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ABSTRACT

The multinomial selection problem is considered in its general
form where the objective is to select a subset of 5 cells which
contain the  ‘best’ cells, s = ¢. The inverse-sampling proce-
dure is studied for this problem and the LFC is denved under
the difference zone. An expression for the relative efficiency of
this procedure with respect to the widely used fixed-sample-
size selection procedure is obtained and theoretical bounds
are derived for this efliciency. It is found that the inverse-
sampling procedure performs uniformly better than the
usual fixed-sampling procedure in the case s = ¢ and s often
more efficient for 5 = r. When the selection goal is to select
any ¢ of the ¢ best cells, using a subset of & cells, expressions
for efficiency may be similarly obtained.
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1. INTRODUCTION

The problem of selecting the fr = 1) most probable events from a
given mutinomial distribution has drawn the attention of a number of
authors and many articles have been published in this area. In this context,
two selection procedures, namely the inverse sampling procedure (procedure
1) and the fived-sample-size procedure (procedure 2) have been studied in
the literature.

Let the cell probabilities of a multinomial distribution be written as the
vector p=(p.p2, ...k L= p2=, ..., =g, Where 1 =t <k, k=3,
ZLl pi=1. Samples are either drawn sequentially (procedure 1) or one at
a time (procedure 2). The problem is to select s cells which will contain the ¢
cells corresponding to py, pa. ... p,. In various areas like marketing research
and social survey, these sampling rules can be used to determine the most
popular brands of a given product, the most favoured opinions on a poli-
tical issue, ete. A procedure for such a selection is useful if it reduces the time
{and cost) of the experiment. So. a comparison between the two procedures
becomes important.

In this paper, we consider this selection problem in a general form
where the objective is to select a subset of s cells which contain the ¢ ‘best’
cells, that is, the cells corresponding to the ¢ highest cell probabilities,
l=t =k k=3 s=¢t=1 This problem was first studied by Bechhofer,
Elmaghraby and Morse (1939) for the particular case where s = ¢ = 1 and
they proposed procedure 2 as the selection procedure. Since then, the study
for procedure 2 has been continued by several researchers for different
values of s and ¢ and the general form of the problem where s =t = 1,
was studied by Chen (1986) and by Bose and Bhandari (1999).

Procedure | was proposed by Cacoullos and Sobel (1966) as an alter-
native procedure for this selection problem. They studied the particular case
of the problem where vy = ¢ = 1. Procedure 1 was studied by Chen and Sobel
(1984a) for the case s = ¢. The problem of selecting a subset of size v which
contains at keast ¢ of the ¢ best cells, where ¢, 5, ¢ are such that max(l, s+
i+ 1—k)= e = min(s, 1), was considered by Chen and Sobel (1984b) using
procedure 1.

In this paper our objective is to compare procedures 1 and 2. We first
consider the case s = = 1 in detail. For this case, to assess the relative
performances of the two procedures we caleulate the relative efficiency of
procedure 1 with respect to procedure 2 and bounds are derived for this
efficiency. We show that procedure 1 is uniformly better than procedure 2
for s = ¢, and is often better for s = ¢. Thus, procedure | is a more useful
selection procedure for such experiments. We also tabulate some values of
this eflidency for different configurations to illustrate this. Then, for general
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s and + where the selection goal is as in Chen and Sobel {1984b), we also
derive the efficiency expressions for comparing the two procedures.

In the following we describe the two procedures.

Procedure 1: Inverse sampling procedure: Continue sampling one at a
time until exactly ¥ many cells reach a frequency of at least r each (r = 1),
where r 15 a predetermined integer. As soon as this occurs, stop sampling
and select these v cells. Under this procedure, let NV be the expected sample
size or the average sample number (ASN) for the configuration p. Clearly,
this & would depend on r.

Procedure 2: Fixed-sample-size procedure: Draw a sample of fixed size
n. Select the v cells with the highest frequencies in the sample, with ties
broken by randomization. For this procedure, ASN = n for all configura-
tions p.

