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Abstract

Sequences produced by cellular automata (CA) are studied algebraically. A suitable
k-cell 90/150 CA over F, generates a sequence of length ¢* — 1. The temporal sequence
of any cell of such a CA can be obtained by shifting the temporal sequence of any
other cell. We obtain a gereral algorithm to compute these relative shifts. This is
achieved by developing the proper algebraic framework for the study of CA
Sequences.

1. Introduction

Let g be a prime power and [F, be the finite field of cardinality g. Consider the
following & = & matrix M.

0 ifji—j=1,
a; if i =], .
My = B 1
! L ifi=j+1, ()

w ifi=j—1,
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where the constants ay, ... ag. b, . D, ooy belong to {0, 1}, We consider
the entries of M to be elements of F,. Let (e [Ffr"-,{{(}, -..,0)} and for =1, define

C'= MC'™'. Write " = (C%, ..., C%). Suppose the sequence of vectors %, C!, ..
has period ¢* — 1. We study the following problem.

® Obtain an algorithm that given M will compute integers f, ..., i such that C] =
CH for all ¢20.

The above problem arises naturally in the context of VLSI applications of cellular
automata (CA). A CA is an array of cells where each cell can be in a particular state.
The set of all possible states is taken to be F,. The collection of the states of all the
cells is said to be the state of the CA. At time ¢ = 0, the CA is put into an initial
state. For time ¢ =0, the state at time ¢ is determined by the state at time ¢ — | as
described below.

Let % be a k-cell CA and let the state of cell 7 at time ¢ be denoted by C]. | i<k,
t =0 Then the state of %" at time ¢=01is C' = (], ..., C). The following determines
the next state evolution of %:

mC{" + mCE" if i =1,
Cl = F,-Cj.’:l' + :{,-(::.’" + w ol if l<i<k, (2

i+1

KOS+ al! if i = k.

The constants a, ..., a0y, ...y dae o, fy belong to {0, 1}

One can define CA such that the constants «'s, &'s and e's are in [F,.
For g =2, this coincides with our definition. The technique that we develop
later can also be used to tackle the more general definition. Note that the
transition rule can be different for different cells. This is usually required in
VLSl applications of CA. The more wsual model for CA assumes the same
transition rule for all the cells. See [6] for a recent survey of the general theory
of CA.

The evolution of the state vector €' can be described as

C'=MC, iz, (3)

where M is the matrix defined in Eq. (1). The matrix M is called the state transition
matrix (STM) of %.

CA over F» are used as hardware generators for built-in-self-test (BIST). For this
purpose, CA with maximum possible period 2¢ — 1 are used and the state vectors
C® ', C? ... are used as the test vectors. This motivates the problem of studying
the relative shift between the sequences €} and Cf for 1 <i<j<k. This problem is
equivalent to the problem defined before.

The problem was earlier studied by Bardell [1]. In [1], an operational method to
compuie the shifts for a 6-cell CA was described. However, no algebraic justification
or general algorithm was provided in [1]. In this paper, we approach the study of CA
sequences algebraically. We first build the proper algebraic framework for the study
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of such sequences. Then we apply this theory to obtain a general algorithm for
computing the shifis in the CA sequences. This completely solves the problem
defined before. Apart from the shift computing algorithm our work also throws new
light on the understanding of CA sequences.

2. Preliminaries
2.1 Homogenous linear recurring sequences

A sequence s, 1s said to be a kth order lomogenous linear recurring sequence over
Fy (HLRS(g. k) il

Stk = Cr—18nth—1 + Cp—28wik—2 + - + ety foran=0,1,.., (4)

where ey, e¢ 2, ..., ¢y are elements of F,. The characteristic polynomial for the
sequence defined in Eq. (4) is defined to be the following polynomial in [Fy[x]:

fx) =2 - —aqad 7 - —a. (5)

The reciprocal polynomial f*(x) elF (x| of f(x) is defined by f*(x) = x*f(1).

