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Let Xy,..., X, be independent exponential random variables with possibly different
scale parameters, Kochar and Korwar [J. Multivar. Anal 57 (1996]] conjectured
that, in this case, the successive normalized spacings are increasing according to
hazard rate ordering. In this article, we prove this conjecture in the case of a single-
outlier exponential model when all except one of the parameters are identical. We
also prove that the spacings are more dispersed and larger inthe sense of hazard rate
ordering when the vector of scale parameters is more dispersed in the sense of
majorization.

1. INTRODUCTION

Many authors have studied the stochastic properties of order statistics and spacings
from restricted families of distributions. Barlow and Proschan [3] proved that in the
case of a random sample from a decreasing failure rate distribution, the successive
normalized spacings are stochastically larger. Kochar and Kirmani [10] strength-
ened this result from stochastic ordering to hazard rate ordering. The comresponding
problem, when the random vanables are not identically distnbuted, has also been
studied by many researchers, including Pled ger and Proschan [15], Shaked and Tong
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[17]. Kochar and Korwar [11], Kochar and Rojo [12], and Nappo and Spizziching
[14] among others. For a review of this topic, see Kochar [9].

Before we go into their details, let us quickly review some important notions of
stochastic orderings of various kinds. We shall denote the density function, the sur-
vival function, and the hazard rate function of a random variable X by fy, Fy, and P
respectively. A random variable X is said to be stochastically larger than another
random variable ¥ {denoted by X =_, ¥) if F( x) = F,.( x) for all x. A stronger notion
of stochastic dominance is that of hazard rate ordering. X is said 1o be larger than ¥
in hazard rate ordering (denoted by X =, ¥) if Fy(x)/F,( x) is nondecreasing in x.
Finally, X is said to be larger than ¥Yin fikelihood ratio ordering (denoted by X =, ¥)
if fx(x)/fy(x) is nondecreasing in x. For more details on stochastic orderings, see
Shaked and Shanthikumar [ 16, Chap. 1]. In case X and ¥ have a common left end
point of their supports, we have the following chain of implications among the
above stochastic orders: X =, V=2 X=,¥F=X=_V.

A random variable X is said to be more dispersed than another random vanable
¥ (denoted by X =4, ¥) if Fx'(B) — Frx'la)= Fy '(B) — Fy '(a) whenever 0 <
a =< 1, where Fy ' and £, are the right continuous inverses of the distribution
functions Fy and Fy of X and ¥, respectively. One of the consequences of the dis-
persive ordering is that, in this case, the variances of the comesponding random
variables are ordered. For other properties of dispersive ordering see Shaked and
Shanthikumar [ 16, Sect. 2.B].

Al this point, let us also give the definitions of majorization and Schur convex-
ity. Let {x;p, = x5, = -+ = x;,,} denote the increasing arrangement of the compo-
nents of the vector X = (xy, xa,. .., x, ). The vector ¥ is said to majorize the vector x
(wrilten X = VIS vy =%_xpforj=1..,n—land ¥, v, =20 x50
Functions that preserve the majornization ordering are said 1o be Schur-convex, See
Marshall and Olkin [13, Chap. 3] for properties of such functions,

LetX,,.... X, be independent exponential rmndom variables with X; having hae-
ard rate A;fori € {1,. ...t} Let us denote the ith-order statistic and the ith spacing
by X;, and Dy, = X, — X 1., respectively. Here, Xy =0. Let DL, = (n— i + 1)Dy,,
denote the ith nomalized spacing. Kochar and Korwar [ 11] conjectured that for
i=l...n—1L0D%., = D5, InSection 2, we prove their conjecture when Ay =
«ev=A, = Aand A, = A", Such a model is known as a single-outlier exponential
model with parameters ( A, A*) and it has been studied by many researchers, includ-
ing Kale and Sinha [ 7], Joshi [6], Barnett and Lewis [4, p. 193], Gross etal. [5], and
Khaledi and Kochar[8], among others. Balakrishnan [2] obtained some recumrence
relations to compute the single and product moments of order statistics when obser-
valions follow the single- as well as multiple-outlier model. Using these formulas,
he studied the properties of the various estimators in outlier models. We also prove
in Section 2 that if A5 SAT< A< Ajand Af + (n—1)A;= A +(n—1)A:(inwhich
case (Ao AY) = (Aaau, A2, A3)), for i € 11,..., 0}, DY) is greater than D,
according to hazard rate as well as dispersive ordering, where D:._,IIJ and Dﬁ,’ FESPeC-
tively stand for ith spacing of single-outlier models with parameters (A, A%) and
(Az, A3).
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2. HAZARD RATE ORDERING AMONG SPACINGS

