Linear Algebra to Quantum Cohomology:
The Story of Alfred Horn’s Inequalltles

Rdlﬂﬂdl"d Bhatia

W wanlt fivst an overviesw of the aim and of the road; we want m onderstand the idea of the
v, the deeper conlest. A meedesn mathematical proot is not very different om a modern
machine, or o modem 2l selup; the simple Tumlamenla] principles are hidden and almeest
ivisthle pcler o mass of weehmical details,

Hormann Wewt

A long-wanding problem in incyr algebrea Alled Hom®s conjecture on eigenval-
ves of sums of Hermitian matrices—has been solved recently. The solulion appeuared
in Liwn papers, onc by Alecander Klyachko [201 in 1998 aod the aother by Allen Knut-
son and Terence Tao [23] in 1999, This has been followed by g umy of activity thal
his browgh o the mathematical contre-stage what for many years had been somewhat
of a side-show, The aim of iy aicle s o deseribe the problem, il origing, some of
Lthe carly wark on 1t and some 1deas that have gone into its solntion.

A substmatial pard of this wele should he aceessible 1o anvone whao has had a sec-
ond eourse on linear alechra. The reader who wants to know more will find it rewarding
tor read the comprehensive and advanced aecount [11] by Williarm Fulloon.

1. LINEARITY, QUASTLINEARITY, AND CONVEXITY The principal charac-
ters io our story are # < # Flenmitian matrices A and B, lheiv sum £ = A - 1, and the

cigum-'ulum of A, f, and © coumerated a8 o a2 - -2 o, F 2 = - = A
and y, = e = -0 = . respectively, Sametimes we wiould 1ike 1o crphasiec the de-

pendence Ul the cipenvalues on the malrix, We then use the nodation 27(A) for the
Jth cigemwvalue of A when the cigenvalues are arranged in a (wealkdy) deumbm;_, urder,
Tius oy = ;'vj.ll_’ Ay This n-taple of eizenvalves of A4 as a whole is denoted by o ox
A4,

The story hegins with a simple question: what are the relationships between «, 4,
and ¢ 7

MNow, Lhe cigenvilucs an: met lincar functions of A and ao simple relation between
w, A, and » is apparent, except one, The trace of A, denoled 1r A is (he sum of the

diagonal entrics ol A und also of the cigenvaluss of A, Sa, i =trA 4o B and
henee

ir L” +Zﬁ. (1)

Wi can think of A as a Hncar operator on the complex Euclidean space ™ equipped
with its usual inner product {x, ¥, wiillen also us x™y and the associaied norm |l =
{x*x)Y* The Spectral Theorem tells os that every Hermitian operator A can be diago-
nalised in some orthononmal basis; or equivalently, there exisls a uriiary macrix I sach
that £/ ALT® == diag{a, .. .. . b, a diagonal matrix with diagonal entries a, ..., o,
IF gy ure Lhe url.hmmnnul pigenveclory corresponding Lo i cigenvalues o, we write
A= Ea:_,-&:_,-uj‘, and call this the spectral resofurion of A. Using his, 1L 15 casy 1o
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see that the set {4, Axd x| = L} (called the numerical range of A) Is equal o Lhe
inlerval (. o). In particular, we have

o) = mws bx, Axg, (2
all=t
oy = mun {y, Ax}, (3

sli=1

For each lxed veclor x, the quaniity (o, Ax) depends lincarly on A, Bguadeons (2]
and (3) cxpress o, &, A5 2 MaXimuun or minimum over these linear funclions. Such
sxpressiony wre called guasifinear. Very oflen, they lead W inleresing inequalites.
Thns, from (2] and (3) we have

W=+ 4

Vo & 0ty fin. {3)

In this way, we begin to get inear inegualiriesbetween o, g, and . There is anolher
wity of looking al (4), The sel of 7 x 1 Hermilian matrices is a real vector space. The
inequatlity (4} suvs AY(A) i5 4 comvexr funclion on this space: the incquality (5) says
that A }{A4) is concave.

The inequalilies (4) amd (5) are not independent. Note that the eigenvalues of — 2
are the same as the negatives of the eigenvaloes of A, But laking negulives reverses
orideri e lor 1 < §F < n,

M—4) = —hy ;0 (A) = =3 (), 6
where the notation f-'.,t(.r'lj Indigales thal we are now enumerating the cigenvalues of
A in inercasing order. Using this observation we can see that (2) and (3) are equiva-
lent, ay ave (4 and (53 Muny of Lhe inequalivics slated below lead o complementary
inequalities by this arcument.

2, THE MINMAX PRINCIPLE AND WEYL'S INEQUALITIES The relations
(21 and (3 are subsumed in a variational principle called the minmay principle, 1 say's
that forall 1 =< 7 <&

¢; = max min{x, Ax) = min mux{z. Ax) (7)
g vept relt Vi rel
dim =i L=l dimb=s J11 llel=1

Here dim ¥V stands for the dimension of g Unear space V eontained in €, This prinei-
ple was Grst mendoned in a 1905 paper of E. Fischer. Its proof is easy, Use the ypeciral
resolution A = ¥ aju; iy Lot W be the space spanned by the voetors . ..., it
Then Him W =n — § + 1. 8o, if ¥V is any j-dimensional subspace of T7, then V and
W have a nonzero intersection, If x 15 a umil yeclor o Lhis iolersoction, then §v, Ax)
lics in the interval [e, «; . This shows that

min o, Ax) =g

el
bx1=1

If we choose ¥ to be the subspace spammed by wp. ..., u;, we ohlain cquality here.
This prewves the first relation in (7). The second has a very similar prowd,
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This principle has several very interesting consequences. Henmilian matrices cin
be vrdered in g nawrd) wiy, Wo say thal A = 8 il {x, Axd =< e, B forall .. One
sees il onee [rom (7) thatil A = B, then b (A) = :-_jrm} low all j. Thisis called Wl 's
manotonicity principle. (The applied mathematics classic by Couranl and Hilbern, |8]
is full ol applications ol cigemvalue problemns in physics. The Weyl monatonleity pein-
ciple has the following physical interprelalion: if the system stiffens, the pitel of the
Jundamenral tone and every overfone fmereases |8 n, 286, Theorem IV]L This indeed
15 the experience of anyone tuning the wires of a mnsical nstrnment. }

Weyl's monotmicity principle, and several other wlations between eigenvalnes of
A, B,and A + B were derived by IL Weyl in u fumous paper in 1912 [33]. Particularly
imporant for out story is the Family o incgualitics

Vigjor =i+ fori+j—1<m (8

These can be proved wsing the same idea as the one thal guve us the miin-
mux principle. lew 4, B, and A 4 £ have spectral resolutions A = 3 o uu’,
B =73 i, A+ B =73yt Consider the three subspaces spanned by
e T {y_l_t i u,,}, amed {rg, .} These spaces have ditnensions i — £ 4
1,n— j+1,and & respectively, If k& ={ 4 j — 1, these nmmbers add up 1o 20 + 1.
This implies that these throe subspaces of 027 have a nontrivial intersection. Let x be
a upit vectar in this intersection. Then (x, Az} 1y in the interval g, o], (o, Hx} o
[B. ;] amdd {x, (A + B)x}in [y p1 ). Hence

v = A+ M0 =, )4+ (x, Be) = o, + .
Thiy proves (&),
Note that the inequality (4} s o very special case of (8). Anolher special conse-
guesnee o {8) iy the inequality
it P Sy <+ B torl <i=n ]
The seennd ineguality is derived from (8) simply by pulting j = 17 the first by the sot

ol wegumenl indicaled . the end of Scedon 1.