It is known [4, Theorem 6.7, p. 193] that the maximum possible period of an
HIRS(g.k) is ¢* — 1. Sequences achieving this maximum value of period are of
fundamental importance in cryptology, computer science, and engineering. The
following result is an immediate consequence of [4, Theorem 628, p. 203].

Theorem 2.1. Let s, be an HERS(q. k) and f(x) be the characteristic polmomial
of sy. Then s, has maximum possible period ¢* — 1 iff f(x) is primitive over F,.

The genmerating function G(x) for a sequence s, 1s defined to be the following formal
power series:

.
G(x) =8 + 01X+ 857 + - F5x" + 0 =Y 50" (6)

=il

Let 5, be an HLRS (g, k) with characteristic polynomial f{ x) and generating function
Gl x). Then from [4, Theorem 6.40, p. 211] we have

k-1 i

G(x) = 7 o where g(x) =— Y Y crupod. (7)
' ¥ J=0 =0

The following two resulis are easy to prove and will be required later.
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Proposition 2.1. Let sy, 8, ... be an HLRS (g, k) with period g* — 1. For 0 i<g* — 2,
define Wi = (88010 -0y Sipe—1 ). Then all the Ws are distinet and are all the nonzero

elements of If-ﬁ.

Proposition 2.2, Let sg.. ... be an HLRS(g k) with primitive characteristic
podvnomiad  fix). Then  the  charactevistic polynomial  of  the  sequence

Sqt 15 v s 813805 St 15 ovy 81,80, .00 B8 ().

2.2 Basic results
We present some preliminary results which will be required later.

Theorem 2.2, Let M be ak x k matrix over Fy and vy e IJ-i be such that vo== (0, ..., 0.
For iz 1, define v, = Mv_ . Then the sequence

8 =Vy. V|, V. ...
has period g° — 1 iff the characteristic polynomial f(x) of M is primitive over [F,.

Proof. If M is nonsingular, then ord{ M), the order of M in the general linear group
Lk, g) is finite. For v a nonzero vector of I}fr define the order of v with respect to
M to be the least positive integer i, such that M*v = v. If M has finite order, then
each nonzero vector v also has a finite order. Further, the orders #, divide ord (M ). In
fact, ord(M) = lem(4,, ..., 4, ), where vi, ..., vp_ are all the nonzero vectors of
[F§. To see this, let / = lem(iy,, ..., s, ). Then for each ve F}, we have (M' — L)y =
0, where [y is the identity matrix of order k. Thus, the operator M’ — [, annihilates
the whole of IFﬁ and hence M' — I = 0. Further, for any i</, there will be a v, such
that M'v#v and so M'# f;. Thus, { is the order of M.

only if* Suppose s has period g* — 1. Since v, is a nonzero vector, the sequence s
contains all the nonzero elements of I}'fr. Thus, the order of any nonzero ve IPfr is
¢* — 1. Hence, the order of M is also ¢* — 1. Let i be the least positive integer such
that f{x) divides x' — 1. Since f{M) = 0 (by Cayley—Hamilton theorem), this means
M — I = 0. Since ord(M) = ¢* — 1, we have i = ¢* — 1. Hence f(x) is primitive.

if: (This proof has been conveyed to the author by Barua [2].) For any nonzero
Ve Iffr, define fi(x), the minimal polynomial for v, to be the least degree monic
polynomial such that fi{ Miv = 0. An easy application of the division algorithm
shows that fi{x) must in fact divide f{x). Since f{x) 15 primitive, this imples,
Sl x) = fx) for all nonzero ve lFfr. Let r be the period of s. Then M'vy = vg. But this
means the minimal polynomial for the vy divides x" — 1. Since we have already
shown that the minimum polynomial for vy is f{x) which by hypothesis is primitive,
it follows thatr=¢* — 1. O
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Theorem 2.3, Let M be ak » & matrix over by and let \'.;,Ell-'fr, va=(0, ..., 00 Forizl,

define v = Mv,_ . Then the sequence v, v, ... satisfies the recurrence
Vierd = €1 Vi =1 + € 2Vppi—2 + -0 + CoVy

for all n=0,1, ..., where fix)=x — e 2" —eaxd™2 — o — ey is the minimal
polynomial for vy

