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Abstract
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1. Introduction

Let X be a random vanable with distribution £ and let f{0.X) be a measumble function which is convex
i (. Suppose () =E/(0,.X) 15 finite for all §. Suppose 0y 15 the wrigue mimmiser of (). This 1s the
unknown parameter to be estimated. By choosing f appropriately, (f can be the mean, any quantile, ete. See
Bose (1998) for more examples and details.

Suppose X; are 1.1d. copies of the random variable X, A natural nonparametric estimate of y based on
these observations is @, which minimises the sample quantity

Ou0) =" f(0.X,). (1.1)
i=1

The above set up can be broadened considerably by allowing § to be a function of the form {0, X,.. . X, )
defining O = £ f(0L.X,.. ..X, ), and letting

()= D fBX,,...X,).

PR
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Examples which fall under this extended set up include variance, U quantiles, L, median, Oja median etc.
See Bose (1998) lfor more details.

Thus, this class of M, estimators is quite rich. Several asymptotic properties of these estimators are known.
In particular, these estimators are asymptotically nonmal under suitable conditions on £ and . See Bose
(1998) and the references contained there. A natural question is what would happen when some of these
conditions are not vahid.

For example, consider the sample median. It has asymptotic nommal distnbution if £ s differentiable with
a positive dedvative at the population median. Among others, Huang et al (1996) and Knight (19982, b)
showed that if a suitably weaker condition is used on F, then an approprately scaled and centred sample
median has a nonnormal asymptotic distribution. This condition 1s an attempt to cover at least some situations
where F 15 not differentiable.

We examine this condition for the median carefully and introduce suitable conditions for the general class
of M estimates and call these nonregular M estimates. We show that under these conditions, the nonregular
M estimators have possible nonnommal asymptotic distribution. All our results are stated and proved for M,
estimates. This 15 done for simplicity. It is possible to formulate similar resulis for M, estimates also.

We then tum to the bootstrap approximation results for these estimators. One goal of the bootstmap 15 to
find a consistent, and if possible an accurate, estimate for the distribution of 1. 1t is known from Bose and
Chatterjee (2000) that the usual bootstrap and their suitable generalised bootsrap cousins yield distnbutional
consistency for the “regular™ M, estimates. It is also known from the works of Knight (1998a) that for the
one dimensional median, the “usual™ bootstap is not consistent in nonregular situations while the m out of »
bootstrap 15 consistent. Similar results are available in Knight (1998b) in the regression context.

Following Bose and Chattegee (2000), we propose that (for m= 1), the bootstrap be carried out by min-
imising

QJIBUH o) Z “"m'_nfl{ A (1.2}

i=l

o obtam the esimator 5. This may be termed as generalised bootstrap. W w, = {wyp, ... o0y, ) ~ Multinomial
(n,1/m,....1/n), then (1.2) comesponds to the classical bootstrap of Efron (1979). With other choices of
distribution of w,, we obtain the Bayesian bootstrap, the delete-d jackknives for various o, the m out of
n bootstrap and several other schemes known in the literature. See Bose and Chatterjee (2000) for a more
detailed discussion, specially about the choice of the distnbution of w,. The importance of the study of
“eeneralised bootstrap™ stems from wying to understand the salient features of a resampling scheme which
are necessary for consistency, higher order accuracy and computational efficiency.

Since the data is ii.d., a most natural assumption on the weights (wy,. ... wy,) 15 that they form a row
exchangeable triangular sequence of nonnegative random wvadables, independent of the data. Apart from
this, some lower order moment assumptions are also made to guarantee consistency. The behaviour of
a2 = Var(w, ) turns out to be quite crucial. It is important to note that the delete-d jackknife with d fixed is
distributionally inconsistent (see Wu, 1990). For this jackknife, a2 — (0. The classical bootstrap and Bayesian
bootstrap are generally consistent in “regular” situations and both of these satisfy o2 — 1. The m out of n
bootstrap is known to work for a number of “nonregular problems” and for these o2 — ~o. See Bickel et
al. (1997) for examples. Some specific cases are the maximum (Athreya and Fukuchi, 1997a, b; Deheuvels
et al., 1993), the sample mean for heavy tailed F ( Athreya 1987, Knight, 1989).

Bose and Chatterjee (2000) showed that under suitable conditons on the weights and on the model, the
generalised bootstrap is distributionally consistent for M, estimates. Their assumptions on the model allowed
for some nonsmoothness in the function § but along with other conditions it was assumed that (00) 15 twice
differentiable and the matrix of second dervatives at () s positive definite.