As an aside, let us mention the interest such resulls huve lor nuenerical analvas. Tar
ny vperator A on O deling

laill = sup I Ax]| (10}
el 1

If A is Ilermitian, then it 15 easy 1o see thal

1Al = sup |[{x, Ax)| = max (o], e, . (L1
llsli=L

L sing this, ane can see from (%) that

o — 1Bl =y = o +8]. (12)

By a change of lubels (replace B by £ — A) thiz lcads 1o the Weyl perfurbation
Heeorem

max |a; — 5;| = l4 B {13)
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In numerical analysis one oflen wplaces @ malnix 4 by a nearby matris # whose
cigenvalues might be easier to caleulate. Inequalities like (130 then provide uselul in-
finmation on the emror cansed by such approximalions.
Some of the nequalities in the following sections provide finer information of in-
eresl o the numerical analyst. We do nat discoss this further in this article; see [5].
Convexity properties of eigenvulues and inlerscetion propertics of gigenspaces are
closely related, us wo have aheady scen. This is the ledtmaodil of ouar story.

3. THE CASE 1 =2 When r = 2, the statement (8) contains three inequalities

AEe A, et fh et b {14

It turmes ol that, together with the lrace equaliy (173, these three inequalitics are suffi-
cient to characterise the possible eigenvalues of A, B, and € el three paics of neal
numbers {ivq, a2}, {51, B D14, %) cach ordered decreasingly (o = o, etel). satisty
the relations (1) and { 14), then there ¢xisl 2 = 2 Hermitian mgaices A and & such that
these pairs are the cigenvalues of A, B, and A 4- B.

el us indicale: why Uhiy 35 so0 Choose s paics e, 3, say

=4, ax=1 H=3 f=-2
Whal are the 3 thid sausly (1) and (14 The conditon (1) says
v+ =6
This gives a line in the plane &”. The resirclion 3 = 2 gmves half of this Hne--ts

parl in Lhe hall-plane ;4 = o0 Ooe of the three inequalitics in (14) is redundant; the
other two are

}II| E 71 };2 E 2'
So. the set of p that satisty (1) and (14) constitutes the line segment with end points
(4, 23 ancd (7, =10 sec Figuwee 1. We want to show that each point on this segment
corresponds to the two elgenvalues of o Hermilian mutrix O = A + #, where A has

cigemetlucs (4, 13 and & has cigenvalues (3. —2).
Start with the dizpona] melrices

40 100
A:[u 1:|‘ Bﬂz[u —2]

Lel £ be the 2 = 2 rolgtion mairix

el
ta = [ cos it sin ‘J

sIn e
Al ket
.Irf,'-’; —] r_.-'.:'; .Irfr_;.i.-'ll-j‘, {:[.I = A - B.‘.'I-

This gives 4 family of Hermitien mairices parametrised by the real number &, Note

that
40} 73 07_7 o
"=lo1gflo 250 =1 ]
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Figure 1. The ling segment given by Wevl's egqualiies.

: 4 0 s 2 0
('*Tf?:[n 1]+[ 0 11}=[n 4}'

Thus the twe end points of tur line segmenl comrespond (o (}LHC Wk, .~_;_. Lf?t.}) for the

values 0 =0 and 8 = &2, It is a fact that .*.l Cad 1% g comiinuons hmctiony of §;
sec 15, 0 154)) '

Condition (1) tells vs that the eigenvalues of € must lie on the line 3 + ;= £
S0, by the intermediate value theorem each point of the line sepment between (7, — 1)
and (4, 2} mnst be the pair of elgenvalues of Cg for some 0 = & =< /2.

Figure 2 showrs a plot of the two eigenvalueys l‘}’{{.‘g} amid f: (G 0 =8 = a2 The
o curves are symmeine ghow the line v = 3 becanse of the trace condition {1).

Some comments are in order here, We chose numerical values for e, B Tor conerele
Musirutions. The same argument would work Tor any pairs, The matrices A and B
we got are not jusi Hermitian; they are real syimmmetiic, The condilion (1} broughi us
down from Lhe plaoe onlo w lone, the condition 1 = 3ot a part of this line, and the
incgualitics (143 i a closed interval on it. We have proved the following theorem,

Theorema 1. Let A, B be two real synunetric 2 = 2 matrices with etgenvalies o) = a
aned fiy = o, respeciively. Then the sei of (decreasingly ovdered) vigenvalues of the
family A - UBL?, where U7 varies over rofation matrices, is a convex set (aetally o
bine segment ] Thiv convex sel iv desceibed By Wepl's inequalities £14).

This iz also a good opporminity to comment on two featores of Figure 2. Neilher the
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- ——— — e —q,

A p——-

B =0ton2

Figure 2. Uhe two cipenvelucs of the Rumily Oy

smocthness of the two curves, nor their avoidance of croysing cach viher is loruitoons,
See the bewk [27, p 1137 (and the picture on its cover) for a discussion snd explunation
of these phenomeni.

4, MAJORISATEON Belore proceeding furlher, it wanld be helpfuol 1o iniroduce the
coneepl of majerizaion of vectors. The theorems of Ky Fan, Lidskii-Wislandt, and
Schur are best understood in the Lmguage ol majorisalion.

Lat x == (X, X1, ..., %) be un slement of TR, We wrile x! = fcfc: E .tj“] fior
Lhes vector whose coordinates are obtained by rearranging the x; in decreasop order
Xz ezl

Let £, v be two elements of BE°, 1L

k L

Dby lol=t=n, W

i1 ki

then we say 38 weakly sugforised by ¥, and write x <, y. If, in additon o the
inequalities (153, we have

A n
>st=Yo 16
i=1 =

then we say & 1s smajorised by v and write x = .



My oam example, et p = (pr.. .. ) be any probabilily veclors ic., p; = O and
3 p;=1.Then

[ |
(—....1—) 4 (e, e = (L0, O
F il

The notion of majorisation is mportat, A pood parl of e classic | I8] and all of the
more recend, book [29] are concerncd with majorisation. See also [5].
Among the several characterisations of majorsation the following two are espe-
cially usclul and inercsting: sce [5, po 33].
1. Lete be apermutation on # symbols, Given y e B, let », = {J-‘nnj., ceee Fap )
Then x = y if and only it x 15 in the convex hull of the a! pomts ¥,
2 x = yifand only if x = Sy for a donbly stochastic matrix §.

Recall that 2 matrix § = [s;;] is doubly stochastic if 5, = 0, 3 i %y = I forull £,
and 3, s =1 forall §
Let us write ot = i.rlr._ i xﬂ,‘] for the vector whose coordinates are obtained by

rearranging x; in increasing order: x; = ... = x, . Note that x ;= xi_ ji1e Then x is
majnised by ¥ ilod only il

13 ,:'.‘H.\

L 2 f=k=n (a7

andl the equality (16} holds,
One of the hasic theorems about majorisation says that for any x, ¥ in B*

s .1'+_}=—-<.J|:l+_]-'l: {1%)
see [ 5, p. 49]. This relution deseribes the eMect of rearrungemeni on addition of vectors.

Some of the inegualities in the following sections have this [onn; the vecions involvid
gre r-fuples ol eigenvalaes of Hermilian matdices.

5, THE THEORENS OF SCHUR AN FAN Relurm now w the Hemmilian matreix

A with cigenvalues o, Tet of = {aq. ..., iyt he the vector whose coordlnates e the
diagonal entries of A, Since oy = (e, Aeg), the megquality
dl e (19

Eollowws from (2, A famous theorem of Schar (19230, closely related wo our main stocy,
extenids this inequality. This theorem says that we have the majorisation

e - {200
Here is an Edb} prook, By the spectral theorem, there cxisls a umilary mairix £ such
that A = £ 24Y, where L = diagiey, ... . e 3. Trom this one sees that
ar =) lule; 1zizn
i1

This can be rewritten as = Se, where § is the matrix with entries 5;; = |n;, |*, This
mutrix is doubly siochastic since £ is unitary. Henee, by one of the characterisations
i Section 4, we have the majorisation (200,
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The eigenvalues of A do nol chunge under 4 change ol arthancrmal basis. So, from
the relation (20} we get the tollowing extremal representation cilled Fian’s Maimion
Principle

3

n
ZC{*‘. = Ak Z{_lfj: .4-'*’_,1'::': 1=k =n (213

urthonoartial L} =

Here the maximmun 15 taken over all orthonormal k-tuples x), ..., 1. The sum-
minds on the dght hand side of (21) are diagonal enimies of a matrix representation
ot A, o thelr sum 15 always less than or equal (o LL] oy by (200, For the special
choice when x; arc eigenvectors of 4 with Ax; — «;x;, we have equality here.