A usual requirement for selection is that the probability of correct
selection (PCS) must not be lower than a prespecified level p* if the true
configuration lies in some preference zone. Two preference zones have
been used extensively in the literature. One is the difference zone which is
defined by:

Dit k. b= Ip:p, =p.y +b, bisaconstant in theinterval ({}%) } (1.1)

and the other is the ratio zone defined by:
Rit. k. b)y={p:p; = dp,,. fisaconstant, & = 1} (1.2)

For the case s = ¢ = 1, Cacoullos and Sobel (1966) studied the effi-
ciency of procedure 1 with respect to procedure 2 at the slippage configura-
tion, which is the LFC of procedure 1 in R(t, k. #). Their efficiency measure
is based on the ratio of the ASN's of the two procedures at the slippage
configuration as 8 — 1. In Chen and Sobel (1984hb), the LFC of procedure 1
was derived under the preference zone R(t, k. #). In this paper, when con-
sidering the LFC of procedure 1, we restrict our study to the zone D¢, &, b).
This is because our objective is to compare procedure 1 with procedure 2 at
all p and at their LFC in particular. Alam and Thompson (1972) have
shown that for the case s = + = 2, R(t, k, ) is not suitable as a preference
zone for computation of LFC for procedure 2 and D(¢, &, b) should be used
in such cases. So, for a meaningful comparison at the LFC, we need the
LFC for both procedures in D(t, &, b).

For the case v = ¢, an expansion for the probability of incorrect
selection of procedure 2 was obtained in Bose and Bhandari (1999). For
comparing the two procedures, we first need to derive the expansion for
probability of incorrect selection for procedure 1.



168 BOSE AND BHANDARI

In Section 2, procedure 1 is studied for the case v=1+ The
expansion for the probability of incorrect selection of procedure 1
is obtained. MNext, this expansion s used to derive the limiting
form of the LFC over D{¢, k. b). The proofs of the results in this
section use properties of concave functions and the rich-to-poor transfer
technique.

In Section 3, we obtain an expression for the efficiency of procedure 1
with respect to procedure 2 and derive bounds for this efficiency. This
expression is valid for any general configuration p. In particular, the effi-
ciency 1% also studied at the common LFC in D4, &, b) for both the proce-
dures. We show that for vy = ¢, procedure 1 is always better. For general
& = {, the relative performance of procedure | varies with p and procedure 1
is often more efficient.

In Section 4, for the selection goal of Chen and Sobel (1984b), we
derive the efficiency of procedure 1 with respect to procedure 2 as a con-
sequence of the resulis derived in Section 3.

2. A S5TUDY OF PROCEDURE 1 FOR THE CASE s = ¢

Let the multinomial probability vector p be written as p=
(P1. P2y - pr), Where py = py = -+ = py. Then,

N :§+ﬂ(r']and hence (?) & aroyes, (2.1)

& P &

where NV is the ASN for procedure 1.

Let PCS,( p) be the probability of correct selection at p, when we want
to select s(= ¢) cells which contain the ¢ best cells, using procedure 1. In the
following two theorems in this section, we obtain an expansion for the PCS
and the expression for the limiting form of the LFC for this procedure over
Dit, k. b).

Theorem 2.1. Under procedure 1, as r — oo,
o
log{l — PCS\( pl) = Np(s —¢ + 2) Iﬂgj‘ + ol V) (2.2)

where 7 and A respectively denote the geometric mean and arithmetic mean
of the s — ¢ 4+ 2 terms p, py. Prss oo Pep -
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Proof: 1 — PCS(p) may be expressed in terms of its dominating term
as follows:

I — PCS\( p)=

i lg +{:—11} (l_[ﬂ )Pr. .(I—[ml)pm(l—[ﬂ)

