented using a look-up table of size 2,048 (see
Remark 1 in Section 3.2) and the rest of the pipeline requires
only 148 flip flops, 99 gates, and 30 2 = 1 MUXes.

Our design produces a reconfigurable architecture. This
means that the same circuit can be used to implement a
large class of Boolean functions. In Section 5, we show that
the architecture provides a universal circuit for a certain
class of secure funchions.

The organization of the paper is the following: In
Section 2, we present preliminaries on the cry‘ptugraphic
properties of Boolean functions used in Fig. 1 and the
recursive construction of Boolean functions from [5]. The
algorithm and hardware design for the Boolean function are
described in Section 3. A specific example of a 24-variable
Boolean function is presented in Section 4. Reconfigurability
features of the circuit are described in Section 5. Finally,
Section 6 concludes the paper with discussion for possible
future work.

2 PROPERTIES AND CONSTRUCTION OF BOOLEAN
FuNCTIONS

We present a brief overview of the various cryptographic
properties that a Boolean function must satisfy in order to
be used for stream cipher systems. Since our purpose in this
paper is implementation, we briefly mention the properties.
For more details, see [1], [11], [5], [14].

Definition 1.

o An nvariable function is said to be balanced if the
output of fis equal to 1 for exactly 2770 inputs,

o A Boolean function is said to be m-resilient if the
probability of the output being one is half, even if at
maost m of the inputs are fived to constant values,

o The algebraic normal form of @ Boolean function is
its canonical sum of products representation using
XOR and AND gates which is a multivariate
polynomial over GF(2). The degree of the polynomial
is called the algebraic degree or simply degree of the

function. Functions of degree at most one are called
affine functions.

o Given a Boolean function, its nonlinearity is its
Hamming distance to the set of affine function, ie., its
Hamming distance to its best affine approximation,

There are several known methods [1], [11], [5]. [10], [14]
for the design of Boolean functions possessing a secure
combination of the above mentioned properties, namely,
number of variables, order of resiliency, algebraic degree,
and nonlinearity. Further, the results of [10] identify the
class of Boolean functions which achieve the best possible
tradeoff among these properties. Many of these best
functions can be constructed by the methods of [1], [11],
[5]. [9]. [14].

There are two approaches to the construction—direct
and recursive. Here, we show how to implement functions
obtained by the recursive construction method presented in
[5]. The advantage of the method of [5] is that it is simpler
than the other methods [11], [9], [14]. We next provide a
description of the construction method of [5].

Suppose an n-variable function F{X,....,. X)) is to be
used in the stream cipher system. Following the method of
[5]. this F is represented by a sequence (f, 51...., 5;), where
h is the initial function of & variables X, ..., X, and S5 are
the recursive operators used to build up the function F.
Each §; € {(}.R} = {r,c,rc}, where the action of §; is
described as follows: Let Fy = h and F; be the function

produced after application of 5. Suppose 5= (¥.7%),
where ¥, £ {Q). B} and 7; € {r,c,rc}.
o If ¥ = (), then
Fl X, Xige—1,00 0y . ST ST X
=1 & X)) Fi(X140 ooy 4 N1y Xy ooy Xq)
& Xile®d B _(b® X, bd X,
f.l‘f—:" .’{;-....,j‘} o« |_:I_:I.
s If¥ = R, then,
Fil Xk Xigh1500 054 . (NETND. (T Xy =
(18 X1) E (X, Xip—a ..+, 4 X1, Xiy ooy Xq)
& ’fn-s- e® Fi (bd X b & Xigpea ..o,

h-—_.'.’{_;+],ha.r_[- 1’}%.’{|_:|_:|.

The value of 7 determines the values of ¢ and b in the

following manner:

o Ifri=r,thena=0H4b=1

o Ilfri=c thena=1>0b=10.

o Ifri=rc,thena=5b=1.

It is important to note that, at each step, either # € {r, ¢}
or 7; € {re.e} (see [5]). The actual set of possible values for
7 is determined recursively as follows: If the order of
resiliency of h is even, then 7, € {r,c], else 7, € {re.c}. In
general, if the order of resiliency of F_; is even, then
7 € {r,c}, else 1 € {e, e}

Mote that n=Fk+t and F=F. If h has order of
resiliency m,, then F has order of resiliency m = m; + .