When & = 1, {21) reduces to (27, and when & = p both sides ure equal to ir A, This
expression gives a quasilinear representation of the sum ¥ o, . Among other things it
tells us that for each & between 1 and #, E§=| lf.-[A} 1s a convex [unetion of A. Thuy

each 4(A} is a difference of two convex functions. Generalising (4) we now have
imegualitices

& k

i
Z}rj < Z&:I—Eﬁ_f, 1=k = n, {22)

i=1 =l =l

proved by Iy Tan in 1949, Again, note that when & = 1. the inequality (22) reduces
to (4] snd when £ = #, this 1s qust the equalicy (1) In terms of majorisation we ¢an
express the family of inequalities {22} as

AA+ BY < ANAY+ A (#). (23)
This 15 4 mulrix analogue of the right hand side of (18).

6. INEQUALFIIES OF LIDSKE AND WIELANDT The nexi event in onr story
is quite dramatic. In 1930, ¥, B, Lidskii announced the [illowing result: the veotor p
lies in the conves bull of Lthe 2! pains o 4+ 8, where & runs over all permutations o
of # indices. Lidskii, it would seem, was providing an efemcniary prool of this the-
arcm that F, A, Beresin and I M. Gel'Tand had discovered in connection with thear
work an Lic groups. The paper of Berezin and Gel’ Fand appeared in 1256 and alludes
tor Uhis, Lidskit"s elementary prool may have been clear to the members of Gel'land’s
famous Maoscow seminar, However, the published version did not give all the details
and 1 eould nol e undersiood by many others. TT, Wielandt saw the connection be-
tween Lidskii’s theorem and Fan's inegualities (223 mud provided anciher proof, very
dillerenl in mulhund from the one sketehed by Lidskii.

Teil =k =pandlet ] =i = .- =i < g Then the usserion of Lidski’s theo-
rem is equivalenl Lo saying thal for all such chaices

& # i
ow =y a ) B (24)
it J1 i=!

The equividence 15 readily scen using the characterisations of majorisation piven
Section 4.

Mot thal Fan's incqualities {22) are included in (24). To derive these inequalities
Wielandt proved a minmax principle that is far more generdl than (21). We reiurn 1o
this later.
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Now several proots of Lidskii’s theorem are known. Some of them are fairly easy
and are ziven in [§]. The easiesr prood, however, is the Tollowing one due o C-K Li
and I Mathias [ 28]

Fix kand the indices 1 = f; < - - < i = 1 We want w prove Lhat

L 5

P LAZRR I BT ED PFELe ) (25)

fa=l i=1

W can replace B by B - hif Bif, and thus may assurne that }.f{B 1=0lel 8 =
B, — B_ be the decomposition of B into its positive and negative parts {if B has the
spectial resolution Y A pul then B = ¥ f:usu where .5,-: = muaxif;, 0)). Since
8 = 8. by Wovls monotonicity principle J-.I."‘{A L By = :4_;"' {44+ A.). 8o ihe leh
hand side of (25) is not bigger than J ’

i: [;‘[.-':A + B}~ 5-::_{:1}] :

=

By the same principle, ikis is not igger than

”

Yo [Mear By ).

i=1
(All of the suminands are noonegative.) This sun is w8, amd since we assumed
A(B) =0, itis equal to T_, L}{B). This proves (25).

Using the ehservition (6], il is nal diffiewle e oblain from the Lidskii-Wicland
inequalities {247 the relation

AM{AY+ A (BY=<AA | B). (26)

Together with (23}, this gives a roncommutative aralaogue of (181 1f A, B were com-
muting Hemmitian matrices the relatons {23) and (26) would redoee to (18).

7. THE CASE 7 = 3 Lt us see what we have obiaingd so Far when » = 30 We gel
six relations from Weyl's inequalities {(8):

nEa+ . mEe+fh o wmEZat b
MEe | By wmEast B wmEard fh (27)
One more follows from Fan's inequalities (22):
nty o tat gk pa (28
Four more refations can be read off from the Lidskii—Wielandr inequalities (24):
T A T o 2N e R L
Yo+ W S a0+ B+ B,
V1T ¥ e taz+ B Py oand
¥rm ¥ o o+ e+ {29}

(Lse the symmetry im 4 and 8
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It was shown by Horn [16] thal one more ingguality
oty = oo o+ G+ B {30

is valid, and further, together with the trace equality (1. the twelve incqualides (27)-
{303 wre sullicieni o chargeterise all iriples . 7, that can be eigenvulues of A, B,
and A + B, The proof of this assertion is not as simphe as the ome we gave lor the case
n =2 in Section 3,

Where does the ineguality (30} come rom? Hom derived all imcgualitics that sums
like 4 + ¥ salisly Tor any dimension i; the inequality (307 is one of them. For lhe
special case # = 3, one can derive this inequality from the nuajonisaliom {261, which is
aconseguence of the Lidskii - Wiclandr theorem, Tor ¢ = 3, this says

feey | Pae oo b fay as -+ ) = (v, v, pal

INow using (173 one sees thal the last three inequalities in (27} are hidden In this asser-
tioun. {Omly the first five inequatides in {277 cun be derived foon the Lidskii—Wielandt
incqalities in their raw form (24).) The inequality (30 too follows [rom this majori-
sation: if a: 4 (& Is kager than o) + Ay and o + B this is clear from 17k iF it s
smabler than one of them, this follows from (297,

Let us consider 4 simple example. Lel

U= {4 3& _?-!s ﬁ = {2‘1 _l! _Iﬁ}

Then the condition (1) says

Yitrt+n=0

1 " -1
2 -2

Figure 3. Dart of the plane {91 + pz + 5 = 0, smull hesawon = {'a ] = Lt
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Fipore 4. 1 = 12 = p; the small hexapon = [|p] = 1}

This is a plane in [¥*; see Figure 3. For convenience rotate it ta the x-y plane. The con-
dition 34 = pu = pa gives Lhe part of the plane shown in Figure 4. The siz inegualitics
of Weylin (27) give three restrictions

AZ6 m=R3 wm=E-L

‘This resiricts 3 further to the pentugon shown in Figure 3. A new restriction is imposed
by Fan's inequality (28

it =8,

and this constrains ¥ to be in the hexagon in Figure 6. O the four inequalitics (29 of
Lidskii-Wielandl, iwo sre redundant, The remaining two are

mAm=3 mtw s

However, they do nol impose any new consiraint; see Figure 7. We have o new inequal-
ity from Ilorn’s condition (30, This savys

i o) o
and cuts down the set of permissible 3+ to the heptagon shown in Figure 8.

Harn's theorem says thal cach point ¢ in Uhis 56018 the eigenvalue iaple of @ manx
' = A+ 8, where A, B are Hermitian matrices with eigenvalues o, S,
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3}z the: Weyl penbagnm

Figwre 5. T the plane 1 + 3 + 31

Ty

Figure 6. In the planc {24 + p2 + 95 — 4 the Ky Fan hexagan
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Figare 8. 10 Hom hepragon
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The majorisations {23) and (26) give in this example
(2.0,-2) <y < (6,2, —8).

In the plane y 1 3 + 45 = 0, the ser of p satisfying p — (6. 2, --8) is shown in Fig-
ure 95 Lhe sel of » satisfying (2, (0, —2) —= p i3 shown in Fignre 10. The intersection
of these two sets is a hexagon, The Wevl inequality v = 3 imposes a conslraint nol
in¢luded in Lhese two mmajorisations, This additional constraint gives us the heptagon
of Figure 5.