When specialised to the sample median, this condition is the same as the standard assumption that
is differentiable with a positive density at the median. Thus, the case of nondifferentiable £ owas excluded.
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Knight {1998a) demonstrates that under his altemate nonregular condition for the median, the usual bootstrap
is inconsistent but the m out of » bootstap 15 consistent.

We investigate the consistency of the generalised bootstrap for nonregular M estimates. Our study on
bootstrap in the nonregular cases identifies which schemes are consistent and which are not. The schemes
with @2 — =0 turn out to be consistent and the others turn out to be inconsistent. In particular, the usual
bootstrap and the delete d jackknives for fixed 4 are inconsistent. The m out of n bootstrap is consistent only
if min — 0.

In Section 2, we give result on the asymptotic distnbution of the M, estimates under nonregularity and
its proof. In Section 3, we study the asymptotics of the bootstrap. In Section 4, we give some examples
and report results of a small simulation exercise. The simulation exercise shows how different resampling
techniques perform m nonregular cases. The simulation fllustrates that there are various possible choices of
consistent resampling techniques for which o2 — =0, and thus the choice of a proper technique is an important
issue and merits future investigation.

2. Asymptotic distribution of M; estimates
The assumption which defines the nonregular behaviour 15 the following.

Assumption A. (i) The minimiser ( of () is unigque. Further, there exists a W), and a nondecreasing
sequence {a,} such that the following limit exists:

lim n'2a,[Q(06 + a, 'u) — Q(0s)] = P(u).

H—00

{11) For almost every x (with respect to the Lebesgue measure), w'y + (1) has a unique minimum.

Remark 1. MNote that since [ is convex, (0 is also convex. It follows that (-} is also convex. 1t is well known
that if' a sequence of convex functions converge pomtwise, then the convergence 1s uniform on compact sets.
See for example Rockafellar (1970). Hence the convergence in Assumption A (1) 15 unifornm over compact
subsets of @.

Remark 2. Every convex function O has a measurable subgradient which we denote by ¥C. This subgradient
satisfies

Clan ) + (w2 — 1 )" V() € Claa) (2.1)

for all wy, s in the domain of C. Further, this subgradient is nondecreasing in the sense that (w —eu ) (VO ) —
V() = 0 for all ) and wa. If glw, x) is the subgradient of f{w.x) (g can be chosen to be measurable in
both arguments) then E(g(th,.X))=VO(1) (see Lemma 2.3 later). It is easy to see that since (y is the unique
minimiser, V() =0 (see Lemma 2.3 later). Further, if Q is twice differentiable, then typically a, =n—"?
and Piu)=u"VO(0y)u/2. This corresponds to the regular case.

Knight (19984, b, 1999} has studied the median under nonregular conditions. In that case we can take
St x)=|x — 0], see Section 4.

We now state the asymptotic distribution theorem for the nonregular M estimates. As pointed out earlier,
an appropriate version of this theorem also holds for the M, estimates.

Theorem 2.1. Under Assumption A (1) and (1) above, a, (1), — 0y ]g}-arg min Z{ u), where Z(u)=u" W + ¥(u)
and W ~ N(0, ) with X = Eg(0y. X Jg(0.X)".
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Note that W%, being the gradient of a convex function, 15 nondecreasing. 11t 15 one—one, then it 15 sirictly

mcreasing and its inverse 15 well defined. In this case, a, (), — Uﬂ]%-{?‘.“]"{—ii’} where W~ N{(, £} with
= Egifly, X )g(0y.X )" Knight {1998a) has an example where V¥ is not strictly increasing, but nevertheless,
the limit distnbution of the median exists.

Before we give the proof of this theorem, let us quote two results that we use in the proofl and also in the
proofl of the bootstrap theorem given later. The first 1s a stochastic version of the uniform convergence result
remarked above. This has been used by Haberman (1989), Niemiro (1992 and Pollard (1988). We quote this
result.

Lemma 2.1. Suppose {A.(s)} is a sequence of convex random fimetions defined on an open set 5 €RY,

which converges in probability to some A(s), for cach 8. Then supcy | Ays) — Als)| L0 for each compact
subset K of 8.

The following result follows from the works of Hjort and Pollard (1993 ) and Knight (1998a).