Let X,..., X, follow the single-outlier model with parameters (A, A*). It is easy 1o
see that the joint density function of (Dy,,.... D) is
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wherea,=(n—i+ 1), e =n—i)A+ A, i=1....n and
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One can see that th(#),8 =1, ..., n} is a probability mass function of a discrete
random variable 8. For i = 1,..., n, the marginal density function of D, can be
expressed as

j}_.’:ﬂ(_r} — HJ ﬂ.”_,--gt_..'r + f‘?, ﬂ'f.;_'_":"r, (2__2}
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Thus, the density function of D, is & mixture distribution of two exponential ran-
dom variables with parameters a; and « . In the following theorem, we prove that
Dy, =y DY, thus proving the conjecture of Kochar and Korwar [lﬂ] in the case of
the single-outlier exponential model.

THEOREM 2.1: Let Xy,... X, follow the single-outlier exponential model with pa-
rameters (A, A*). Then

e - £ 3 -
DJ—|:JI£}II'DJ:JI! I = ]-gung.ﬂ_].,

where D, = (n — i + 1) Dy, denotes the ith normalized spacing.

Proor: We prove the result for A* = A, The proof for the case A* < A follows using
the same kind of arguments. From (2.2), we find that the survival function of D}, is

.E“__-HI:.-.']I =H;e ™+ H,e ™" where 5; = ((n — i )A + A*)}/(n — i + 1). To prove the
theorem, we have to show that forany i € {1,....n — 1},

lE'f.r_.'. - (x)

8x) = fﬂ_.‘,, (x)
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is nondecreasing in x. The numerator of g'( x), the derivative of g(x), is

Alx)=[Hie ™ + He " |[-AH e ™™ —qu Hioye ")
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The inequality in (2.4) follows, since A* = A implies 0, , = 7,.
Again, A* = A implies A << 7;, which, in turn, implies e 4 %0000 = g inma b
for every x = (0. Also, for A* = A,

lin—i)H,—(n—i+ 1)H.\}=(n—i)hii)— H.,
=0, (2.6)

sinee for A" = A, h( j) is a decreasing function of j. Under these results in (2.5), we
find that A(x) and hence g'(x) is nonnegative for x = 0. This proves the required
result. L

Remark: Kochar and Kirmani [10] proved a similar result when X,.... X, was a
random sample from a DFR distribution.

Let X, .. X, be independent exponential random vanables with unequal pa-
rameters. Pledger and Proschan [15] proved that for i € {1,...,n}, D, is stochas-
tically larger when the parameters are unequal than when they are all equal. This
prompted them o examine the question of whether the survival function of D, is
Schur-convex in (Ay,..., A, ). They came up with a counterexample to show that
this is not true in general. Kochar and Korwar [11] proved that in the special case
of second spacing, whereas the survival function of D, is Schur-convex in
(Apseoos Ayl its hazard rate is not Schur-concave. They proved, however, that the
hazard rate of D5 is Schur-concave. We now examine this question for the single-
outlier model with parameters (A, A"). In the rest of this section, we assume that
A" < A, We will treat it as a part of the model. We prove later in this section that
if A << A% << A, < A, and A + (n — 1)JA, = A% + (n — 1)A; (in which case
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(Ayoees A A = (Aaeeens AauA3)), DLV s greater than D2 according to the hae-

o o
ard rate as well as the dispersive ordering for i € {1, ....n}. To prove it, we need
the following lemmas.

Lemma 2.1: Let X, ..., X, follow the single-outlier exponential model with param-
eters (A A"). Then,

i—1
NM<ieH=— fori=1,...,n, {2.7)
n
where H, is given by (2.3). The inequality in (2.7) is reversed for A = A
Proor: A® << A implies that the function A j) in (2.1} is increasing inj, j = 1,....n.
MNote that
(A(1),hQ2).... h(n)) = (1/n,....1/n).