B. THE HORN CONJECTURE The Lidskii-Wielandt Theorem aroused i Lol of
interesl, and more inegualitics conmeeling e, £, p were disecovercd. Some of these

looked very complicated. A particulaly attractive ene proved by R. C. Thompson and
L. Freede in 1971 says

£ 13 k
Y Vin i S 2 0+ 3 B (31)
=l =1 =l

for any cholce of indices 1 =4 = --- = =8, 1 = pm <+ = g = r satisfying
fx + o — & = a. This includes the Lidskii-Wielandt inequalities (24) (choose p; = j)
and treals o, § more symmetrically.

But where does the story end? Can one go on finding more and more inequalitics
like this? This question was considered, and an answer to it suggested, by A. Homn io
a remaricable paper in 1962 [16]. This paper followed the ideas of Lidskii’s original
approach (o the problem,

The inequalities (8}, (22, (243, (31} all have a special finm:

SonEy ety b (32)
LLNY [$34) Fod

where [, K are ceriain suhsets of {1,2, .., £} baving the same cardinality. One
may raise here two questions;
(1) What are all loples (f, f, &) of subsets of {1, 2. ..., n] for which inequali-
ties (32) ave true? Let us call such triples gdmissible,

(ii} Are these inequalities, together with (1), sufficient (o charsclerise the o, 8. 4
that can b sigenvalucs of Hermitian matrices A, B, and A + BY

Haorn conjectured that the answer to the second question is in the aftfimeative andl tha
the set TF of admissible npkes (f, J, K} of cardinality » can be described by induction
on ¢ as follows,

Let us write f = {§) = {2 = -+ = i;} and likewisc Tor f and K. Then for r = 1,
(I KyisinTrifth =L+ j —1LForr =1 J,K)sin T if

. . i
Ti+ Y=y ("3, @
ief Jed Ly
and, foralll = p =7 — land {ll (&7, V, W) e T,

TurY =Y wt(’3}). 34)

wed) nel wE W d



Figmee LN A part ul the region conleining y that moajosise (2,0, - 2
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Hom proved his conjeclure for 1 = 3 and 4. When r = 2, these conditions just
redoce to the thiee Weyl inequalities (14). Whan r = 3, they reduce 10 the twelve
incgualities (270-(30% When 1 = 7, there are 2062 inequalities given by these condi-
tions, oot all of which may be independent.

There ia oot much 10 explain abowt the conditions (33) and (34) themselves, The
striking features of the comjecture—now a theorem-—ure the ollowing. [L says three
things:

{i) Fix o, 8 and choose two Hermi llan matdices A, 8 with cigenvalues o, #. Then
Lthe set of 3 that are eigenvalues of A 4+ U7 B, as IV varies over unitary ma-
trices is 2 convex polvhedron in B,

{ii) This convex polyvhedron is described by Hom's inequalities.

{1ii) These inequalities can be obtained by an inductive procedure.

Wi should emphistze thal neme of these 14 a staterment of an obviows fact, and while
each of them has now been proved the deeper reasonys for their being true are sill 1o
bz wenedersiood.

Y. THE SCHUR-HORN THEOREM AND CONVEXITY A simple theorem
like (200 s often an impetus for the development of severidd subjects. The theory
of maporisalion. a good part of matrix theory, and some important waork in Lie groups
and geometry, were inspired by this simple inequality.

In 1954 A Homa [ 15] proved a converse to this theorem of Schur, Namely, it x and
¥ are two real g-vectors such that x — ¥, then there exists 4 Hormitiun matrix A such
thar the colrics of x are (he diagonal of A and the entrigs of ¥ are the eigenvalues of A,

Using the properties of majorisation given in Section 4, we can stalc the theorem of
Schur and ils comverse due (o Horn as Tollows.

Theorem 2. Lei o Be an a-tuple of real numbers and ler O, be the set of Hermitinn
mafrices with eigemvalues o, Let @ 2 O, — B be the map that takes a marvix to
its diagonal, Then the fmage of ® is o comvex pelyhedron, whose vertives are the !
permanlabions of o

Now, the set of skew-Henmitian mulnices 24 (0} is the Lic algebra associated with the
compact Lie group TV {a) consisting of »# » a unitary mairices. The ser of Hermitian
mittmees is 4, The sel ¢, 15 the arbit of the diagonal maoidx with diagonal « under
the action of T7{r}: it consists of all matrices I7 diag{ad L™ as £ varies over L {x), This
led B. Kostant in 1970 (o interpret. Theorem 2 ay a speeial case of a general theorem
lor compact Lie groups. (The role of diagonal matrices is now played by a maximal
compact abelian subgroup, thal ol the permoulaton group Iy the Weyl groep.) This
in turt led e a much wider generalisation in 1982 by M, Atival, and independendly
by V. Guillemin and 8. Stembery, An explmalion of these ideas i beyond onr scope.
Horwever, ket us slale the thearem of Atiyah et al. to give a flavour of the subject.

Theorem 3. Ler A be a compact cornected swmplectio manifold, with an action of a
farus 1. Let & 0 M — € be g momery map for this acion. Then the image of © iy o
convex pofytape, whose verfioes are the Bnages of the T -fLeed poinis on M,

The curious reader shovld see the article [22] by A, Knulson (From where we have

bomowed this formulation) for an caplanation of the terms and the ideas. Another
informative article is one by Ativah [2]
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Far the present, we emphasize thal the moment wmap and ity convesily pooperiics
arc now a major theme in genmetry, Lispecially interesting for our story is the fact that
the first part of Horo's conjecture strled al the end ol Scelion 8 way proved in 1997
by A. H. Dooley, I Repka, and N 1. Wildberger [9], vsing convexity properties of the
momert mip.

M. SCHUBERT CALCULUS AND THY HEART OF THE MATTER
R L Thompson seems to have been the ficst one to realise that there are deep con-
nections bebween the specital imegualitics we hive been Lelking abouwl and a topic in
algebraie geomenry called Schubert Caleulus. Let us indicate these tdeas briefly,

Sturt with the minmax principle [7]. For convenience we rewrite il as

;= Tux min  IrAyx”. (35)
dim¥F=; xel, fixll=]

Nate that £x”, the orthogonal projection operator onto the |-dimensional space
sparmmed by x, depends not on the vector x bul on Lhe space spanned by it

The set of all 1-dimensional subspaces of £ ! is known as the complex prajective
space T, of dimension m, These spaces are the basic objects studied by classical
algebraic genometers and it Is perhaps worth explaning briefly the geomelers’ nola-
tion of homogeneous coordinales in projective spaces. Any non-zero vector of 2%
determines a point in T, two polats {zp, ..., 2w ), [:«:fj_. o~ z:n]l determing the same
L-dimensionul subspuce (e poinl of 0% iF and only if there is a non-zemo e i
such that z; = cz, for each { =10, ..., m. (The practice of using (U, ..., m} w0 index
the coordimdtes of ©™ 1 ensures thal in sm-dimensional projective space the last coordi-
nate has tndex am vather than m - 1.3 In view of this the point £ of {CF,, detenmined by
{za. ..., Zwbisdenoled by {zg -+ o 2y ] and these are called the homogenenus coordi-
radexs of £, Note that the homogenovs coordinates of a poinl i C™,, ane nol wniguely
determingd: they are delined only up to maltiplication by non-zero complex numbers.

Mow, if f is & nonconstant homogenous polynomial n o, ..., Sy then there is a
well-defned 2ero locus of §

z_f = H_;I'_I L zml = ::me b _.f[zﬁls --s zm} = D]’

This is known as the prajective fnypersurface delimed by £ 10 F is a lincar polynomial,
2 is called o fvperplome, i1 s quadratic, #; is called a gradric kypersurface and so
on, Prsjeciive vasfedies are intersections of i finile number of projective hypersurfaces.