W, (r— l}rl_[ syt ! =542
(2.3
where Wy ={x=(x, 2, ... %)!x1 2002251 21> x> xf
-+ = X, XS are non-negative integers}and ¢ is a constant.
Using Stirling’s approximation, (2.3) simplifies to:
1
|-IE‘,1 +{r—1}}( ,1J+r—5)
— PCSi( p) “‘“’Z =
e xiH
{r—1)" l_[_’ X
(l_[ P )Pr s (l_[PJH)PvH ( l_[ 7 )
i=5+2
where o is a constant. Then, after some simplification, we have
U'{-ff]}’]
1— PCS 210 2.4
o p) = {}Z[Hq} (2.4
where Qo={g=1{q1.....qe)tg={x/r),x e W},

: 1
o [ (1) ()

P

x (iqu) (l_[P,H)Pm (HF )} (2.5)

¢lg) = (Z‘.cﬂ' '”) (Z' %+ 1)' (2.6

and
d
AEDID] (1 /79y

Hr) =
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MNow consider

Cy=lg={gi.q c...qe)igh = g2 = - = g = gy
=1lzgy = =4} (2.8)

We use the following two lemmas, the proofs of which are given in the
Appendix.

Lemma 2.1. max; logfig) = (s —¢ + 2)log(G/A4), where A4 and G are res-
pectively the arithmetic mean and geometric mean of po, o oo P o1

Lemma 2.2. (1 — PCS( p)"""" — maxr, f(g), where f(g) and I', are as in 2.5
and 2.8.

From Lemmas 2.1 and 2.2 it follows that (1/r)logil — PCS(p)) —
(o — ¢ +2)log(G/4). Hence, from (2.1), Theorem 2.1 follows.

In the following theorem, the expansion of Theorem 2.1 is used to
obtain the limiting form of the LFC using the rich-to-poor transfer techni-
que. The proofalse uses a result of Bose and Bhandari ( 1999) which we state
below, for the sake of completeness, as Lemma 2.3,

Lemma 2.3, In a group of m elements, ¢, e, ..., ey, not all equal, if ¢ is
increased to e, + h, for some b, for all i =1, 2, ..., m, then the geometric
mean of the m elements increases by an amount = h, for small A.

Theorem 2.2, For the case v = ¢, the limiting form of the LFC for procedure
1 over Dt k, by is given by: {p=(p,,ps, ..o ip=p2= - -=p| =
=P tbrpri=pp==p =Py >Pyr=-=p =0}
Proof: The theorem may be proved using the following transfer steps used to
narrow down the search for the hmiting form of the LFC in D(1, &, h). By
Theorem 2.1, this limting form will be given by the point which maximizes
pologiGiA).

(1) Transfer from p,o, ..., to py until p 2 = ---= p = 0. This
transfer leaves p.. G and A unaffected. So now the LFC over D(4, &, b) lies in
the subclass

p=ppz---zp EPH-I"""?}PH-I o Z Par = et
=--=pm =0 CDit, k, B)

(2) Continue rich-to-poor  transfer among p, .. ..p,, until
Pisl = Prg2 = === Py This transfer leaves 4 unchanged and increases
7. Moreover, by considering the directional derivatives of p fog(G/ A) with
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Pl =Pya=--=p, = Py it can be seen that this transfer increases
plogiG/4). Now transfer from p, to p, ..., py until p =
Pert +Boper == pepr. This transfer again  leaves 4 unchanged,

increases ¢ and increases p,. Hence, by (2.2) the LFC over Diy, &, b) lies
in the subclass

=P E 2P 2P E P +h}}7r+l

= =p1 = pa=-=p=0Cp
(3 Transfer from pa, py...oop until py =pa=---=p,_ | = p,.
This transfer leaves p,, 4 and & unchanged. So, the LFC lies in
pm=ppzp==p=pu+b>pa=-=Py1 > Py
=.o=p=0}C g

{(4) Finally, transfer from p, to each of ps,ps. ... 0 P
Prels --os Popt by equal amounts until py = pa. This increases p, and by
Lemma 2.3, increases 7/ 4. No more transfers are possible towards increa-
sing pr, and G/ A. Hence the LFC over D¢, k, b) lies in

p=pipi=-- === +b}Pr+l
=-o=pg = ppa=-=p=01Cp C DLk D).