Proof. Since f{x) is the minimal polynomial for vy, we have /(M vy = 0. Thus,
Vit — (Gt Viep—1 + -+ + co¥a) = M" g — (Mg + - + coM™y)
=M (M — (e M7+ s+ i) Vo
= M"f(M)¥g

=0 O

3. Cellular automata

There are two ways of looking at the evolution of a CA over time ¢ =0. One can
study the evolution of the state vector C' or the evolution of the individual cells C.
The two evolutions are connected. If the STM M is nonsingular then it is not
difficult to see that the sequence of vectors C", C', ... is periodic. Since each C; isin
lFfr and M isa linear transformation nl‘lffr into itsell, the maximum possible period is

¢* — 1. The actual length of the period depends upon the initial vector C°. For
example, if C* = (0,...,0), then the period of the sequence C* C', ... is 1. On
the other hand, different nonzero values for €Y may lead to different values of the
period. By the period of a CA % we mean the maximum possible period for
the sequence €, ', ... where the maximum is taken over all possible values of €Y.

Theorem 3.1. [fa k-cell CA € over |y has period g* — 1, then the constants I; and 1
defined i Eg. (2) must all be nonzero.

Proof. Suppose the /s and 1’s are not all nonzero. Then either some /; is zero or
some u; is zero. We consider only the first case, the other being similar. Let r be such
that 2<r<k and §, = 0. Write C = (), ....C_, Cy, ..., Ci) and consider the cells
(T, ..., Cry) to be %) and the cells (Cy, ..., Ci) to be %5 Since I, = 0, the evolution
of € has no effect on the evolution of 5. This implies that the maximum possible
period for %1 is ¢! — 1. On the other hand, the evolution of %1 can possibly
influence %,. Hence, the maximum possible period for %, is ¢’ '. Thus, the
maximum possible period for € is ¢ (¢ -1 =¢* —¢ ' <¢* —g<g* — L
This contradicts the fact that the period of € is ¢* — 1. O
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We will be interested in CA with maximum period and hence in light of
Theorem 3.1, we will henceforth assume /; =w; =1 forall 2<isnand 1<jsn— 1
Then the matrix M becomes a tridiagonal matrix with both the lower and
upper subdiagonal equal to 1. If g= 2, such a CA is called a 90/150 CA [11].
Following this convention we will call such a CA a 90/150 CA, even
if g=2. Interestingly, for 90/150 CA and g=2, the set of sirings a...q,
which makes the matrix M nonsingular turns out to be a regular set. See [§]
for a proof of this fact and also an exact enumeration of the set of such “reversible”
sirings.

Theorem 3.2, Let 6 be a k-cell 907150 CA over |y having STM M. Then the minimal
podvnomicd of M iy equal to the characieristic polynomial of M.

Proof. Let f(x) be the characteristic polynomial of M. From the Cayley-Hamilton
theorem, we know that the matrix M satisfies ({x). We show that M cannot satisfy
any polynomial of ksser degree. Let Mj, be the i, jth entry of the matrix M". Then it

is easy to prove by induction that M{, ., =1 for 1<r<k—1 and M{, =0 for
J=r+ 1. Let pix) be a polynomial of degree /<k. By the observation above,
M, =land M}, , =0for j<l Butthen the (1,/+ 1)th entry of p(M) is nonzero
and hence p(M)£0. O

If fix) is the characteristic (resp. minimal) polynomial of the STM M of a CA %,
then we will simply say that % has characteristic (resp. minimal) polynomial f{x).
From Theorem 2.2, we obtain the following resuli.

Theorem 3.3. Let % be a k-cell CA over F,. Then % has period ¢ — 1 iff the
characteristic polynomial f(x) of € s primitive.

4. Cellular automata sequences

In this section, we concentrate on the study of the sequence C] of a particular cell
of a CA. The first result establishes the connection between C' and .

Theorem 4.1. Let € be a k-cell CA over by, and C"#(0,....0) be the initial
configuration of €. Let the minimal polynomial of C° be f(x). Then for all | < i<k, the
sequence Cf s an HLRS (g, k) whose chavacteristic polywomial is £ x).