These spaces cnjoy inleresling symmetry properties since it is easy to see that TF,,
is homeomorphic to LF (s 4+ DTy 2 Dm0). where £1) 2 Li(m) iy the subgroup
of unitary mealness whose lest oo is (1, 000 O

A generalization of the notion of projeclive space is Lhe Grassmannion, (T,
the sel ol &-dimensionl subspaces of O Trom oy perspective of matrices it is easy
to get a model of these spaces. Associate with any £-dimensional subspace ¥ of O0
the unilary operalor H — P where Py iz the orthogonal projection onto the sub-
space W, This sets up 4 bijective cormespondence between G (0" and the setofr xn
unilary matrices having trace equal o 2k — a,

These Grassmanmians can be embedded m projective spaces 48 subvarietics in the
Following way. Given a subspace ¥V €7 of dimension &, choose a basis
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iy H

1 ¥

by Hy

Ity = ; seee s My = :
i, L

. 1 1
| M i,
i (V) = det | P for 1 = f < ip < - - < & =< 4.
k. ook ¥
By WL oo L,
If we choose i different basis u], ..., w0, Tor ¥, then the Plilcker coonlingles are afl

multipliad by the same non-zero scalar factor (the determinant of the unitary transfor-
malion hat Likes cach wg (o o) and 15 the identity map when restricted o V=) So onee
an ordering has been chosen for the f-fuples L =7 <« =1z = &,

Vs - PR AL B |

yields an embedding of Go(C") in 'El'ﬂ“m_._. In fact, the image of this embedding is
projective variely and ils defining equations are well known.

Let us now retum b makrix inegualilies,

Crivicn any Hermmitian operainr 4 on 0% and a subspace L of ©F {which we think of
asa poimt in GriC™h led Ar = PP AP Nule thut r Ay = wPLAFP =tr AP,

Tor prove the inequality (24), Wielandt invented a most remarkable minmax
principle. This says that whenever 1 = i) < - < & = n. then

k
min AL, (36
Z Fan™e "l’ halig oy L t )
J=1 dira —.l ._'|jm.;1,|'|'|.-'-|. i

When & = 1, this reduges 1w {120,
Another such principle was found by Hersch and Zswahlan. Lat A have tha sper;iml

resclution A = Z”_r"”j'” For 1 =< = p lel ¥, be the lincar apan of i, s g
Then
3
o ; FA Tt e 1
ga,j_l_&m}m [Lm,,.mm (Lﬂi,j) =i, 1,....&], (37)

This can be proved vging ddeas Familiar to us from Section 2. Let L be any k-
dimensional subspace of 7 such thal dim [L M TP,-I:} = F. Sinee ahm { L] V;l]l =45
we can find a unit vector x in L () V. Since Vi is spanned by {vy, ..., 0 | we have
the ineqoality oy, = {x), Ax ). Since dim [L ] ‘r’,-z} = 2 we can find a uml veclor x-
in L {7}V, that is orthogonal to x;. Then w;, = (%2, Axa). Continning in this way. we
obtain an orthonennal basis xp, . ... % for Losuch thata;, < {x;, Axp) for 1 = § <k
Thus

ZH: = Z\,x Ax;b = A,

=1



For the special choice L = spanfw, . .., 1y, |, wo have equality here. This proves the
Hersch-Zwahten principle (371,

The mininum in (37 is taken over a special kind of subsel of Ge{T") stndied by
geometers and opologists for many vears.

A sequence of nested subspaces

fit=WcVicVWC--C¥ =00

where dim V; = /, is called a complede flag. Civen such g Nag JF. lor cach mulliindex
f={f = - - = i) the subset

S(I: Fy={W € Gy dim(W [ Vi) = j. 1= j=nl

of the Grassmanmian is culled o Schashert variety,

The Hersch—Zwahlen principle savs that the sum Y7 e s the minimal value of
ir A, cvalmged on the Schubert varicty 8(1; F) corresponding to the fag constructed
from the eizenveclors of A.

Hersch and Zwahlen developed 2 technigue for obtining megualifies like (32) using
{he prineiple (37). The essence of this technigue can be deseribed as follows, Consider
tha spectral resoluations

A:Zu_,-uju}f, H=Zﬁji-'jt-'?: {T=ﬂ+B=Z‘}{gu-‘}w;.

We tind it comvenient to write
—-A—B+{ =1L (38)

Recall that J-Lj-{—Aj =i se{A) Givenanindex sel d ={l =4y = -+ = i = n}

e
let ' ={i:n—i+4+1 I} and mrange the elements of I’ in increasing order. For
1 = j = nconsider the three Tamilies of subspaces

Ly = spun[ug. . .. Haj |

T';J' = Spl‘m{”-n SRR J:’.-l}.-

W, =span{un, ..., w).

Lel F, G, M be the complete fags formed by these three families. Now suppose

our index sets I, J. K (of the same cardinality) are such that the Schahert varicties

SOV Fn SO0 G) and 80K KD have 2 nonemply intersection, Choose 4 point F in
this intersection. Then using (38} and (37} gives the inermality

0= tr(—d; — By +Cy)

= BEHCT VBT R Pt (o)

iet’ jek ik

In other words,

IO =Y A=A =D a8 =) A+ Y Ak

=04 il Jor iel it

This is the kind of equality (32) we are Inoking (or, and we have now touched 1he
heart of the maiter, Whenever the Schubert varietes S0 51, S0 6, and S(E ;M)
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have a numitrivial intersection, the triple o, J, A7) is admissible, The simplest instance
of this idea at work is the proof of Weyl’s inequalities (&) that we gave m Section 2.
The triple 7 = {i}, F = {j}. K = {k} is admiswibleift =i+ j— 1 <= n,

The full significance of these ideas was grasped by B C. Thompson; ses especially
the Ph.0D. thesis of his studend S, Johoson |19, and his unpublished lectore notes [327;
see also [14]. Among other things, Thompson asked whether the admissibility ol three
mples (4, 4, K in Horn's inegualitics was equivalent o the condition that Schuahert
varieties §(I; ), SO G) and S(K; H) corresponding o any three complete flags
LG H (not necessanly constructed from cigenvestors of A, &, and A + #) have a
nontrivial intersection. This equivalence has now been proved by Klyachko [20].

Theorcm 4. The triple (I, 5. K) s admissible if and orby {f for any three complete
Paps F, G, H, the imtersectiom of the Schubert varieties S04 Fy, 5047 G0, and
SUK, MY is nonempry,

The study of intersection propetlies of Schubert varicties s the subject of Sehabert
calordis, Tt reduces geometric questions about intersection of Sclwbert varieties to
lgehraic questions abow! meliplication in a ring called the miegral cobomology ring
(G (T associated with the Crassimimnian. Schubert ovoles 87 are cquivalence
classes of Schuhert varictics (Lhe dependence on JF s removed), They form a basis for
the ring H*(G, (C™)). Given triples I, J. &, consider the product 5; - 57 in thiy ring
anmd cxpand it as

Si- 8 =3 iS5 (39)

where f‘;;J are nonnegalive inlegers. 1O wms oul thal the riple O, F, K} 18 admissible
if and only if the coetficient t‘f 5 In {391 is nonzero (Le.. §p occurs in the expansion of
the product 5y - §;.)

It can now be said that the proot of Wey!ls inequalities given in Sccton 2, and
soime others such as Wielandt’s proof of (247 and the Thompson—Freede proof of (31),
really amount to showing wsing ideas fromt lnear algebra alone (hal certain Schubert
varielies always intersect.

W raised two guestions in Section 8. Theorem 4 answers the st of these questions
by reformudating the problem of adimissible triples in terms of Schubert calculus. Other
equivilen. [ormudations have been lound. For cxanple, the problem is related also o
some impanant questions in the representation theory of the group GL(n). We explam
this comnection briedly in Section 13, The answer Lo the sceond guesiion—and the Tull
proal of Horn's Conjecture—came partly from the work of Klvachko (28] on this
commection. The last crueial step was Lhe solulion by Knulsen and Tao [23] of a related
problem in representation theory called the Saturaton Conjecture. An exposition of
this mauy be foumd in [7].

The pronfs need advanced facts from algebraic geometry and representation theary,
However, t quote from [22], “In luct the details ol the proofs arc not actually very
different from the hands-on techniques used e.g. by Tlomn himselt.”