Remark 2.1. As 15 known from the hterature, there does not seem to be a

single LFC which works for all n. So, the imiting form of the LFC becomes
interesting in this case.

Remark 2.2, The LFC as obtained in Theorem 2.2 coincides with the LFC
obtained for the fixed-sample-size procedure in Bose and Bhandari (1999).

3. A COMPARISON OF PROCEDURE 1 VERSUS
PROCEDURE 2 FOR s = =1

Let PCS,( p) be the probability of correct selection at p, when we want
to select s =) cells which contain the ¢ = 1 best cells, using procedure 2 with
a sample of size n. Then by Theorem 2.1 of Bose and Bhandari (1999),
as n — 0o,

log(1 — PCSyp) = nlog[l — (s — jo + 2)(Ag — Go)] + oln), (3.1)
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where j, is the largest integer among ¢, ¢+ + 1, ..., s such that p;, = Gy, and

3 o 1 w+1
Go = (P15 - - P.d?.-r+ll“" ot Ag (Fr + Z FJ')-

=TT
s—fpt+2 Plarrd)

The efficiency of one procedure with respect to another is defined as
the ratio of the ASN required by each of the procedures to achieve the same
probability of correct selection (o, say) for a given configuartion p in
Dit, k&, b). Thus the asymptotic relative efficiency of procedure 1 with respect
to procedure 2 is defined as:

i ASN of procedure 2
&= e ASN af procedure 17

From 2.2 and 3.1, we then have

ps— t +2) log(G/A)
e = :
logl — {x —jy + 20 Ay — Gy)]

(3.2)

If ¢ takes a value greater than unity, we say that procedure 1 is more
efficient than procedure 2 in the sense that for a given configuration p
in Dit, k, b), procedure 1 requires, on the average, a fewer number of
observations than procedure 2, to achieve the same probability of correct
selection.

Mow, we study the possible value of ¢ for general pand v = «.

Case l.y =1
If s =t then s =, = ¢ and ¢ as in (3.2) simplifies to

o= zﬁr Iﬁgzqﬁrﬁﬁlﬂpr +Fr+I]]
log[l + o — (e + e /20] j

MNow, it can be shown using routine algebra that ¢ = | and so proce-
dure 1 is always more efficient than procedure 2. To illustrate the actual
values of this efficiency, the value of ¢ has been computed in Tables 1 and 2
for some values of v and ¢, 5y = .

Case 2.5 = +. For this case, the value of ¢ depends on the relative values of
P Pas ooy and s, ¢ The following theorem gives bounds for e.
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Theorem 3.1. The efficiency ¢ of procedure 1 with respect to procedure 2
satisfies the following inequality:
(s—t+2)4A—-G) p, (s—t+24-G) p,
. = — o &= . - b
(s —Jjo +2)Ay — Gy) A (s —jo +2Mdy —Gy) G

where ¢, A, (7, Ay, Gy are as in (3.2), (2.2) and (3.1) respectively.

Remark 3.1. When j, = ¢, the bounds of Theorem 3.1 simplify to

Remark 3.2, At LFC, j, = ¢ and so the bounds of Remark 3.1 apply.

Case (1). At LFC, for s = ¢, (p/A)=(p:/4) = 1. Hence, ¢ = | and
s0, procedure 1 is uniformly more eflicient than procedure 2.

Case (). At LFC,for s = ¢, as p, = G, by Remark 3.1 it follows that
e = 1. However, for b small, (p, /A4) is close to unity and so, ¢ is also close to
unity. Hence procedure 1 is almost as efficient as procedure 2 and this
efficiency decreases if b increases.

Table 1 gives some illustrative ¢ values for these cases.