412

The algebraic degree of F and h are the same and the
nonlinearity of F is 2' times the nonlinearity of h (see [5]).

The construction method produces a class of functions
and not just a single one. There are two things to be noted.

The choice of the function h is not unique. The
values of the parameters—number of variables,
resiliency, algebraic degree, and nonlinearity—are
specified. One can choose any h which satisfies these
values.

o For a fixed h, the construction produces 2* = 4'
possible functions F. At each stage, there are two
possible choices for each of ¥ and 7.

Example 1. We provide an example to illustrate the
construction method described above. Suppose we want
to construct an B-variable, 4-resilient, degree 3, and
nonlinearity 96 function F. Any function with these
values of the parameters achieves an optimal tradeoff
among the mentioned parameters [10].

We start the recursive construction using a 5-variable,
l-resilient, degree 3, and nonlinearity 12 function h.
These values also achieve an optimal tradecff among the
concerned parameters [10].

We provide a choice of h from [9].

hirs,....x1)=(r: B Vrg B 1)1 S 1) F (15 F 1)xy
|:$| 91‘1_] & $_-',I::$1 arl 1_:II::J"/;I .'—33':;1} 91’.‘;,1',{3’:1 el o) 9£1:|.

Given h, there are 4% = 64 possible functions F which
can be constructed from . Two examples are:

1. F represented by (b, (Q,re). (R, +).(CQ.c)).
2. F represented by (h, (R.c), (Q.7).(R vc)).

MNext, we provide a detailed description of the function F
represented by (A, (Q, re), (B, 7). (Q. e)).

.Fhl:x_r, J.'|_:I = “I:x_r,, sesgal] _:I
Fi(zg,...,m1) = (1@xg)Fylrs,...,x1)
By (ld Fy(ldrs, ..., 1@,
Fgl:ﬂ;,...,xﬂl = I::].f-j";'l’.'ﬁ_:IF||:J’.'T,$_r|,...,J.!|_:I =
J.'ﬁl:].f:-\rFH:].f—:'x;,lex;, 1?£|_:|
Fy(zg,...,m) = (1@ xg)Falrr,...,x1)

@y (18 Falzr, . m1))
= Iy f\'FgI::J"TJ"L:I

The function F; is the desired function F. Note that,
while obtaining F; from Fy, an algebraic simplification is
possible. No such simplification is, in general, possible in
the first two steps. In general, the algebraic normal form
of the function will be quite complicated [5].

In this paper, we will solely be concerned with the
implementation of the function F as represented by the
sequence (f,5,..., Si). For cryptographic properties we
refer the reader to [5], [10].

3 BooLEAN FUNCTION IMPLEMENTATION

The crucial problem is to design circuits for the Boolean
functions described in Section 2. The requirement on any
such circuit is two-fold.

IEEE THAMSACTIONS ON COMPUTERS, VOL. 52, NO. 4, APHL 2003

o The size of the circuit implementing F must not
be much larger than the size of the drcuit
implementing .

» The circuit must be able to compute a bit of output
per clock cyde.

Thus, we have to compute the output of F represented by
(h, S, S¢) on an n-bit input X,,.... .. X,. We first obtain a
recursive algorithm based on the recursive description in
Section 2. Then, we eliminate the recursion to obtain an
iterative algorithm. This iterative algurithm requires f steps
to compute the output. Thus, the algorithm cannot be
directly implemented. We bypass the problem by mapping
the algorithm into a pipelined architecture. The pipeline
takes ¢ clock cycles to fill itself up and, after that, produces a
bit of output at each clock cycle. The total delay for
obtaining all the pseudorandom bits is ¢ clock cycles instead
of a delay of ¢ clock cycles for each key bit. Thus, the
pipeline ensures that there is no effective degradation in the
performance of the system.

3.1 Algorithm
Let F be represented by (h.5...., S.-t), where h is a
function of & variables and let ¢t = n — & We will refer to the
recursive definition of F; provided in Section 2. As before,
Fy = h and F; is the function represented by (h,5,..., 5.
Then, F; = F.