Other putts of the picture have been (illed in since Lhe appearance of the papers by
Klyachko [20] and Knntson and Tao [23). Belkale [3] has shown that if c}'c = 1, then
Lhe mequalitics (32} thal comespond W the wiple {f, ., K are redundant, thar is, they
can be derived from other inequalities in the list. On the other hand., Knulson, Tuao,
angd Wornlward | 23] have shown Lhat the incqualities in the st (32) that correspond to
those (I, J, K} for which ef , = 1 are independent.
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Togeaher, these esulls give the smallest scl ol incqualines needed w complelsly
characterise the convex polyhedron whose points are eigenvalues of A - UBI",
where A, B are miven Hendlian malices ancl £ varies over unilanies.

11. SINGLULAR VALUES OF PRODUCTS OF MATRICES In this scetion A, &,
etc, are arbitrary # » & marrices, not necessarily Hermitan any more.

The singwlar values of A are lhe tomegaidve numbers 5 {A) > - = 5, (A} Uil ure
the square rools of the cigenvalues of A% A, Ttis easy o see that y{A) = j|Al|, and that

SUUABY = 5 (A5 {EB). {40

Conmpare this with {4} and a natural problem slares al ws: are there connterparts of
inegualites lor eigenvalues of swms of Hermitian malrices thal are valid for pooducts
of singular values of arbivary matrices? This question wo has heen of great inerest
wndl imperlimes in linear algebra.

The £-Tidd anlisymmeinic knsor producl g‘\k A has simgular vilues s (A} - x (A),
where 1 < §) = -+ < iy = &, Sinee AT(AB) = AN A AS B we gt from (8) the
inequality

i; 5

*
[Tstanm =Tha [Tsm. 41)
=1

g=l =1

This is the singular value analogue of (22), (Incidentally, there is a perfeel analogy
here. W have derived (41 by applying (40} to a tensor object. We can derive (22)
from (4) by a quite similar argument [4, p. 231} The analogue of (24) is the following
inequality proved by Ciel*fand and Waimark

13 [4 &
[IsiaBy = [{s, ] [s8. {42)
J=1 =l St

Onee again, the theorem was proved in connection with goestions about Lie groups, a
malmk-Theoreie proel wis given by Vo B, Lidski, the incgualily was discussed and
proved in [5], and the simplest proof was found by Li and Mathias [28] soon af-
terwards, More Incgualibies of this tvpe hud been diseovered by aothers, notably by
E_ C. Thompson and his stndents. The conjecture parallel to that of Horn was dis-
cussed by Thompson, Mow iU his been proved:

Theorem 5. Leta) = o= a, by = o= b, o) = o2 = 0y, be three triples of non-
regative real mambers, Then there exist rairices A, B with singlar values s;(AY = a,,

sABYy=05, 5;(AB) = ¢;, if and only if

]_[ ey = 1_[ & H by

ke K fel jed
for all admissible tviples {1, J, K.

This is stated as Theoremn L6 in [117. The reason wlyy it is e and the connection
with Horm's problem are provided by the Tollowing theorem [211.

Theorem 6. Let a, b, ¢ be three n-ruples af decreasingly ordered real menbery. Then
the following siaiements are eqrivalens:
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{i) There exist nemsinguelar natrices A, B with s {A) = oy, 5, (8 = by, 5,{AB)Y =
Ci

i) There exist Hermition mamvices X, ¥, with }x}{j&’ 1 =lognyg, .l.f-[l’} = log by,
AN+ Y= loge;.

12. TIGENVALUES OF PRODUCTS OF UNITARY MATRICES Fipenvaluesof
two innitary matiees and theit product ane the nest olpects we consider, Here the for-
mulation of the problem is much more delicate and needs more advaoced machinery,
We can imdhcuts only somewhal vaguely what il involves.

To get rid of ambiguities arising from multiplication on the unit circle we st
ourselves o the set SO0 of mow p umitary malrices with determinant one. Tor A e
S (a0 let Eig*{ A be the set of its elgenvalues expi( 2w i 0, labelled so thatay = - =
- Singe del A = 1, we musLhave iy + - 4+ &, = O{mod 1), Choose a normalisation
thathas &, + ---+ A, =Uand &) — A, < 1. Wilh this normalission, call the nambers
Aj pocuring here A3 (AL

Our problemm is to find relafions belween lj{z’l}, J.;f{H:], antl }L;:[;—Uﬂ for two ele-
menis A, # of SUiR).

The mnalogue of the Lidskil-—Wiclmdl inegquabilies (24 in this context was discov-
cred in 1938 by A Nudel man and P Svarcman, This has exacily the loma (24), How-
ever, the anulopus of Hom's comjeciure in this context involves some objects that arise
in the study of vector bundles, and are related W0 guaniuen Schubert calcwlis, a subject
ol very rcecnl origin,

Tn Section 10 we alluded to the cohomology ring H* (G g (073} anmd how multiphi-
calion in this tng gives us information aboot inersection of Schubert cyeles. Quantum
eohomology associates with the Grassmannian the ohject

g B (GUT™Y) = I (G ® TN,

where T [Lg]] is the dog of lormal power serics. Multiplicadon §; % 8, in this ring is
more complicated. Tnstead of (39 we bave an expansion thal Tooks like

S8 =3 Y ) "S5 (43%)

R

The new resull vn edgenvalues of unitary matdces is the following:
Let (7, . K be triples such that the coefficient {¢] ) in the expansion (43) is
nonzero, Then [or all A, B W SE5 ()

Z}.;(;‘L} FY AUBY Sd 4 Y N(AR), {44

qel iz RER

Further, these inequalities give a complete set of restrictions {in the samoe sense as in
Hom's problem).

This theorem has been proved by 5. Agnihotri and C. Woodward 11] and by B Bel-
kale [3]. with earlier conlribulions by 1. Biswas [6]. A crucial component of the proof
is a 1980 theorem of ¥ B, Mehta and C. 5. Seshadr 130] on vestor bundles on the
projective space ). Lel us cxplain, in hare outline, this theorem, and the fascinating
connection it has with our problem.

For brevity let F) denole the projective space ©F introduced in Section 10, This
space can be identified with the two-dimensional sphere 5%, This, in tum, can be
thought ol us the Riemann sphere © U {ae), the ane-point compactification of the com-
plex plane. The point o is thought of as the notth pode of the sphere and the point O

no



its the south pole. To podnts in the open set P4 foo] we assign the vsoal complex cooe-
dinate 7 while on the open set P 0} we define the complex coordinate w by pulling
w=1I/z

This space Iz simply connected: its fondamental growp s CF ) s trivial. P weith one
puncture (Le., one of is puinds removed) cun be identified with . This too is simply
connected, and its fundamental geoup is wivial. 1% with two punctores is isomoephic o
the punclured plane 2% {0}, The fundamental proup of this space is &, 4 group gener-
ated hy one element. Carry out this constraction farther. Lel & = {p, ..., ) be any
linite subsel of 7., Without Joss of generality, think of py as the point ot oo, To iden-
tify the fundamental group of this space, choose a hase point g in %45, Loops, with
fixed base point p, can be composed in the vsual way, With this law of compositon
the product of the loeps going coumterclockwise around the podnes g, 1= f =5 — 1,
i% the loop going clockwise around pe = oo see Figore 11,

Figure 11, Computng the fusulunenlat proup ol B8

Thus the fundamental group (4 5) s the Mree group with gencrators gy, .., £
with one relation g, = (g, - -2} .

A homormorphism of a group F inle another group A s called a represesttation of
G in H.

Lel g be a representation of the fundamental group (15 50 in the group Tfia)
or SUrY If 4; = plg;), this gives unitary matrices A, ... Az, with their product
.-‘!|.|.-'"12_"'#1k = /1.