Remark 3.3, Ouiside LFC, if ji, = ¢, then ¢ can be more than unity. To see
this, starting from any p, we keep p, fixed and transfer to p|, g2, ..., iy
from pp, pryrs -oos Poct s Pogi -

If j, does not change by this transfer, 4 will decrease and (p,/4) will
increase. This will increase ¢ and ¢ can become more than unity. If j,
increases by the above transfer and becomes greater than ¢, then,
My — 84+ 20 A — G)is—jo + 204y — Gy)) = | and so, again ¢ increases.

Table 2 gives the values of ¢ for some configurations outside the LFC.

Remark 3.4, The above discussion shows that for the multinomial selection
problem, procedure | is always more efficient than procedure 2 when 5 = ¢
and even when s = ¢, procedure 1 often requires substantially fewer ohser-
vations than procedure 2. So, procedure 1 is extremely useful as it is simple
and at the same time it reduces the cost of the experiment.

Mow we prove Theorem 3.1, We first state and prove a lemma which is
required to prove the Theorem.

Lemma 3.1. (s — ¢+ 2XA — O /(s — jio + 2N Ay — Go)) = 1.

Proof: Let the arithmetic mean (A.M.) and the geometric mean (G.M.) of
Prels Prpa .o, py, be denoted by A and @) respectively. Let wy = 5 —jp +2
and wy = j —t.
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MNoting that & as in (2.2) s a weighted G.M. of G, and G|, with
weights wy, and w respectively, it follows that

A— G =(4— weighted G.M. of Gy, G))
= (A — weighted G M. of Gy, 4))
= (A — weighted A.M. of Gy, 4)).

Again, noting that A4 is the similarly weighted A M. of 4, and 4, it
now follows that

(s—t+20A—G) = (v —t+ 2} weighted A M. of 4,, 4,
—weighted AM of Gy, A =(5—j, + 20 Ay — Gy

Hence Lemma.

Table 1. Efficiency at LFC

t 5 b ¢ t 5 b ¢

| | 0.01 1.001 (M) 2 3 (000 5 9927
0.05 1.0500 001 (IR
0.0 IR 003 09316
(.30 1.3000 009 08740
0.60 16000 010 (. 8306
(0 .SH) IRUITLET 020 0. 7029

2 2 0.01 1.01 31 (.30 0.3246
0.05 1.0774 =z 4 XL TR (9934
0.0 1.1435 001 09874
0,10 1.1606 003 0.9337
020 1.3493 (0 (.8813
0.30 1.5863 010 0.8676
040 19372 020 0.7178

3 3 0.01 1.0202 (.30 0.5448
0.05 1.1069 2 5 (000 5 (9935
0.2 1.3669 001 (98T

| 2 0.005 0.5 30 003 (L9382
.01 (0 SrE (lh X1 (LBR3R
0.05 (.53 0 010 08724
009 (051 (Wb 020 0.7272
010 [IRLITET (.30 0.5578

0.30 07000
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Proof of Theorem 3.1: From (3.2),
_ pls—t +2)log[l — (A -G/ A)]
T dog[l — (5 — iy + 20 Ay — Gyl
Y oo (A—G) A k)
Y o 5=+ 2" (e — GO /)

=pls—14+2)

=ply—1t+ 2]%, sy ---(3.3)

The ratio of the kth term in M and the &th term in N is:

[(s — t +2)(A — G))f 1

. pestA)
[(s —fo +2XAg — Go)IF [{s — t+ 2)A]*

Since (v — ¢+ 2)4 is less than unity, (1/[(s — ¢+ Z}A]‘] is increasing in k.
This together with Lemma 3.1 implies that the expression in (3.4) is also
increasing in k. Hence, (M /N) is greater than the ratio of the first terms of
M and N. So, from (3.4) it follows that

(s—t+204-G) p,

) P (35
e P T T S

Again, since the ratio of kth term in M and the kth term in N is
increasing in &, if we multiply the kth terms of both M and N by k, for
k=1,2,..., 0o, then the ratio (M /N) increases. So,