Lemma 2.2. Suppose that Z(u) i a sequence of random convex fimetions with minimisers w,. Suppose that
the finite dimensional distributions of Z(u) converge in diviribution (o those of a random function Z(u)

which has a unigue minimum w. Then u,,%— .
The following lemma is useful in the sequel. Let giw, x) be a subgradient of f{uwx).

Lemma 2.3. (a) For every (L VO )= Egi(L.X). Further, Egl (X ) =10
{(b) For any fixed u, u'Eg(thy + uja,.X) | 0. Consequently, u" E[g(0y + uja,. X ) —g(0h.X)] | 0, and hence
w' V() = u" (M + vja. X) — g(00.X )] — O abnost surely.
Proof. First note that from Assumption A1), for every fixed u,
lim a,[Q(0y + a, 'u) — O(fy)] = 0. (22)
Using (2.1},
—(f (0 —ufa,, X) — f(0p. X)) < a; 'u" g(00, X) < (f(Oy + fa,. X)— (0. X)),
MNow take expectations, to get
—a( Q0 — u/a,) — QD)) < u"Eg(00. X) < a( Q0 + uja,) — O(0)).

Now using (2.2) the second part of (a) follows. To establish the first pat from the differential and argue as
above. We omit the details.

For (b) we follow similar steps.

We again use (2.1) to obtain

—(f (O —ufa. X) — f(00.X)) < a; 'u" g(fy + u/a,. X )
= (il + 2ufa, X) — (0 + ufa,. X))
and again by taking expectations, we have
—a (O — wa,)— O(0,)) < u"Eg(0y + u/a,. X)
= a0y + 2ufa,) — (g 1) — a Oy + wla, ) — OO0
and we get the first part of (b) from (2.2).
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Agamn by using (2.1}, and the assumption that a, 15 nondecreasimg, it follows that for every fixed w the
sequence u' Y, (u) is nonnegative and decreasing, Denote the nonnegative limit mandom variable by ¥(u). From
(a) and the first part of (b) it follows that £¥{w) =10, consequently ¥(u) =10 almost surely. This proves the
second part of (b). O

Proof of Theorem 2.1. Define

Zuw)=am="2 Y " [f(0 + a7 w.Xo) — f(00, X)),
i=1
Since fis convex, Z,(u) 15 also convex. Also note that if 0, 1s a mmimiser of % F(0,A7), then w, = a,(0, —
tly) 15 a minimiser of Z,(-). We point out here that our minimisers, here and elsewhere are chosen m a
measurable way. This is possible by a suitable selection theorem. See, for example, Castamg and Valadier
(1977) or Niemiro { 1992).
We can write Z(u) = T, (1) + Talu) + Tale) where

() =aun ™3 " [f(00 + a; ' w.Xi) — f(00. X)) — a; '’ g(00. 1)
i=1

—n'"2a, [0y + a; 'u) — O(0)]

Tualu) = n'"2a, [Q(0 + a; 'w) — Q)]

Nalu)=n" I'EZ ' g( 0. X ).

i=1
We now study these three terms.
(1) First note that from the assumptions we have that Ta(u) — P(u), in fact uniformly over compact sets
by convexity.
(ii) Let us write T,(w)=3_| Zulu), where

Zot) = aun P00+ a; 'w X)) — F(00.X0) — a; u" (D0, X))

—n- I'Eﬂ;.[Q{H:r + ﬂu_l u) — Q)]
Then we have £Z,;(u) =0 for all u and by using independence, Var (T, (u))= Var (3., Z,{u))=nEZ, (u).
Mow

nEZ (1) = a2 Var[f(0p + a; ' w.X)) — F(00.X1) — a; 'u (06, X))

< @E[f(Oo+a; 'u, X1)— f(Bo.X1) —a, 'u" g(B0. X1)F.
On the other hand, since 7 is convex, we have
0= fiih +ﬂ"_IH,,X|] — flhg X)) — ﬂ;lurg{ﬂﬂ.,M )
< a 'uTg(thy +a; ' wX)) — (0 X)) =a; 'u" Yu) say.
Thus Var(T,i(u)) < E[u"(g(0 + a; 'w. X)) — g(00. X)) = E(u" ¥, (1) .
Now using Lemma 2.3(b), second part, it follows that E.|{t:}—p>{} for cach fixed w. Now note that by (1)
above, the second temm of Ty converges. Henee the first temm also converges. Now by convexity of each term

& u . . ¥
in T, this convergence is uniform on compact sets by Lemma 2.1 Thus we can conclude that T,.|{u}|]—>{}
uniformly on compact sets of .
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(1) Since (h is the unique minimiser of O, 1t easily follows that Eg{{y, X)=0. Hence by central limit
thearem, () =uT W, Zu"W, where W ~ N(0, £) with £ = Eg(0y..X )g(0p. X )T.