In our original problem we are given fluee a-tples of numbers and we wint {0 know
when Lhey can be the cigenvalues of malrices A, 8. and A# in 81 (). Prescribing
eigenvaloes means fixing the conjugacy class of A wvoder vmtary conjugations A —
LA, Thus our problemn is 1o (nd condidons for the exisience of three elements A,
B, C of 8U (r) with prescribed conjugacy classes such that ABC = [, Instead of thice
matrices, we can cqually well consider the same question far k£ matrices 4., ..., A,.
In the preceding paragraph we siw how this problem is connected with representitions
of the Tundarmenial group of 2% with & punctures.

MNext we recall the notion of a vector bundle, For simplicily. we make some re-
strictions in our definitdons: see [31] for a splendid introduction. Let B be a compact
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connected Havsdorft topological space. A vector bundle over (the base space) 5 con-
sists of the following:

(i} atopological space £ called the roral space,
fi1) & continuous map [T : £ — B called the projection map,
{iii} on each set Ey = TI74&)L & & M, the stmeture of an a-dimensional real or
comnplex vector space. (The bundle is accordingly called real or complex.} The
veclor space £, s called the fihre over b,

These objects are required to satisfy a restiction called local rrviafite: for each &
# thete exists a neighbourhood £, and a homeomorphism & = 17 x K7 — TI7YID),
such that for each ¢ £ U7 the map x v+ hiq, x} from E™ to £, is an isomorphism of
veetor spaces. Here, 12° is the space &' or €% depending on whether the buandle is real
or complex, The pair (£, #) s called a focal rrivialisation dboul A, 11118 possible Lo
choose U7 equal to the entire base space B, then the bundle £ is called a irivial hundie.
fn this casc £ = B =« "

The numnber & 1s called the rank of the bundle £, H i = 1, the bundle is called 4 fine
bugrecdle.

It £ is o conmactible space, every vector bundle on il 1s trdvial. On the base space
§' {the unit circle) the cylinder is a trivial line bundle while the Moebius strip is a
nonteividl line bundle.

Leat U be any open set in B, A section over I7 s a continuous map 5 : &7 — £ such
Lhat #{) C Fydorall b C &,

Lat (L7, 1) be a local trivialisation. Let {x,} be the standard basis for K" and let
ef ta) = hia, x;). 0 C U, Then {e¥{a}} s a basis for the vector space £, The maps

e"’,—’ are seclionys over F, The Lmely {i’ Vs called o focad Basiv Tor £ over [ Tet

1:? "1 and {e '} be twa local bases for £ over open sels U and Vo Then Tor each point
g € L1V, we can Gnd an moverible mamix gy e thal earrics the basis {e_r (e} omio
the busis {e] (@) of E,. This is called a transivon function, Nole thata — gy g(a) is
a continuous map from I MV into (7L (0.

I the spaces invobved have more struclure, we could deling ssooth bundles or fieleo-
nlmrphir: bundles by putting the appropriate conditions on the maps involved.

Let & gnd F be two bundles over thu;, samc bise space H such that (the wial space)
F s contained in (the total space) £ and each fibre F, in the bundle F is a vector
subspace of the comresponding Gibre &5 Then we say that F is a sebiendle of £ A
trivial bundle may have nontrivial subbundles.

Wi are inlerested in comples vector bumdles on the base space 1%, One moce notion
that we need is the degree of a vector bundle on ', We have identified F, with (he
sphere ° = I U {oc). The complement of the north pole oc is an open set &7 that can
be identified with the complex plane T with its coordinate 7. This is & u:uutm:.:riblr:
space; st any vestor bundle £ on Ty adrmits a local invialisation on £ Let {E ‘1 be the
eorresponding local basis over 17, Similarly, the set V = I3 j(}—the u:umpleenL ul‘
lhe soulh pole—is idennlied with the comples planc wilth coordinate w: = 172, 50 £
admits a local wivialisation over ¥V and a local basis {e¥ }. The equator 'z| = | lies in
LMV, Let gy () be the tumsidon function elween the lwo bases, ldentifying the
equator with 8! with coordinate z, we get a map gv ¢ (2) from S* into GL{n). Then
Wiz) = det gy (2) 15 a map from 8 into nonecro complex numbers. The winding
number of this map around 0 is called the degree of the vector bundle.

For example, consider the fastodogica! fine fundle on & This associates with each
point of ¥, the complex line through that point. In the open set £ = [\ {o0] we
associate wilh the point [z @ 1] the line Crz, 1) in @2 Tn the open set ¥V = 15,4 {0],



we associate with the point T 2 1/2) the fine €201, 1/2) in % The total space for this
bundle is & subscl of ) = €7, In the intersection ¥ ™V the transition from the basis
(z. 1) to (1, 1/ is given by multiplication by g(z) = 1/z. This function on §' has
winding number —1 arownd the ovgin. So this bmdle bas degree — 1.

The slope of a vector bundle £ s defined as

sloped£) = %—} {45)
The bundle £ s said wo be staffe if
sloped Fy = slope(£) (46}
For every subbundle F of £, wnd semistable 10
slopelF) = slope(&). (47)

The bundle £ s said w be pofysrable iU 1 is isornorphic W a direct sum ol stable
bundles of the same slope. Polvstable bundles are semistable. Each semistabie bundle
is cyuivalent 1o a canonicul polystable bundle (under an cquivalence relution thal we
do not define hera).

Lt £ be a veetor bundle of ok 22 om the space P Tet § = {y, ..., ) hea given
finite subsat of ). A parabolic structire on & consists of the following objecty given
al cach point p £ 5:

{i}y in cach fibre £, a complete Nag
M=wcwecw=0r (ag)
(ii} an #-taple of real numbers of, 1 < j < a satislying

=

=g

= zal=e - L (49

[RE™

The flag (48} is also called a filtration, and the sequence (49 is called a weight se-
gquence, W should remark that in the original definilion due w C. 5. Scshadri, Nags
in (i) were not required to be complete, and the weights were restricted to be in the
inlerval |0, 13,

Let F be a subbundle of £ with rank () = r. At sach point p, the fibre F, is
in r-dimensional subspace of the p=dimensional space £,. Tor p £ &, consider the
intersections F, [ Vf' . 0= = oa,where the V) form the flag (48). If v = &, some
of these spaces concide. Relain only the distinel members of this sequence and label
themas W', 0=/ = ¢ Assigntothe space W the highest possible weight allowed
by this intersection; i.c., lhe weight 87 = of, where 7 1s the smallest number satisfying
W' = F, (V. Thenthe subbundle F with parabolic stracture given by the filtration

[U}=WFc Wl Wl =1" {3500}
and weights
8 2ol ezl (51)
is called a parabolic subbundle of £, For brevity & is called a parabolic bundie.
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The parahalic degree of £ is defined as

A
par degree(E) = dogree(£) + Z Z o], (32)

el =l

und its parabalic stope as

par degree(£)
rank{£)

The notions of stability, semistability, and polystability of a parabolic bundle are
ddiefined by replacing the quanay “stope™ in ihe incgualities (40 or (47) by “parabolic
slope”.

Mow we have all the pieces necded to describe the theorem of Mehia and Seshadri
{us modified by Belkale and others o sult our necds).

We bepan by looking at SL7(x) representations of the fundamental group m,
P8y, where 8 = {p. ..., pit. Weosaw that s amounts o (nding matrices
Al oo Ag in SE (r) whose productis £, Fori = 1.2, . & lete) = ;L_HA.-]_.whcre
}.;LA“] is as defined at the beginning of this section, Foreach i = 1,2,...,k let ¥

be the m-dimensional space spanned by the eigenvectors &, .. ., ¥, corresponding to

the eigenvalues lf{Ai | it }-".,i, (). Use these data to give a parabolic strocture o the

mvial vank 7 bundle on Py as follows:

par slope(&) = (53}

LU ]|
L=

i in cach fibee £, a filleadon is given by (0 = Vi c Vi c ... c V! =
i g i h] 1

(i) the numbers ) = - - = o give a weight sequence.