The required result follows from the definition of majorization. L

Lemma 2.2: Ler Xy,..., X, follow the single-outlier exponential model with pa-
rameters (A, AY). Let Yy, ¥, be another set of random variables following the
single-outlier exponential model with parameters (A,, A5):

|:i} .li-fx‘; = A.‘:‘: Az <l Ay, then B =, B4
(i) FA, <A, <AL <A, hen®, =, O,

B and B; correspond to random variable B with probability mass function h( j) in
(2.1) for X;"s and Y. s, respectively.

Proor: (i) We prove thatford =1,....n —1,

.h:l:l‘." + ].' = .h:l:l‘."}
hi(0+1) ~ h(e)

where iy and h; correspond o hin (2.1) for X;"s and ¥;'s, respectively. This inequal-
ity holds for @ =1,...,n— 1 if and only if

(n—@—1DA,+ A A,

n—8—1A,+ A% Ay

i2.8)

Since A5 << A% and A5 < Ay, itis easy Lo see that (2.8) is tue.
(1) In this case, the inequality in (2.8) is reversed, which, in turn, implies that
B, =, 8. This proves the result. |

THEOREM 22: Let Xy,..., X, follow the single-outlier exponential model with pa-
rameter (A, A ) and let ¥y, ... Y, be another set of random variables folfowing the
single-outlier exponential model with parameters (A, A5 ). If

A== <Ad<A and AN+(n—1A=3+(n—1)A,, (2.9)
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DI.” E"}I Di.::l
Remark: Under (2.9), (A%, 4,,.... 4) = (AL s i ds)s

Proor: Without loss of generality, let us assume that A} +(n — 1)4, = 1.
From (2.2), the survival functions of D) and D)2 are

Fﬂ::"l:-f} — .FJE"“.-L T4 ij_a;'-"',

Fﬂ_ff.":-'-'} et 2 o (Z.‘!J,-_a-ﬂ.-‘:x,
where P, and O, correspond to H, in (2.2) for D' and D', respectively, and a;, =
n—i+ 1A ef=(n—i) + X, ax=(n—i+1)A; and oy =(n —i)A; + A5,

We have to show that

Fj_‘p' L] |:.1' '
dlx) = =—
Fpai(x)

is nondecreasing in x. After some simplifications, the numerator of ¢'i x), the de-
rivative of ¢ x), 15

g(x) = —(ay — a2 )P Qe %l 4 (g — )P Qe i ik
- |:ﬂ.:‘| - ﬂ':!} QJ FJ‘-'_‘H"!_“:L M I:ﬂ':: — ) }QJ 'FJ "-'_h."l'_ ol :LTL {.2’-1“:'

Using the assumption A} <0 A% << A, <0 A, and the fact that X +(n —1)A; = 1,
i=1,2, it follows that &y + s < @y + @ an +ab =af tabh.on Habh = a) +
apa and all (e — @), (e — an), and (e — a)) ) are nonnegative. Using these
observations in (2.10), we sce

glx) = e M (@) — apn) P Qi + (ah — ai ) B O

= I:ﬂ'” _ﬂ':J}L-_}J-FJ o I:ﬂ'JJ _al‘|}glﬁl}

— iy = b

= {0~ P (00, (i = A3+ (P, =~ (i = A}
N
e lan +an s
= T {Q;— P,—n(Q, — P;)A%}
n—
e laurah
= = (@ — P)(1—nai3)
=1 {2.11)

The second inequality in (2.11) follows, since by Lemma 2.1, P; = (i — 1)/n and
A7 < AS. From Lemma 2.2, it follows that (), = P,, since likelihood ratio ordering
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implies usual stochastic ordering. This observation, along with the fact that A% =
1/n, implies the last inequality in (2.10). |

Bagai and Kochar [1] proved that if X =, ¥ and either F or 7 is DFR (decreas-
ing failure rate), then X =4, ¥, IUis known that spacings of independent exponential
random variables have DFR distributions (ef ., Kochar and Korwar [11] ). Combining
these observations, we have proved the following comollary.

CoroLLary 2.1: Under the assumptions of Theorem 2.2,

i1} i2)
b =D

i Tdisp Sin ¢

j=VariD2), i=1,....n.

o

A consequence of Corollary 2.1 is that Var(D..)

a"n
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