Y o (A= 64"
Yo =i+ DMy — G

e=pis—1t+2)

On simplification, it follows that

(A — @ /A (1 {1 —(G/A
(5 =y + 20 Ay — Gy)/ (1 — (5 —jig + 2NAy — Gy))
_ s—=t+2)A-G) ps

— (- .Irﬂ 4 2]{-’4:} s {1'-:"} E[l _{.'1'. _.-Fﬂ + 2]{.‘4(} T (;l:r]]'

e=pis—1t+2)

Hence,

—t4+ 204 -G p,

i s A

From (3.5) and (3.6), the theorem follows.
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Table 2. Efficiency at Some p Vectors Not Equal to the LFC

k P f 5 ] e

4 {0500 0.490 0.005 0.005) 1 2 0.01 3.2031
(0490 0480 0.020 0.010) 1 2 0.01 2.6710
(0420 0.410 0,090 0.080) 1 2 0.01 1.9717
(0420 0410 0,090 0.080) 1 1 0.01 1.0120
{0500 0480 0.010 0.010) 1 2 0.02 28253
{0480 0460 0.030 0.030) 1 2 0.02 23822
(0450 0.430 0.060 0.060) 1 2 0.02 20038
(0430 0.430 0.060 0.0600) 1 1 0.02 1.0227
{0800 0100 0.0%0 0.010) 2 3 0.01 2.2396
{0900 0.050 0.040 0.010) 2 3 0.01 1.6008
(0.750 0,100 0,090 0.060) 2 3 0.01 1.2231
(0840 0,085 0,065 0.010) 2 i 0.02 1.7564
{0850 0.080 0.060 0.010) 2 i 0.02 1.6889
{0870 0.070 0.050 0.010) 2 3 0.02 1.5363
(0700 0,150 0,120 0.030) 2 3 0.03 1.5759
{0800 0,100 0.070 0.030) 2 3 0.03 1. 1660
{0900 0.060 0.030 0.010) 2 3 0.03 1.0194
{0.750 0140 0.090 0.020) 2 3 0.03 1.3435
{0800 0100 0.095 0.0050 2 3 0.003 27972

5 (0800 0.050 0.050 0.050 0.030) 1 1 0.750 20173
(0500 0470 0,010 0.010 0.010) 1 1 0.03 1.0309
(0500 0470 0.010 0.010 0.010) 1 2 0.03 2.7568
(0.500 0,495 0,002 0.002 0.001) 1 1 0.003 1.0030
(0.500 0495 0.002 0.002 0.001) 1 2 0.0035 36903
(0400 0395 0.002 0.002 0.001) 1 2 0.003 1.625%
(0400 0395 0200 0.004 0.001) 2 3 0.1935 1.6764
(0400 0395 0.200 0.004 0.001) 2 2 0.195 1.3432

& (0400 0.395 0200 0.003 0.001 0.001) 2 2 0.195 1.3432
(0400 0.395 0200 0.003 0.001 0.001) 3 i 0.197 34000
(0400 0395 0200 0.003 0.001 0.001) 1 i 0.0035 1.8277
(0400 0300 0295 0.003 0.001 0.001) 2 3 0.0035 3.5981
(0300 0300 0295 0.050 0.050 0.005) 2 2 0.005 1.0084
(0300 0300 0295 0.050 0.030 0.005) 5 5 0.045 2.3400

i {0200 0200 0200 0.195 0.195 0.005 0.005) 3 3 0.003 1.0137
{0400 0395 0200 0.002 0.001 0.001 0.001) 3 3 0.198 3.6651
(0200 0200 0200 0.195 0.195 0.005 0.005) 3 5 0.003 3.2596




T L

MULTINOMIAL SUBSET SELECTION 177

4. A COMPARISON OF PROCEDURE 1 AND
PROCEDURE 2 FOR THE SELECTION GOAL
OF CHEN AND SOBEL (1984B)

A selection problem with general s and ¢ was considered in Chen and
Sobel (1984b). Their goal was to select a subset of size v which contains at
least ¢ of the ¢ best cells, where ¢, 5, ¢ are such that max(l,. s +t+1-Fk) =
¢ = minis, £). For this problem, Chen and Sobel {1984b) used procedure 1
and the s cells so selected were to contain at least ¢ of the ¢ best cells.

