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Nonparametric Inference for a Class of Stochastic
Partial Differential Equations II

B.L. 5. PRAKASARAOQO

Indicon Statistical Institute, Mew D lhi

Abstract. Consider the stochastic partial differential equation
dire(t, X} = (1) Ane (1, x)dt + €dWg(r.x), 01T,

where A = #2/ix?. # & B and @ is a class of positive valued functions. We obtain an estimator for
the linear multiplier &(r} and establish the consistency, rate of convergence and asymptotic normality
of this estimator a5 € —» ().
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1. Introduction

Stochastic partial differential equations (SPDE) are used for stochastic modelling,
for instance, in the study of neuronal behaviour in neurophysiology and in building
stochastic models of turbulence (cf. Kallianpur and Xiong [5]. The theory of SPDE
is investigated in Ito [4], Rozovskii [13] and De prato and Zabczyk [1] among
others.

Huebner et al. [2] started the investigation of maximum likelihood estimation
of parameters for a class of SPDE and extended their results to parabolic SPDE
in Huebner and Rozovskii [3]. Bernstein-von Mises theorems were developed for
such SPDE in Prakasa Rao [8, 12] following the techniques in Prakasa Rao [7].
Asymptotic properties of Bayes estimators of parameters for SPDE were discussed
in Prakasa Rao [8, 12]. Statistical inference for diffusion type processes and semi-
martingales is studied in Prakasa Rao [9, 10].

The problem of estimation of a linear multiplier for a class of SPDE which
oenerate measures which are absolutely continuous with respect to each other
is discussed in Prakasa Rao [11] using the methods of nonparametric inference
following the approach of Kutoyants [6]. We now discuss a similar problem for a
class of SPDE which generate measures which are singular with respect to each
other.
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2, Stochastic PDE with Linear Multiplier
2.1. PRELIMINARIES

Let (£2,F, P) be a probability space and consider the process w.(r, x), 0=y =1,
0=r1=T governed by the SPDE

du (1, x) = 0()Au A1, x)dr +edWglr, x), (2.1}

where A = #%/8x’. Suppose that ¢ — 0 and @ € © where © is a class of
positive valued functions (1), 0 < 7 < T uniformly bounded , & times continuously
differentiable and that the k-th derivative 8" (.} satisfies the Lipschitz condition of
order ¢« = (0, 1], that is,

8% ¢y — 8% <12 — 51, B=k+c. (2.2)
Further suppose the initial and the boundary conditions are given by

A0, xy = f(x), f e La[0, 1],
u A1, 0 = u(r, 1) =0, 0<1<T (2.3)

and @ is the nuclear covariance operator for the Wiener process Wolr, x) taking
values in L2[0, 1] so that Wg(r,x) = Q"*W(zr, x) and W(z,x) is a cylindrical
Brownian motion in L,[0, 1]. Then, it is known that (cf. Rozovskii [ 13], Kallianpur
and Xiong [3])

e u]
Wo(t.x) =Y g/ a(x)Wi(1) as. (2.4)
i=1
where {Wi(r),0< 1< T}, i = | are independent one-dimensional standard Wiener
processes and {e; | is acomplete orthonormal system in La[0, 1] consisting of eigen
vectors of  and {g;} eigen values of (.

We assume that the operator ¢ is a special covariance operator ¢ with
e, = sin(krx),k=1and i, = (mk)*, k = 1. Then {e,) is a complete orthonormal
system with eigen values ¢ = (14 i;)"'.i =1 for the operator Q and
Q = (I — A)~'. Note that

dW, = Q' dw. (2.5)
We define a solution u.(f, x) of (2.1) as a formal sum

ue(t,X) = ) wie(t)e; (x) (2.6)

icf. Rozovskii [13]). It can be checked that the Fourier coefficient wu;, (7} satisfies
the stochastic differential equation

du; (1) = —0(r)hu (1) dr + dW;ir), 0T (2.7

€
VT
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with the initial condition
1
uie(N =v;, v = f Slxye(x)dx. (2.8)
[

We assume that the initial function f in (2.3) is such that

[
v; =f Filxde(x)dy = 0, izl
i

2.2, ESTIMATION

We now consider the problem of estimation of the function (7)), 0 < ¢ = T based
on the observation of the Fourier coefficients w (1), 1 =i < N over [0, T'] or equiv-
alently the projection u;"""]{L x) of the process u. (7, x) onto the subspace spanned
by {e1, ...,ex} in L0, 1].

We will at first construct an estimator of #{.) based on the path {u;. (1),
0 =r1=T}. Our technique follows the methods in Kutoyants [6], p.135.