Proof. Using Theorem 2.3 we obtain the fact that the sequence ' satisfies a linear
recurrence whose characteristic polynomial is f{x). Since C' = (C], ..., C]), this
implies that each of the sequences C7 also satisfies the same recurrence. O
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We now concentrate on a 90/150 k-cell CA %€ over [F, having period ¢* — 1.
Theorems 32 and 3.3 imply that

e the minimal polynomial of % is equal to the characteristic polynomial f{x) of %
and

® {(x) is primitive.

Further, Theorem 4.1 shows that the sequence of values of any cell of % is an
HLRS(g. k) with characteristic polynomial f{x).
Theorem 4.2, Let € be a f-cell W/150 CA over F, with primitive characteristic
polvnomial and CV= (0, .. 0). Then for any 1 i<j=<k, there exists an integer r such
that C[™" = C{ for all t=0.

Proof. Let f{x) be the characteristic polynomial of % Since f{x) is primitive, the
minimal polynomial of €? isalso f(x). Hence by Theorem 4.1, both the sequences
and Cf are HLRS(q, k) with characteristic polynomial f{x]. Using Theorem 2.1, we
obtain that the periods of Cf and C] are ¢* — 1. Let W =(C},...,C}"). Using
Proposition 2.1 we get that there exists a minimum r such that W = (7}, ...,CJ’-*‘" :
Since both €7 and (] satisfy the same kth-order recurrence this immediately implies
that &' = Cj for all t=20. O

Remark. Note that if the characteristic polynomial of € is not primitive, then it is
not clear that in general f can be obtained by shifting C}.

Thus, when f(x) is primitive, for any | <i<j<k, the sequence €} can be obtained
from the sequence C by shifting the sequence C a certain number of places to the
right. We are interested in the shifts between Cf and C}. For that it is sufficient to
consider the shifts of Cf, 2< i<k with respect to (7.

Let G{x) be the generating function for the sequence Cf. From Eq. (7), we get

gl x) :
G{x) = ==, (8]
fHx)
where /" (x) is the reciprocal polynomial of f{x). For 1 i<k, define
Px) = €+ Cla+ G + o+ 02, (9)

Let P{x) = Py(x). We first relate the polynomial P{x) to G(x):
GE) =+ Cle £ O3 + oo +CF 2002 oL oo L

=P(x) + x* ' Py(x) + 2P (x) + -

— Px)(1+ 2 22 P

__ Plx)
1 —xe*-1

(10)
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Here we use the fact that the period of € is ¢* — 1 and hence C = C{*"H for all
i =0. Combining Eqs. (8) and (10) we get

Plx) _ glx) :
I _xe 1 ) B

Using Theorem 4.2, we can define integers j) =0, j., ....j¢ such that

Pi(x) = ¥ P(x) (mod 1 —x¥ ", (12)

The integers f,....fc are the relative shifts of €3, ..., Cp with respect to 7.
The following result is important in obtaining an algorithm to compute
LT

Theorem 4.3, Let 6 be a W0/ 150 k-cell CA over |, with characteristic polynomial f(x)
which is primitive over Fy. Then

Hlxa;—1) + bt
-t 4 ixa— 1) 4+ abet!
bt 4 i — 1)

Omod f*(x) i i=1,
Omod f*(x) if l<i<k, ({13
Omod f*(x) if i =k.

Proof. From Eq. (2) we obtain

Pix) = x{mPi(x)+ Pax) mod (1 — x4~ 1),
Pix) = x(Pi(x) +aParx) + Pi(x)) mod (1 — ¥},
Py i(x) = x(Pea(X) + a1 Pe(x) + Py(x)) mod (1 — x¢'-1),
Pux) = x(Pey(x)+ aPre(x) mod (1 — x1).