First, we present a recursive algorithm to compute
E=F_=FX,....- X1

recCompute(Fi X, ...y - Xq)
1. if (i = 0) return h{ X, ..., X1
2,80 =) {X =X}
3. else {.’{ = .Y|'+.:_-_|'. .Y|'+_L-_'| = .’{H.;c',}
4.if (X =0)
return recClomputel Fi_(Xipie1... .. X0));
5. else
6. ifin =1

return 1 & recCaomprutel F; (X1, ... X))
7. ifimn=rv)

return recComputel (1 & Xipq. -0, 13X,);
8. ifim=rc)
return 1 & recComprutel F (13 Xipe... -, 13X);
9. end if
end

Step 2 of the above algorithm interchanges the variables
Xiye and X if ¥; = R. The rest of the algorithm works
according to the recursive definition of F,. In fad, it is easy
to verify that the call recCompute] Fi(X,...... X1 will
correctly return the value of F(X,...... X,). Note that the
recursive appma.ch is top down, i.e., it starts processing the
variable X, first and then descends to lower numbered
variables. The main properties of recCompute() are as
follows:

1. It takes ¢ steps to compute a bit of output.

2. The stack depth is O(t).
Having a large stack depth makes the algorithm ineffident
to implement. Fortunately, the recursion in recCompute() is
a case of tail recursion and can be removed. There are a few
key observations to do this.

SARKAR AND MAITRA: EFFICIENT IMPLEMENTATION OF CRYPTOGRAPHICALLY USEFUL "LARGE" BOOLEAN FUNCTIONS 413

1. There is no need to carry the variables Xi_,...... X,
through the algorithm. If ¥, = (), then let ¥ = X;
else ¥=X,;. Set wy=~hmY,Xt,,...,X;) and
mw=rlae¥ 1&X ..., 1% X;). Then, we will
ultimately have to output one of

Vijs V1, Uy B L, i & 1.

depending on the variables X, ..., X&

2. At each recursive call, depending on the value of 7,
we either complement the input or the output or
both. Thus, at each stage, it is sufficient to record
whether the input/output of the next evaluation has
to be complemented. This is managed by two bit
variables, @ and . The variable o records whether
the output needs to be complemented and the
variable b records whether the input needs to be
complemented.

Based on these observations, we next present the

algorithm computeTIN.), which converts the recursive
algorithm recCompute() to an iterative algorithm.

compute TINX,, X
if (¥ = (}) then ¥ = X
if I::"I-'| = H_] then ¥ = .Y_,;-+|;

w=h{Y, Xe-1,...,. X1);
nw=hla¥Y,1&X,,..., 1&X,);
a=0; b=1

for i = t downto 1 do |

(1%) if (¥, = Q) then X = X,\s;
(2%) if (¥, = R) then

| X = X1 X
if (b X =1) then |

if (=c) thena =a®1;

if (; =v)thenb=ba®1;

if (i =vrc)then {ea=adlib=0b&1}

= Xy |

return @ & w,;

We provide an explanation for testing the condition
bh& X = 1. At any stage of the algorithm, the variable X is
the one on which the function F; is projected. The variable &
records whether the input needs to be complemented. If
X = b =1, then the values of o and b do not need to be
changed. Also,if X = b = 1, thenwe will have to complement
the value of theinput X and, thus, againget(). In this case also,
the values of « and b are to be unchanged. In the other two
cases, the values of « and b need to be updated based on the
value of 7. The time taken by computeT D) to compute the
output is (Nt). Thus, algorithm compueTD(X,, ..., . X1
correctly computes FIX,, ..., . Xy} in ONt) time.

Example 2. We provide an example of the behavior of
algorithm computeT IN). We use the example of Section 2.
Let F be an B-variable function represented by
(R (Q.re), (Br), (€. c)). In this case, k=5, n= 8§, and
t=3.

Suppose we want to compute the output of F on the
input 101X X, XXX, Thus, here we have Xyi=1,
.Y; = ﬂ, and .’{qi =.1.

initinlization step: Since ¥, = (J, we obtain ¥ = X,
This gives w = (X5, X, X3, X2, X4) and

th = |r1|:1 "—} .Y_-',,]. ? .’{1. 1 ;'__.'k. .Y_'{,]. ?' .Yg,]. ;'__.'k. .’{| _:I.