With this formulation of correct selection, we could again compare
procedure 1 with procedure 2 in a way similar to what was done in Section 3.
For this comparison, the expansions for the probabilities of incorrect selec-
tion with the two procedures are required under this formulation. These
expansions are given below:

Let PCS; p)and PCS,( p) be the probabilities of correct selection at p
under the formulation of Chen and Sobel (1984b) for procedure 1 and
procedure 2 respectively.

Corollary 4.1. Under procedure 1, asr — oo,
G
log(1 = PCS(p)) = Npils = ¢ +2)log — + o(N) (4.1)

where GG and A respectively denote the geometric mean and arithmetic mean
of the s — e 42 terms p. ooy, Poa. o Py -

Proof: Note that as in (2.3), for this formulation, 1 — PCS3( p) may be
expressed in terms of its dominating term by

1 — PCSy(p) =

d;{l (r - ! l_{[&' -‘f,-!]} (EP)PI (l:[ E..H)MI (ﬂf’)}

where W, = {x=(x;, %, ..., X)X 2220 1 2r>2x, 2. >
X, x;'s are non-negative integers} and J is a constant.
Then, Corollary 4.1 follows along the line of the proof of Theorem 2.1.
Stmilarly, following the proof of Theorem 2.1 of Bose and Bhandarn
(1999), the following may be derived.
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Corollary 4.2, PCS,;({ p) admits the expansion

fog(l — PCSH ) = anll — (s —jy + 20 Ay — Gyl + oln),  as n — oo,

where jy is the largest integer among ¢, ¢ 4+ 1, ..., s such that p;, = Gy, and
.'r+|
1 i o 1
Ag=|p.+ Pil—=  Go=Peliprs - PP VO
y ( :'=J§I )"" —fo+2 2 i
(4.2)

For the selection goal of Chen and Sobel { 1984b), using Corollaries 4.1
and 4.2, it may be shown following arguments as in Section 3 that the
expression for efficiency of procedure 1 with respect to procedure 2 will be
ziven by

Py —e 4 2oz A)

_ _ 4.3
¢ log[l — (s —jy + 20 Ay — Gyl 36

where 4, 4, G, G, are as defined in Corollaries 4.1 and 4.2.
All other results in Section 3 can be extended for the formulation of
Chen and Sobel (1984b) easily.

APPENDIX

Proof of Lemma 2.1: From (2.5)

k k
logfig)= (qu- + 1) |ﬂg(z o+ 1)
i =l

-1

k
- qu log g; + Eq]- logpi + g logp;
=1

i i=l
it

i—1 k
+ ) gilogpy +logp + Y glogp, (A1)
=t I=5+2
From (A.1), it is clear that log f{g) is concaveineach g, i=1, ..., k, i #£4,
separately and so the solutions g7 of
M —0 - (A2)

E]{f f)



MULTINOMIAL SUBSET SELECTION 179
fori=1,. .., k& i# s will give the maximizer point " = (g}, g3, ..., i) of

log flg). From (A 1) and (A.2), we obtain

&

4 =P 1+E g, | fori=¢ 41, .. ,5—1
=1
=

k
=p, 1+;q]- fori=s+1 (AT
£

k
=p|1+) g | fori=1.2,...,¢—1
=l

afd g g i

Now we have to check if ¢" € T,, where T’y is as in (2.8). Since
peDit k b)from (1.1) it follows that g, = g7 fori=¢ ++ 1, ...,5—1
and so by (2.8), ¢ as given by (A.3) cannot belong to T, which requires
gi=l=g. . fori=¢ ¢4+ 1, ..., 5—1_ So, remembering that logf(g) is
concave in g,y and in each of ¢, i=+¢ ..., s— 1, it now follows that the
maximizer point ¢~ of logf(g) over T, must have g =
G ==q =4 =1=q],