Let us suppose that

sup sup @{r) = Lg. (2.9)
BER 0 T

Consider the differential equation
dug (1) _

e — 001 ) (1), w0 = vy, 0=r=T. (2.10)
It is easy to see that
wi(t) = e MhfWE o< gT
and hence
ui(n) zve™, 0<r<T, 2.11)
where
M; = Lyk;. (2.12)
From Lemma 1.13 of Kutoyants [6], it follows that
Sup [uic(s) — ()] € ———=e™' sup |W;(s)| 2.13)
D=5 s A+l ogsex

almost surely. Let

A9 = {w: inf u.(s5) = Elv,-e"”*’] (2.14)
3 2

[

and A; = A}’. Note that A" contains the set A; for0< 1< T.
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Define the process {¥;,.(r), 0= 1 < T} by the stochastic differential equation

2

: T € -2 ()
d¥ie(n) = —5 U O (A) dr +

+u (D) (A du (1),  0<i<T, (2.15)
where y(E) denotes the indicator function of aset E. Let ¢, — Qase — 0 and
define
F—%
P
where (7(.) is a bounded kernel with finite support, that is, there exist constants a
and B such that

=
éis{f]}u' = —{J{f!’u.’lt’i};lf G( ) d¥i ()}, (2.16)
0

b
fG{u]du:l, Glu) =0 for wu=a and u = b. 2.17)

[

We suppose that a < 0 and & = (. Further suppose that the kernel (7 () satisfies
the additional condition

f Guw du =0, j=1,...,k. 2.18)

od

Note that

I'—g

i
_é‘?{rj}.‘. = x{“"fj‘i’;lf G( )dlf},_:(sj,
0 (3

= fo-ncp-lfTr(f“‘) x
: = 0 ';b'-‘

—_ Yim e g2 ()
® [ 254, IR Iju“‘ {”il x(A ) ds 4+

T
+ {A‘j ;lf G(f—.’i‘)
* d) 0 ¢'€ )

w ] (5) x (A dWi(s). (2.19)

b
A+ 1

Hence

3

T —
-2 [xwe [T (57)

—2 -1 (i
= 2(A + Ijuif () x (A, ]"i":| +

T "
—E[(Nk] = E[xm.-m;'f G(I;‘“){—ﬂ(xj}.,-jde} —
4]
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5
E A f G (I - 3)
* Iixi: M)F 1] d}-.‘ 8

Hﬂ:lf-'i]xll’A_f.”]dﬂﬂ-{s]} .

e

€
a4 1
MNote that

.
(5 [I(A;'M};I f G (I — S) i Hﬂclfn?]}{{:"tf-'.]]d“ﬂ'(-ﬂil)
0 ¢ A+ 1 '

T 3 _ 2
< E |:¢;2{f G(I S) ~£ Hﬂzlﬂ'ﬁ.‘leﬁf-”)dﬂﬂ'(-'i]] ]
0 ¢, i+ 1 :

r t—s € ;
S G2 Elu2(s)x (A ] ds,
= ¢ ]:: (@ ):-..-+| [u; () x(A")]ds

= Jﬁ.F (say).

2

Therefore, for sufficiently small e = 0,
E[-6ie(D + 6(n)]
i
= E [xm.-m: ! f G (f ; “) (—B(s)k; +:am:-.‘-nds} =
0

3

— E[x (AN (—0(1)4;)] —

—E[ {A-]-:i:-"fTG(I_S) ¢ 22 (5) (A[”jd:jl ¥
XA g, 3 B 200+ 1) e WFIalA; |
+'D{th=] (22(}_‘1

since, forQ0 <1 <= T,

r I—s
iy -
% ]:: G( o, )m & 2l

tor sutficiently small € = () by the conditions imposed on the kernel . Therefore,
tor0 < 1 = T, for sufficiently small € = 0,

|E[—8;(D)x; +0(D)3]1

T 2
s~:4{¢;'f G(’;“)f—@fm;m(m;nm] s
0 £

+A[PADP@@A) +

2

+4(£[ (A-jfp-'frr(f_“) ¢ u=2(s) {Al“jd;]) +
I i £ & o (b.,: .2(}"] + ” je x 5 -
+O(J2). (2.22)

lie
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Applying the Taylor series expansion and properties of the kernel (.} and the
function #{.), it is easy to see that the first term is bounded by

Cial¢” {f |G{u]uﬁ|dul_, (2.23)

o

where ) is a constant depending only on the the constants Ly in (2.9) and the
smoothness parameter & of #(.). Note that

P(AY) = P{ inf wu.(1) < lu-e""*T
i DEieT i€ ) i
|
= P{ inf [ui(r) —wi ()] + inf ui(r) < —L',-E_'“"T]
ar et 0<I<T 2

inf I —MT ;
g P {u::'p!: T[u;;(f] —u;(n] = —vie ] (from (2.11))

DLrET

1
s P l sup |HJ'-.={-F::| — Ml {Ijl = EL"--E'_M"TI

P

vie™MIT (3 4+ 1) ]

2 s
‘“p{ BelT

since

4 /T ot
P sup |Wi(r)] = e | < min| 2, _\"I_ e I
0sreT ¥ 2T

from Kutoyants [6], p. 28. The third term is bounded by

o |

4 ca 2
c:mu;%?“ﬁr{f |G{uj|du] , (2.24)

where 5 15 an absolute constant. Relations (2.22)—(2.24) show that

REW,.0) 001 < G [i?d}f‘*{fm '5f"3”ﬁ"f'”]_+

—O0
2uie~ T, +
BelT

4 ] 2
+ e | owia] ] :