The variables o and b are set to (.
step i = 3: At this point, we have a =0, & = (.

e Iy =(}and, so, we obtain X = Xy = 1.
e Since Xy & b= 1 and 13 = ¢, we update the value
of o to 1. The value of b remains ().

step 1 = 20 At this point, we have a= 1, b= 1.

s T, = R and, so, we obtain X = X; = 1. Also, the
value of X is set to that of X, i.e., the value of X
now becomes (.

o Since b X =1 and = = r, we update the value
of b to 1. The value of @ remains 1.

step i = 3: At this point, we have a = 1, b = 1.

e I = (}and, so, we obtain X = X = (1. Note that
the value of X; has been changed to () in the
previous step.

e Since b X = 1 and 7 = ro, we update the values
of both @ and b. Both are changed to (.

final step: The value o @y, is returned. At this point,

a = b= 10 and, s0, v is returned.

3.2 Hardware Architecture for compute? D{)

As mentioned before, a direct implementation of algorithm
computeT D() will mean that t clock cycles are required to
produce one bit of output. This will lead to unacceptable
degradation in the performance of the system. Here, we
show how a low cost pipelined architecture can be
developed to implement the circuit for F. The pipeline
takes ¢ clock cycles to fill up. The output of F on successive
tuples of n-bitinput is available at each clock pulse after the
initial ¢ clocks pulses, ie, starting from the (¢t + 1)-th clock
pulse.

In the hardware description, we will be manipulating
¥,.7; as binary values. To do this, we need to describe how
they will be encoded as bits.

If ¥; = (), then this is encoded by putting ¥, = 0.

If ¥; = R, then this is encoded by putting ¥; = 1.

If 7 = ¢, then this is always coded by putting « = 1.
On the other hand, & =0 codes & =r or 7, =r¢
accordingly as i 2 mymod 2 or i =m mod 2, where
m is the order of resiliency of the initial function
(see Section 2).

The pipeline has t internal stages numbered 1 to t (see
Fig. 2). Stage i stores the current values of Xi, ..., . Xiri The
two bits 1y and v, are present at each stage along with the
two other work bits @ and b.

Remark 1. The initial circuit (Fig. 3a) of the algorithm
performs the computation required to get the values
vy, 1. For this, the function i needs to be evaluated twice.
This is tackled in the following manner: The function h is
implemented by a look-up table. Corresponding to an
input Xg,...,. X1, the look-up table stores the values
o1 o TR Xi) and A1 & X, ..., 14 X;). Thus, in one
clock cycle, the look-up table provides the values of

414

IEEE THAMSACTIONS ON COMPUTERS, VOL. 52, NO. 4, APHL 2003

[l
e
1_1_'_'_

—h—_l_

—_—

G =1 - = — -
=0 B [T — K} -
Y——— % Lol ¢ B
Nort——+ %, " r— O
Nz K
— A ay
A . O G
.
o
e " S v
: -‘"1'1- (SRl el [
X |
slage slige £ — 1

sl |

¢

@]

Fig. 2. Pipelined architecture. A: Initial circuit. B: Intermediate circuit. C: Final circuit.

. v1. The size of the look-up table is 2°'. We provide
some precise parameters in Section 4.

The intermediate stages of the pipeline perform the task
of variable interchange and updation of the bits @ and b (see
Figs. 4 and 5). The bits w1, are carried forward without
being changed. If ¥; = R, the values of X, and X;;;_, are
properly interchanged for the next stage, as in lines (1*) and
(2%) of algorithm computeTD{). The 2 = 1 multiplexer
ensures that the output X has the proper value. If X and
b are unequal, then the two & gates are activated; otherwise,
a and b are carried forward unchanged to the next stage. If
7 =0, then 7; represents r or rc and the input has to be
complemented. The & operation of (X & &) and 7; ensures
this. If ; =1, then 7 s ¢ and the output certainly needs to
be complemented. If 7; = but represents »c, then the
output also needs to be complemented. But, 7; can represent
re only if i +m; =0 mod 2 (see Section 2). The value of the
function const(i) i (i +m; + 1) mod 2 and the combination
of the or and & gates ensures that o is updated as required.