Define Z(u) =u" W+ ¥{u). From the above steps (i)—(iii), it follows that the finite dimensional distributions
of Z{u) converge to those of Z{u). Now we can apply Lemma 2.2(1) to claim that

ty = ap(0, — Op) = argmin 2(-). O

3. Bootstrap asympiotics of M; estimates

We first discuss the various conditions we impose on the bootstrap weights. Let {wy,, i=1,....n, n=12...}
be a tnangular sequence of nonnegative, mow-wise exchangeable random variables, independent of X, ...,
Xy....}. We use the notations Ps, Eg. Vg to, respectively, denote probabilities, expectations and vanance with
respect 1o the bootstrap probabilities, that is, with respect to the distribution of the weights, conditional on the
given data {X),....X,....}. Let a2 = Fyw,, W,; =, (w,;— 1). The notations k and K will be used to denote
generie constants. The following condinons (3.1)—(3.3) on the weights are assumed:

Egwy =1, (3.1
O0<k < crf, (32)
C11 = corr{ Wy Wy ) = O(n~ Ly, (3.3

It may be noted that whenever %) w,; =C, for some constant K, then condiion (3.3) is automatically
satisfied.

Mot that for the m out of n bootstrap, o7 =n/m. It is known from carlier works that for this bootstrap to
be consistent (in probability or almost surely) in nonregular situations, some conditions are needed on the
resample swe m. For our results we make the following assumption.

Assumption B. There exists a function ¥ (which is necessarly convex) for which V%) is one and a sequence
B such that

n' PR O + B u) — O(06)] — Pi(u).

MNote that if i, =a, and o, — 1 then this is exactly Assumption A (with ¥ =%). This will include the
usual bootstrap. Further, if for some subsequence m of n, fi,=a, and m~'?n'?a,' — 1 then Assumption B

L

holds if Assumption A holds (with ¥ =% ). This will include the m out of n bootstrap.
Let Gy and Gy be the probability distributions of 5 with the following centering and nonmings:

f;.llﬂﬂ{_-r] =PB[ﬁJ|{U.I|B = Hﬂ'j = -T]-

UJIB{-T'] =y Pﬂ[ﬁu{_uuﬂ - HJI ::' = -T]-

Let Woand Wy be two independent copies of a random vanable having distribution N({0, £ where £ = Eg(il,
X)gity.X)". Let € and €| be positive constants where € can be 2o, Let Gypo(x) and Ggyp(x) be the random
probabilities (gven W)

Gawo =P(V¥ ) ' (—Wa — C7'W) = x],

Grw =PV ) —Wg - C'W)—-C (V) (-W) = x].

Let U =(F¥~")—-W).
We now state the bootstrap theorem.
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Theorem 3.1. Suppose Assumption A()—in) hold  Further, the weight sequence is such that (3.1)+33)
hold, Assumption B holds and a bootstrap central limit theorem is satisfied. Assume that a2 — C?. Then,

Jor every xy,....x,
(a0 — 09, Guo(x1 ), ..., Gumn (i )= (U, Gawox1 ). ... . Gawolx0))-
If further Buja, — Ci, then
(@B — 00), Gu(x1 ) .. G ))2H(U G (1), G ()

Let us examine the consequences of the above result The generalised bootstrap is distabutionally con-
sistent if and only if the random distribution Ggy(x) is the same as the nonrandom distnbution function
G(x)=P[(V¥ ) {(—W) < x]. Note that this is not possible if (V%) and (V%) are unequal.

NV u)= (V¥ ) "{u) = iu, then G{x)= Gry(x) and the bootstrap is consistent (provided we choose
B, to be g, /o, or asymptotically equivalent to it).

If (V) u)=(V¥ )" (u) but they are NOT lincar, then it is easy t see that if C or C;' is finite, the
bootstrap 5 inconsistent. This includes the usual bootstrap, m out of # bootstrap with m/n tending 1o a finite
limit and the delete-d jackknile with d — ~c such that &/n tends 10 a non zero limit.