Thea theorem of Mehta and Seshadri suvs thut the parabolic bundie obtained in this
wiry 18 pefysiable, and conversely every polysiahle hudle arises n iy way,

Now to the denouement: families of insqualities such as (43) are used by A pnihotri
Woodward, Bellale, and Biswas 1o prove that certain vector bundles on 1% % py, e, pad
are semmistable, (Semistabilily is defined by a Farmly of inggualities.} To cach semi-
stable parabolic bundle there corresponds a unique polystable parabolic bundle. The
Mehtu—Seshadi Theorem then leuds W the existence of unilaty mamces whose sigen-
values are the given r-tuples.

The proaf of Klyachkn for the original Homn problem wses ideas similar (o these,
but it Invelves bandles on [Pz and a theorem of Donaldson.

13. REPRESENTALTTONS OF GL(rY We began this story with Weyl’s inequalities.
It is befitting to end it with another subject in which Weyl was a pioneer—Ithe theory
of represeatations of groups. A fascinating connection between the two subjects has
bean discovered in recent years.

Lel £, b Lhe group comsisting oF i o= complex invertible matnices. By the sian-
dard represeniation of GL, we mean the homomorphism from &L, nto the space
G LYY of all near operators on the space Vo= 09 1T W is any m-dimensional com-
plex vector space, 4 homomorphism p @ &L, — GL(W) s called a represeniation
of GFf,in W, Such g represeriaiion is called an se-dimensional representation. Tor
example, the map det gives a I-dimensional representation. For brevity we denole o
reprosentation in Wby W

For simplicity, let us consider only pofvaomial representations, ones in which Lhe
entrics af {47 are polynamials in the entrics of A, The determinant representation is
an example of such a representation. Anocthar example is the tensor produet, In which
W=V =V %V ktmes),and p(4) = FA.
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The space &* ¥ has several subspaces that are invariant under all the operators &' A,
A e GL{V). Two examples arc the spaces ;\f ¥ oand Sym* v of antisymmetric and
syrmmetric tensors, respectively, The restrictions of &% A to these spaces are wrillen as
;"\k A wmd Sym* A, The spuces ;"\"" V and Svim' V are examples of frreducible repre-
sentations of (71.,; they have no proper subspace invariant under all operatars ;"\J‘ A
or Sym* A, These are subrepresentations of @V, All polynomial representalions are
subrepresentations of &V lor some

Lat N be the set of all upper triangular matrices with diggonal entries 1, W the sot
af all lower riangular matrices with diagonal entries 1. and T the selof all nonsinpular
diggonal matnices. Each of these sets s 4 subgroup of GL,. A matix A 18 callad
stremyly mensingulor 17 all #15 leading principal minoes ars nonzero. (These are the
minors of the top lett & & blocks of A L = & = ) 1ris a basic fuet that every such
matrix can be factored as

A=T11R {54

where L, [, and R belong to N_, D, and N, respectively [¥7, pp. 158-165]. This
is nsed in the Caussian elimination method in solving linear equations, and (34) is
called the Ganuss decomposition of A, For represenlation theory, its sigmiicance lics
in the consequence that every Ureducible representation of GL,, is Induced by a one-
dimensional unitary representalion (characier) of 1. The sel B consisting of all nonsin-
oular upper triangular matrices (or, equivalently, all products LEwith L = DL R E N )
is another subgroup of G F,. Thisis asolvable groop. Iis koown that every irreducibla
representation of such a gronp is 1-dimensional.

Lel g be arepresentation of (G, in WA veotor vin W is called a weight vector if
it is a simmltanenus eigenvector for ol D) for all D < D I v is such o vector lel

gl =iliNa, Hel
Then A is a complex-valued function on 1Y suchi thal
MDY = A DD
S0, 0 I = diagid). ... . 4], then
MDYy =dy - - d

for some nommegative integers m, . .., B, called the associared weights, For example,
if ¥ s the standard representation, then the only weight vectors are the basis vectors gy,
wnd the aseociated weights are (000, 0., Tl W= ,"'\* (o™,
then e, ~ex Ao mg 154 welight vector with weaght (1, b, . ... 1,0, ...00 where
cecars foames. 1T W = Sym" 00, g v ey W - -8 ey is a weight vector with weight
(k. 0,...,00

A weighl veetor is called 8 maximal weight vector 101018 left fixed by all elements
of o (N_}, or equivilently, if it 1s a simultaneous @igenvecior Tor all clements of p{18).
Thus, for the standard representation the only such vector is & The assoclated welghts
In this cave ure called highest weights,

A fundamenral theorem of representation theory says that an irreducible represen-
tation o of (7L, 1s deemmined complelely by a unigue maximal weighl vector and
associated weights s = - = .

This 15 i burc-bones summmary of a vast avca; see 112 ov [ 13 Tor details,
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Diacomposing representations into their ineducible components is o central problam
in the theory of representations. In particular, the tensor product of (wo irreducible rep-
resentilions is not ulways imeducible and one wants to find its irreducible componants.
This iz an intricate business, Cae important ouleome of the recent work of Klyachko,
Knuison—Taco, and olthers iy the Following Lheorem:

Theovem 7, Let oy = - = o =00 = iy, 9 = -0 =y be three n-tuples of
Ronnegative integers. Let 'V, Va, V., be the irteductble reprexeriations of GL(V}
with highest weights o, f, p. Them V, is a component of ¥V, @ Vy if and only if there
erist Henmition matrices A and B such thar o == LAY, § = A{B) v = AL{A + B).

The maotivation for Gel'fand and Berezin in their study that led o the Lidskii-
Wiclandt incgualilics was to unravel properties ol icnsor products of represenlations.

This, in turn, led to Hormn's conjecture. So, the connection between these problems is
nol New.

Lt ws show Theorem 7 in action i 4 simple exumple,

Consider irreducible representations of (L. with highest weights & == (4, 2) und
A= (3, 1) By resulis in Section 3, the admissible 3 (that can ocewr as eigenvalues of
C=24A4 F where A. B are 2 » 2 Hermitian matrices with eigenvalues «, ) are the
owcs Lhal salisly Lthe condition

(5.5 =y = (7, 3.
IF we restiict 3 1o have integral entries, there are three possibilities
¥ = (55} (6,4, (7,3
By the rules for calculalions with highest weights, we write

o ={4,2) = (2,2} (2,00 =21, 1)+ (2,0,
A=30=(1L1)+2,0)0

The weights (1, 1) correspond to the representation ;\: ¥ 2L, 1) to two coples ol
this; (2, €9 o Sym® V. So,

vV, = (/\1 V% g Sym v,
Va= AV asym'y,
V.® V= (A'V)® ® (Sym’V ® Sym’V).

The Yast Factar can be decomposed by wsing the Clebsch—Crordan forneda [13, p. 306],
which gives in our particular situation

Sym’ Y @ Sym*V = Sym'V [z’\z V& s:,rnﬁt-’] & (/\“"1*")32 .
Thus, we have Lhe direel sum decomposition
(e [(A )" S"”]W] % [(/\ v)"s ﬂar!ﬂ“"} (A
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The three direct summands here are irreducible representations corresponding to high-
cal weights

AL+ M =73
AL 13 (2,00 = (6,4
5L 1) =1(5,5)

respectivelv. This is what Theorem 7 predicted.

It 15 oot easy 1o write down breducible components of representations; intricats
calenlations with Young lableaux enier Lhe picture. Theorern 7 gives anolher way of
making « lst of such representutions. Thus [rom results in Section 7 we koow Ul
representations with highest weights (3, 2, 2%, (3, 3, 13, and (4, 2, 1) are the irreducible
components of the two representations of G L, with weights (2, 1,00 and (2, 1,100 11
15 an inferesting exerciss to write this decomposition explicifly.

The gencral problem of finding irreducible componenis of wensor products of e
reducible representations of Lie groups {including G'L,) hus been studied under the
name “FRY Conjecture™ and solved [26]. Several proofs of this conjecture have heen
given, and one move has come cur of the recent work on Hom's inegualitics,
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