The final circuit (Fig. 3b) is simple. The 2 = 1 MUX and
the XOR gate ensure that the output is a & .

The whole circuit operates as follows: At each clock,
stage, ¢ forwards the values of the variables to the next stage

3 v
e v
¥ o) ML v
Aas h
: W
¥

|]

fa)

(b}

Fig. 3. Initial and final circuits. (a) Initial circuit. (b) Final circuit.

and updates the values of work bits a. b for the next stage.

The values 1y and v, are forwarded unchanged.
It is important to understand the need for generation of

wy, 1y at the first stage and carrying them through all the
t stages. We need these two bits only at the end for the final
circuit (Fig, 3b). However, the values of ;. v, are generated
from the variables X, to X..,. By carrying the two bits u, 1,
through the ¢ stages we can avoid carrying the k— 1 bits

reduces the number of flip flops required at any inter-
mediate stage in the pipeline.

Since there are t stages, the whole pipeline takes ¢ clock
cycles to be completely filled up. Hence, the first output
appears at (t + 1)-th clock and, consequently, a bit of output
appears at each clock.

32.1 Size of the Pipeline
The size of the pipeline in Fig. 2 is the size of the look up
table (or circuit) to compute i plus the ad ditional gates and

T

® T T Interrediard T H
ho— I s
2 GrLagn
Al - " Vi
LTSI 3
B PR I
2 i
Mo b2
Ay + A
o i
! - 1
Stage e s Stage 1

Fig. 4. Transition from stage ¢ to stage i — 1.

SARKAR AND MAITRA: EFFICIENT IMPLEMENTATION OF CRYPTOGRAPHICALLY USEFUL "LARGE" BOOLEAN FUNCTIONS

B

Sl

415

Buare 11 1

Ty —_—';Ii__:|$~_|__f:l|—*— i

ENY: T
|l TTH
Bt

Fig. 5. Intermediate circuit.

flip flops shown in Figs. 3 and 5. We provide an estimate of
the size.

1. Each of the initial and final drcuits requires a 2 = 1
MUX. Additionally, the final circuit requires an XOR
gate and the initial circuit requires a flip-flop to store
the value of ¥,.

2. Eachof the i (1 < ¢ < {) intermediate circuits require

o two 2 x 1 MUX circuits;

e two & gates; one or gate; one not gate; three
XOR gates;

o i+ 1 flip-flops to store the values of X, i
and two flip-flops to store the values of ¥; and 7.

Thus, the total count of the components is as given in
Table 1.

As the number of stages grows, the cost will be
dominated by the area required to store the values of the
different X s. However, as Table 1 shows, for a moderate
number of stages, the total size is quite small.

3.2.2 Key Synchronization

The Boolean function is part of the stream cipher system.
The working of the system requires a secret key to be shared
between the sender and the receiver. A particular key is
used to generate a fixed number of bits, after which it is
replaced by a new key. The sender and the receiver know
exactly the points at which the new key is to be used.

In our case, the secret key consists of the initial
conditions of all the LFSRs. The use of a pipeline seem to
suggest that, when a new key is used, the pipeline has to be
flushed. We explain that this is not the case.

The same system will be available to both the sender and
receiver. Once both sides start with a specific key, the first

- Aape

output comes after a delay of t clock cycles, ie., starting
from the (t + 1)-th clock. Now, consider the case when the
key of the system is changed. When the new key is loaded,
the pipeline will still contain some data generated from the
earlier key. The data coming from the new key will be
operational only after ¢ clock cydes from the time it is
loaded.