However, if (V) (u)= (V%) "(u), and both C = =0 and C; =0, then the bootstrap becomes consistent.
This includes the m out of n bootstrap with n/m — oo,

The question of accuracy of a consistent bootstrap approximation is very relevant. However, we do not
address this ssue here. It may be conjectured that the speed of convergence of the bootstrap distribution will
depend, among other things, on the behaviour of @ as n — sc. A more detailed study on the accuracy aspect
can lead to critenia for choice of m in the m out of # boowstrap.

The following result of Knight (1998a) is used for proving Theorem 3.1,

Lemma 3.1. Suppose that Z,(u) and { Zu} are random convex funetions such that
{a) _}E‘Jf' any compact set [, sup, . !f,,{u‘] — 2. (1) LAY
(b} Zw) has an almost sure unigue minimiser Vo which ix Op(1);
(¢) for each & > 0, Hy(8) = [inf|u—y =5 | Zu(w) — Z(V.)]]~" = Op(1),
Then if U, minimises Z, U, — ¥, 2.0

Remark 3. 1t may be pointed out that condition (¢) above holds if the finite dimensional distributions of
Z(u) converge to that of Z{u) for some Z(-), see Knight (1998a).

Proof of Theorem 3.1. Note that we have assumed o2 — €2, where € = oo is a possibility. Define
ZJIB{,“] — .IIH_I Eﬂ,l_l Z “"m'[_uf.{_ﬁﬂ + |||:-‘.,|_I H‘JXII:! = f{_ ﬂthXJ'”'
i=1

Since wy; are nonnegative, Zplu) s convex. Also note that if (g 15 a minimiser of 3wy fILAG), then
as = i (s — Og) is a minimiser of Z,g(-).
We can write Zg(t) = st + T2 + Tigs + Tups where
Tow = fun™ 2oy wi f(00 + B, w.Xo) — f(00.X) — B, ' 900 X))

—n 2 B[O+ By ) — Q0 Y v
i=1
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Tum =1 Baoy [0 + ay ' 1) — O(00)) (”_' 3 ‘”‘") ’
=1
Tawy =n""2 )" Wt g(00. X)) =/'Won  say,
i=1
T =n""a' Sy "ulg(00, X)=v'a; ' W, say.
i=1

(i) First note that the assumptions on the weights implies that (n=' 37, w,;) — 1 in Py probability. Using
this fact and the same techniques as in the proof of Theorem 2.1, we can show that for any compact set £,
and any & = 0, under assumptions Pylsup, . |7, ()] = )20, We omit the details.

{i1) By the observation on the weights in (1) above and Assumption B, it follows that T — ¥i(u)
uniformly over compact sets, in probability.

(i) By using central limit theorem for weighted sums of exchangeable random variable sequences (see
Praestgaard and Wellner, 1993; Arenal-Gutierrez and Matran, 1996 or Bose and Chatterjee, 2000), it is casy
o see that conditional on the data, F:,33%-Hr Wg, almost surely (), where Wy ~ N(0L X)) with £ = Eg(ih,.X)
g0 X)'. Also note that unconditionally, by CLT, W,= W where W has the same distribution as Wy above.
Morcover W and Wy are independent.

We now use Lemma 3.1. Define Z,5(1) =u"(W,s + o 'W,) + ¥ (u). We shall show that the conditions
of the lemma are satisfied in the conditional world (in probability ).

(a) From the arguments given in (1) and (i), it follows that for every & = 0, Pelsup,cp | Zuplu) — Zn(u)|
= E]L{]‘, vernlying condition (a) of Lemma 3.1,

{b) By assumption (1), Z.p(u) has a unique minimiser, say ¥, which is obtained by solving, ¥, = (V%)™
(—Wp —a, 'W,). Since W, converges in distibution conditionally and W, converges in distribution uncon-
ditionally, it follows that given &= 0, there exists £ = 0 such that P[Pg[|V, = K] = &] = & This implies
that ¥, = Opg( 1) with as large probability as we please, venfying condition (b) of Lemma 3.1 (with large
probability ).

{c) We now venly condition (¢) of Lemma 3.1. By the Remark after the statement of the lemma, it is
enough to show that the finite dimensional distributions of Z,5 converge. Bul since 7, 15 approximated by
Za uniformly over compact sets, it is enough to verify this for the latter process. Fix wy,.. .y and consider
PB[E,,B{m] < X1 2l = 5 1. 1t is easy to see, by using (iii) above that the above probability converges
in distribution to the conditional probability (hold W fixed) Plul(Wa + C7'W) + W) = xpoee o) (Wa +
C~'W) + ¥i(u) < x ). This verifies (¢) (in distrbution).