Let P= (P (x),..., Pr(x)). Then the above equations can be represented as
AMPT =P mod (1 —x71),
where PT is the transpose of P and M is the STM of %. This gives

(xM — I PT = 0mod (1 — x4 ).
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Now P =(Pi(x), ..., Pe(x)) = (¥ P(x), .. ¥ P(x)) = (¥h, ..., ¥ )P(x). Thus, we
can wriie

(xM — L) (xh, ., )T P(x) = 0mod (1 —x 7).
Thus, there exist polynomials py(x), ... pe(x) such that
(xM — B)(¥, o )T P(x) = (pr(x), o pr )T (1 = 7).
This gives

(M~ It ) s = (i) a5

Using Eq. (11), we get

(xM — 1) (%", r']lT‘q—{ﬂ = (pi(x), ..o pelx))T.

From this, we obtain
(xM — I)(x", ..., )7 g(x) = 0 mod f*(x).

Since f{x) is primitive, so is f*(x). The degree of g{x) is less than & and
hence gix) has a unique inverse ¢(x) modulo /™ (x). Multiplying both sides by e{x)
we obtain

(xM — 1), .., ¥ = 0mod f* (x).

Expanding the matrix congruence we obtain the required result. [

5. Algorithm to compute shifts

Based on Theorem 4.3 we now develop an algorithm to compute the shifts in a
given CA. We will be working over F, and modulo /™ {x), which is primitive of degree
k over F,. The equations in (13) have to be solved for j», ... j. Since f*(x) is
primitive, the polynomials x' mod f*(x) are all distinet for 0<i<g* — 2. In fact these
polynomials form the multiplicative group of the finite field Fp. Thus, given any
nonzero polynomial p{x) of degree at most k — 1, there is a unique i (modulo g* — 1)
such that p(x) = x'mod /*(x). A close inspection of the equations in (13) reveal that
we will have to repeatedly solve equations of this kind. For this we need an explicit
representation of the finite field Fp modulo f*(x). In fact, we will use two
representations of this field as we explain below.

Let pow(0, ..., g% — 2| be an array of length g¢* — 1 such that pow(i] = x' mod f*(x).
Given i, this will allow us to retrieve the polynomial x' mod f* (x) in constant time.
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However, we also want to do the converse, i.e., given a nonzero polynomial p{x) of
degree at most k — 1, we want to find the unique integer i (modulo ¢* — 1) such that
pix) = x'modf*(x). Let a:F,—{0,...,g— 1} be a bijection. Then given any
polynomial p(x) of degree at most & — 1, it can be uniquely coded by an integer in
the set {0,...,¢—1} as follows. Let p(x)=ep ¥+ - +e1x+¢p. Then
alp(x)) = aler_)g* " + - +o(c) )g + o{cg). Conversely, given any integer i in the
set {0, ...,q" — 1}, there is a unique polynomial p{x), denoted by ¢ '{i) such that
a(p(x)) =i. We define an array rev[l, ..., ¢* — 1], where ¢7' (i) = x" mod f*(x),
l<izg*—1. The arrays pow|| and rev[| can be constructed simultaneously as
follows:

1. temp = 1, pow[0] = 1, revfs(1)] = 0.
2. fori=1tog"—2do
S gemp = x o femp (mod ©(x0).
o powli] = temp.
o revoltemp)] = i.
3. enddo

The time taken to prepare the arrays is Q{kg*). This is the most time-consuming
part of the entire algorithm. We now present the algorithm to compute the numbers
oo et

1. input: (1) the string (a), ....a¢) and (2) the polynomial f*{x).
2.4 =0, fr = revig(xa — 1) — 1.
.fori=2tok—1do
& hix) =powlj_ + 1], t:(x) = (xa; — 1) * powlj;| (mod f*(x)).
& fx) = hix)+ t(x) mod (%)),
oy =revfe(t(x))] — 1.
4. enddo

The correciness of the algorithm follows from Theorem 4.3 and the time taken by
the algorithm is O(k*). Thus, the total time taken to prepare the arrays and find all
the shifts is O(kg* + k7). The total storage space required is O{kg*).