This is the same situation for both the sender and the
receiver. Both the sender and the receiver load the new keys
at the same time. During the time the pipeline gets filled up
with data from the new key, the bits from the old key
continue to be used. Hence, there is no additional
requirement for synchronization in this setup. The opera-
tion proceeds without any break in the generation of the
pseudorandom bits,

4 AN EXAMPLE

We describe a 24-variable function F which is built from a
10-variable function i. The 10-variable function h is chosen
to have order of resiliency 4, algebraic degree 5 and
nonlinearity 480, Such a function i can be constructed using
the method described in [7]. Qur target 24-variable
function F' has order of resiliency 18, algebraic degree 5,
and nonlinearity 2 = 480, Both i and F achieve optimal
tradeoff among the mentioned parameters [10]. The func-
tion F will be built from & using the method described in
Section 2. One possible representation for F is

h (Q) (R,re), (R, e), (Q,re), (B,r), (Q.e), (R,r),
(R,re), (), (Quore), (R.r), (Qure), (R,r), (Byre)).

Implementation of F requires a 14-stage pipeline. If i is
fixed (ie., implemented by a combinational circuit), there

TABLE 1
Taotal Count of the Components
mampanenl, 1-3hiyge Farage Grage | Balage | 1slage | 1sage |
R L =2 " 11 Al Ah Bl
Eales T 1 22 11 4| b 3
Hipr g yp LA 10 101 A 113 114

416

| |_”_I| | ¢ repisler
P |
Ko
; '3
I
X -
|¢.1 e }l, 4 i s Toreginrar

Fig. 6. Reconfigurable Boolean function £.

are 4" possible functions F which can be implemented by
the 14-stage pipeline. We now compare the sizes of direct
and pipelined implementation for F.

Direct Implementation Size: The size of direct implementa-
tion of F is =~ 2% gates/flip-flops.

Pipelined Implementation Size: The pipelined implementa-
tion requires:

o 2,048 flip flops to implement the look-up table for h.

o 302 x 1 MUXes, 99 gates, and 148 flip flops.

The total delay in the system is 14 clock cycles. A direct
implementation of F is prohibitively expensive. On the
other hand, the pipelined implementation is not only
feasible, but requires only moderate cost.

5 RECONFIGURABILITY OF THE BoOLEAN FUNCTION

The pipelined architecture provides a natural way to
reconfigure the hardware. The values of ¥; and + are
stored in flip-flops (see Fig. 2). Consider these flip-flops to
be organized into two registers—the P-register and the
r-register. The W-register stores the values (¥, ¥, ...,)
and the T-register stores the values (7;,.. ., 71). Note that the
bit ¥, is required twice—for the initial circuit and also the
final circuit—hence, it is more convenient to store the bit T,
twice in the ¥-register.

The function F is completely defined by i and the
sequence of values (¥, 7),..., (¥s. 7). Thus, it is easy to
reconfigure the pipeline. We have to change the following
two things:

» Change the look up table for the function f.
o Change the values of the WP-register and the
T-register.

This allows the same circuit to be easily reconfigured to
implement any function constructed using the method of
Section 2 and having a fixed set of parameters (see Fig. 6).
Thus the pipeline architecture is o universal circuit for the class
of secure Boolean functions described in [5].

If the function f is implemented using a combinational
circuit, then the first operation cannot be carried out. In this
case, reconfigurability is obtained from the second condi-
tion. The circuit can be reconfigured to implement any of
the 4' possible functions F. This still provides a large choice
of functions.

IEEE THAMSACTIONS ON COMPUTERS, VOL. 52, NO. 4, APHL 2003

6 CONCLUSION

In this paper, we have designed low cost hardware
architecture to implement “large” Boolean funcions. Our
design uses the Boolean functions constructed by the
recursive construction of [5]. Several questions remain as
to the best possible implementation and the implementation
of Boolean functions constructed using other methods [11],
[9], [14], [7]. We feel these are future research topics.

ACKNOWLEDGMENTS
This paper is a revised version of “Efficient Implementation
of Large Stream Cipher Systems,” presented at the Work-

shop on Cryptographic Hardware and Embedded Systems,
CHES 2001, Paris, France, 13-16 May 2001.

REFERENCES

[1] P. Camion, C. Carlet, P. Charpin, and M. Sendrier, “On
Correlation Immune Funchions,” Proc. Advances in Crypfology—
CRYPTC "0, pp. 85-100, 1992,

[3] A Canteaut and M. Trabbia, “Improved Fast Correlation Attacks
Using Parity Checks Equations of Weight 4 and 5," Proc. Advances
i Cryptology—EUROCEYPT X0, pp. 573-588, 2000,

[3] V. Chepysov, T. Johansson, and B. Smeets, A Simple Algorithm
for Fast Correlation Attacks on Stream Ciphers,” Proc. Fosf
Software Encryption—FSE 2000, pp. 181-195, 2001.