Now the first part of the Theorem follows from the abowve discussion. The second part of the
Theorem follows by writng 0 — 0,) = f(hg — Oy ) — (S /o, da (0, — ) and using the assumption that
Bufa, — C. O

4. Examples

We now discuss some interesting examples on nonregular estimates which fall under the ambit of our
results.

Example 1. Suppose that we wish to estimate the (unigue) median fy of a distribution £{-) which does not
necessarily have two derivatives at the median. This situation has been considered by Huang et al. (1996) and
Knight {1998a). We show how our general result can be applied to this situation. Take f(fx)=|x — 0] — |x|
and for & = 0,

OO + h)— Q) =2hF(0 +h) — h — 2E[(X — D)0 < X < 0+ h)].
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Table 1
Cuantiles from simulated and bootstrap distributions of the sample median from
Flo)=099M00,9) + 0014, distribution

Cruantile] %) Sirmu lated Bl B2 B3

5 231 —2 R0 —-31350 31497
25 —{1.49 —1L.20 —1.12 —LI8
1] (.00 — (.02 —002 —0.01
75 0.48 0.13 0n 0.73
95 224 1.56 247 278

Using this, it can be casily checked that at any point f where F is continuous, we have Q') =2F{)— 1.

Suppose that both the right and the ket denvatives of & exist at . Let these be denoted by A7 and A7,
respectively. Note that the usual central limit theorem for the sample median requires A7 = 47, Assume that
this is not necessarily the case and thus £ is not necessarily differentiable.

It can be checked that if we take a, =n'? and u = 0, then, keeping in mind that F{fly)=1/2,

n ! Eﬂal Q‘[_”ﬂ + u.";ﬂ.u ] = Q{_ ﬂ'! ]
=2un'[F(0 + ufa,) — F(0,)] — 2n"?a,E[(X — O)(0 < X < 0, +u/a,))

It can then be casily checked that the two terms above converge to 247w and Aty® respectively and hence
the entire expression converges to 7w, Similary it converges to A~ w” when u < 0.
Thus, Assumption A1) holds with

it ifuz=0,
Wiu)=1q :
AT =i
Let us consider the mixture distribution F{x) = 099N(0,9) + 0014, where dy 1s the degenerate mass at (0.
It 15 not difficult to see that for all 0, F 5 smooth, and at ¢ =0, it has unequal left and nght derivatives.

We take a sample of size n = 1000 from this distribution, and want to estimate the distribution of the sample
median using resampling. Our choices of resampling techniques are

{Bl) The m out of n bootstrap with m = 150,

{B2) The m out of n bootstrap with m = 470,

(B3) The weights wy are 11.d Gamma mandom variables, with shape parameter 0.1 and scale parameter 10,
L., the mean of these weights are 1 and vanance is 10.

The choice of the resampling techniques require some justification. According to Theorem 3.1 resampling
techniques for which o° — oo are consistent. This however, is of little use in practice, where one must choose
techniques based on the subjective criterion of “large” o2, Since for m out of n bootstrap, > = n/m, it would
seem that choosing m smaller would produce better results. However, with smaller m the bootstrap distribution
of the sample median has emratic tails, so clearly there are other factors to consider. In (B3) we have used
absolutely continuous weights, and our results, presented in Table 1 suggest that they are just as good as the
m out of n bootstraps.

In Table 1, we report quantiles from the simulated distrbution of the sample median from F, and quantiles
of the different bootstrap approximations of it

Example 2. Consider again the median problem but now assume that F{-) satisfies
At |2 L{ [x]) if x 20,

F(lly +x)—F(th) = L o
—iT x| L|x]) ifx <0
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for some @ = () where L is a slowly varying function at 0. Then, a, =n""2*PLi(n), where L; is a slowly
varying function at infinity. Also, for a constant £,
Kt ifrz0,
(V¥)r)= ; .
—RiT|er it <

Note that for o < 1 the density f(x) (i 1t exists) will have a singularity at x =, and for =z = 1, /(=0
Kmight (1998a) considered this example also.

Example 3. Suppose £ is as in Example 2, and we have the least absolute deviation regression problem, 1.e.,
the pairs ;. X;) are observed for i=1.....n, and the regression parameter fy defined as argming £y, — Ax|
is the parameter of interest. Knight (1998b) has example of cases where X;'s are nonmandom as well as cases
where they are mndom.

Further examples can be obtained from Knight ((1998b), Bose (1998) and Niemiro (1992).
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