Mow the remaining g7 values may be obtained by solving (A2) for
i=1,2 ....t—1and i=s+2, ..., k. Hence, after some simplification
using » . pi= 1, we have

1
qrf':qp,- fori=1,_....t—1
=1 fori=t8¢t+1, ..., s— 1,4 5+1 (AL

1
=M fori=s+2, ..., k

where A is the arithmetic mean of the terms p., pry. ooy Po Popr- Clearly
g " isin [, and so from (A.1) and (A.4), it follows on simplification that

maxlogf(g) = logf (™) = (s — 1+ 21Iag% --+(A.5)
where (7 is the geometric mean of p,, poy ). ..., Py Py Hence Lemma 2.1,

Proof of Lemma 2.2: Consider an infinite sequence of concentric spheres in

" centered at the origin. Let the sphere with radius n be denoted by C,,.
For fixed 5. small, let ¢ =0 be the area of the set Q=

g :maxp flg) = flg)—n}. Abo, for some &= 0, g(g™) +4 = maxy g(g),
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where ¢ 1s asin (A4). Lemima 2.1 shows that g™ is unique point and so for
large r, there will be a ny such that ¢™* will be contained in C,, for all n = n,.
Hence, for large r and large »,

f{ﬂ}ah.f'{rﬂ -

)t
M S ere (A
PO ET R B L
Mote that glg) = 0if at least one g, =0, i=1, ..., &

There exists an open set 8 around the zeros of g, for which the
Lebesgue measure of B is less than €*, for some small € = 0. For fixed n,
since €, 15 compact, g is bounded below in £, N C, — B and so

Z U{fﬂ} = (E{Jlr{_ u J_.r __.{I,GL'?]

dne, 8@

for some constant O, where the summation is taken over all the points in
@, NC,— B. Since C, is of radius n, it can contain at most (2nr)* points of
2, and so

CY (g™ = can'{ fig™) - (A8)
Hence, from (A.6), (A7) and (A_8) for each n = ny,

Wig™) =y DY _ oty
proe Ep; g = CCm U@ (A9)

Now, the R.H.5. of (2.4) is bounded above by | and Elg) — (p/p.) for large
r. Hence by Markov inequality on the coordinates of g, it follows that for all
r. the RH.S. of (2.4) is uniformly dominated. Hence for some large »', the
proportion of the portion of the R.H 5. of (2.4) not contained in C,» can be
made smaller than any given ¢*. So,

oy {q]
l +¢ e (A0
E o) ——-— 2(2) MEE fr) [ "] { )

Hence, from (A9) and (A.10),

flg™) -t Z n;}{Hrf}} E U{rf}} 1

Hr)
{. g{qﬂ‘}-l‘ﬁ in"llf 7 (‘r] ]_ +-E

< U N (g™} .
Now taking the r-th root, the lkemma follows.



MULTINOMIAL SUBSET SELECTION 181

Proof of equation (2.1): Let x = (x. ..., xy) denote the observation vector
corresponding to the & multinomial cells and let ny,, = x; +--- 4 x; when
x; =r for the first time. Let n be the sample size for procedure 1 at the time
of stopping. Let 4, be the event that a cell with cell probability p, has
observation r at the stopping point of procedure 1.

Then, by SLLN, (n/x,) — (1/p,) and P(4,) — 1. Now, (x,/r)l, — 1.
Hence, (n/r) — (1/p,).

Note that 0<in/r)= Y, where ¥, =(1/rMn;,+---+ny,) and
Y, = Y* (1/p) and E(Y,)= Y% (1/p). Hence, by Billingsley (1991), it
follows that

fn 1
) ~ -
r Py
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