[4] T Joharsson and F. Jonsson, “Fast Correlation Attacks through
Reconstrucion of Linear Polynomials,” Proc. Advances in Crypfo-
logy—CRYPTO 2000, pp. 300-315, 2000.

[5] 5 Maitra and P. Sarkar, “Highly Monlinear Resilient Functions
Optimizing Siegenthaler’s nequality,” Proc. Advances in Crypfolo-
y—CRYPTO 99, pp. 198-215, 1999,

6] W. Meier and O. Stafflebach, “Fast Correlation Attacks on Certain
Stream Ciphers,” [Crypfolegy, vol. 1, pp. 159-176, 1989,

[71 E. Pasalic, S. Maitra, T. Johansson, and P. Sarkar, “"MNew
Constructions of Correlation Immune and Resilient Boolean
Functions Achieving Upper Bounds on MNonlinearity,” Proc.
Werkslop Coding amd Cryptographny—WCC 2000, 2001,

[8] R.A Rueppel, Analysiz and Design of Stream Ciphers, Springer-
Verlag, 1986

91 P. Sarkar and 5. Maitra, “Construction of Nonlinear Boolean
Functions with Important Cryptographic Properties,” Proc. Ad-
vances in Crypfology—EUROCRY PT 2000, pp. 491-512, 2000,

[10] P.Sarkar and 5 Maitra, “Monlinearity Bounds and Constructions
of Resilient Boolean Functions,” Proc. Advances in Crypfology—
CRYPTO X0, pp. 515-532, 2000,

[t1] J. Seberry, X.M. Zhang, and Y. Zheng, “On Comstructions and
Monlinearity of Correlation Immune Boolean Functions,” Proc.
Advanges in Crypfology—EUROCRYPT 93, pp. 181-199, 1994,

[12] T. Siegenthaler, “Correlation-Immunity of Nonlinear Combining
Functions for Cryptographic Applications,” [EEE Trans., Informa-
fiom Theory, vol. 30, no. 5, pp. 776780, Sept. 1984,

[13] T. Siegenthaler, “Deayptng a Class of Stream Ciphers Using
Ciphertext Only,” [EEE Trans, Compufers, vol. 3, no 1, pp. 81-85,
Jan. 1985.

[14] ¥.V. Tarannikow, “On Besilient Boolean Functions with Maximum
Possible Nonlinearity,” Proc. INDOCRYPT 2000, pp. 19-30, 2000,

SARKAR AND MAITRA: EFFICIENT IMPLEMENTATION OF CRYPTOGRAPHICALLY USEFUL "LARGE" BOOLEAN FUNCTIONS

Palash Sarkar received the Bachelor of Electro-
nics and Telecommunication Engineering de-
gree in 1981 from Jadavpur University, Calcutta,
and the Master of Technology in Computer
Science degree in 1993 from the Indian Statis-
tical Institute, Calcutta. He received the PhD
degree from the Indian Statistical Institute in
15959, Cumently, he is an associate professor at
the Indian Statistical Institute. His reseamrch
interests include theoretical computer science
and cryptology.

417

Subhamoy Maitra received the Bachelor of
Electronics and Telecommunication Engineering
degres in 1982 from Jadavpur University, Cal-
cutta, and the Master of Technology in Computer
Science degrea in 19596 from the Indian Statis-
tical Institute, Calcutta. He received the PhD from
the Indian Statistical Institute in 2001. Cumently,
he is a faculty member at the Indian Statistical
Institute. His research interests anme in cryptology
and digital watemmarking.

- For more information on this or any computing topic, please visit
our Digital Library at hitp://computer.org/publica tions/dlib.

	efficient implementation-1.jpg
	efficient implementation-2.jpg
	efficient implementation-3.jpg
	efficient implementation-4.jpg
	efficient implementation-5.jpg
	efficient implementation-6.jpg
	efficient implementation-7.jpg
	efficient implementation-8.jpg