In the above algorithm, we construct the entire finite field Fpu. This takes
time O{g*). Strictly speaking, this is not required. The actual requirement is
the following. Given a polynomial p{x) of degree less than &k, we have to find
an i (0<i<q® —2) such that x' = p(x)modf*(x). This is exactly the discrete
logarithm problem over F . Unfortunately, there is no known efficient algorithm for
this problem. However, if the field size is not too large, then there are some
algorithms that perform well in practice. For example if g= 2 and k=50, then
Shank’s algorithm can be used to solve this problem. See [9] for a description of
Shank’s algorithm.
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6. Concluding remarks

When g = 2. it is possible to obtain the string g ...ap from the polynomial /{x).
An algorithm to do this was described by Tezuka and Fushimi [10] based on a result
by Mesirov and Sweet [3]. Given a degree & irreducible polynomial f{x) over [,
there are at most two distinet k-cell CA whose characteristic polynomial is f(x). The
two CA are described by either the string o) ...q; or the string a;.. 4.

We have implemented the algorithm by Tezuka and Fushimi [10] and the
algorithm in Section 4. Thus given a primitive polynomial f{x) of degree k over [,
we obtain the k-cell CA and then compuie the shifts of the output sequences of the
cells. We provide a small example of a degree 16 primitive polynomial over [Fa.

Example. Let f(x) = x'% + x* + x* + x* + 1. The algorithm of Tezuka and Fushimi
[10] determines the walues of ay...a to be either 0001001001111000 or
00011 11001001000, The values of the shifis (i.e., ji, ..., fig) in the first case are the
following: (In the second case, the shifts are simply obtained by reading the values in
the opposite direction. )

0,65 534, 8108, 65 532, 3385, 48 B4, 56 397, 3045, 43 509, 63 038, 208, 4960, 1572,

9683, 1574, 1575,

The period of all the sequences C7, ..., Cl; is 2'® — 1 = 65 535. Hence, a shift of
65532 can be thought of as a shift of 3 in the reverse direction.

As mentioned in the Introduction, one possible application of CA sequences is in
BIST applications. Another application of such sequences have recently been
pointed out in the design of secure stream ciphers [7]. This application is based on the
fact that it is possible to choose a subset of the CA sequences such that the shifi
between any two sequences of the subset is exponentially large in the length of the
CA. This property helps in avoiding certain kinds of weaknesses of stream ciphers.
See [7] for details.

In an earlier work, Bardell [1] had provided an example of computing shifts in 90/
150 CA sequences over [Fa. In Bardell’s example, a 6-cell 90/150 CA with o) ...as =
100000 was considered. The characteristic polynomial is f{x) = 2* +x* + x4+ x +
1 which is primitive over 2. The shifts were computed to be (0, 39,35 47, 33,32, On
the other hand, the values of the shifts computed for Bardell's example by our
algorithm is 0,24 28 16,30, 31. Note that from the second shift onward the sum of
Bardell's shift and our shift is equal to 63 = 2% — 1, which is equal to the period of
the sequences. Thus, Bardell’s shifts and our shifis are actually obtained in opposite
directions. The reason for this is the following. In the computation, Bardell works
modulo f{x), whereas we work modulo f({x). From Proposition 2.2, we know that
if f{x) is the characteristic polynomial of s, %, ..., %%_, ..., then the characteristic
polynomial of the sequence s« |, ... 815 83 |5 <oy 81,80, ... 18 (x). This explains
why Bardell obtained the reverse shifts. The difference is minor, but the use of
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reciprocal polynomial comes out very naturally from the algebraic theory that we
have developed. We note that no such theory was provided in [1].

To the best of our knowledge, no CA design algorithm is known for g=2. This
question is connected to the orthogonal multiplicity of polynomials in fields [, with
g#2 (see [3]). Computational results from [3] suggest that for each degree k primitive
polynomial f{x) over [, it is possible to construct a CA whose characteristic
polynomial is f{x). It is not clear that such a CA will necessarily be a 90,150 CA as
we have defined. However, the 1;'s and the //'s in Eq. (2) must necessarily be nonzero
(see Theorem 3.1). We conjecture that for piven a primitive polynomial f{x) over [,
it is in fact possible to construct a 90/1530 CA having f{x) as its characteristic
polynomial.
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