L OGHE (2.25)

1
+ exp { = j ](ﬂfr}»‘-..-ll +

where C7 is an absolute constant. Hence

|E[ie () — 001 < Cald2® + e 0(0)% + ', + JZ,1, (2.26)
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where C, is a constant depending on the kernel (7(.) and the Lipschitz constant L,

vie *MiT (1 4+ 1)

d; =
4T

(2.27)

and

eIMIT

s (2.28)

T g+ BRI

Following computations as given above (cf. Kutoyants [6], p. 157), we can show
that

Elfic(n) — 0O <G[0 + e 000 + €'qs + €20 + 12,1, (2.29)

where Cs is aconstant depending on the kemel (7 (.) and the Lipschitz constant L.
Choosing ¢ such that

¢ =€,
we obtain that ¢, = €*/'***1) and we have
E[fie(r) — 0P
<G5[P+ | p~de™ ()2 | g, 4 BBV 4 g2 (2.30)
and

(Elfie(1) — 0] < Cyle ¥+ 4 o= ()2 4 g, + JE1. 231

lie

Note that #,(r), 1 =i < N are independent estimators of #(r) since the pro-
cesses W, 1 <i <N are independent Wiener processes. The above inequalities
imply that

sup E[f, (1) — a0

lEig N
£ Cﬁ[£i4ﬁ-"3ﬁ'rl] _I_E—Iinrls.lg.\-h’.-]t‘ 33(;)2_}_‘54 sup i +
l=isz N
+eWAZAHY) gup g 4+ sup JZ.] (2.32)
lighN l£is N
Note that
Ezu_wmlxlmr
up g £ ———— = fy (say) (2.33)
lgigh mhinfcigwty
and
o o e—MaT
lrs-‘.lll'-.!t N d = (14}4“5: N U‘II) aT yw (say)- &%)
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Therefore

sup  E[fi (1) — 0()]

lEig N

lgis N

=07 |ig4ﬁ;z;:-n L e—tNeE EH{I]E+£4JBN 4B g L qip Jﬁ'*jl'
(2.35)

In particular

sup var{éif {I ]]

lgie N

E; Cj’ [£[4,|‘3.l'2.|5—:|] _I_E—}'.\'E'zg{i.jl +€4_|BN +£[4ﬁ;’1ﬁ*l]ﬂ~. + sup Jﬁe] 1

lziz N

(2.36)

We assume that the following conditions hold for 1<i<N: Let y
= {2825 1) Suppose that

ol

. I ° _
{CI]}’FJ”F—* mﬁxﬂ (u) du as € — 0

Under the above condition, it follows that the estimators &;.(r), | < f = N are inde-
pendent estimators of & {f) such that

sup |E[6,.(1) — 0(1)]] < Cye®P12P+D (2.37)
i€ N
and
sup E[fie(r) — 0(D)] < Coe #1240, (2.38)
l£ig N

where Cy and Cy are constants depending on the kernel (7{.), the Lipschitz constant
Lyand N. Note that the estimators &,.(r), | =i =< N are the best estimators of (1)
as far as the rate of mean square error are concerned by Theorem 4.6 in Kutoyants
[6]. We now combine these estimators in an optimum fashion to get an estimator
using all the information available.

It is easy to check that

Yel—6ie (1VA; + 6]

— {AJ ¢—|frr(f—5) €
TR 0 b J Jhi+1

w (5) x (AT AW, (5) + Jase,

(2.39)

= X(Aijjlif + jﬁ'f (say). (2.40)
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Note that E(J2 ) = O(y2J2,) where

¥ =5 | )
J: =92 Gl( ) E(u - (s (A7) ds 2.41
lis d}-.‘ 4 d}f }'.,' ] ( ie ( ]x( A j] ': ]

as defined earlier. In addition to the condition (C,) , assume that
(CJye =0,(1) as €—0
forl i< N.

Since P(4;) — | as e — (0, it follows by the central limit theorem for
stochastic integrals (cf. Kutoyants [6], Prakasa Rao [9]) that

= s | i >
) o R - —— il 3
Yelhe () —B(1)] = N (ﬂ, u?{f}i?{}.; D ﬁm O {ujdu) (2.42)

as € — Oforl =i < N. Define

ZJ"\Il=l 'éif {r ]}-?{}.; + ]]uf_{“]

r!':i el ) =
el TN 3200 + Dud()

(2.43)

MNote that the random variable é,-...-._: (f) 1s not an estimator of @(r) as the functions
w;(1) depend on the function #(r). However, the random variable é,-...-;(fj is a lin-
ear function of independent mandom wvariables F,:I"-F (1), 1 =i = N. From the earlier
calculations , it can be checked that

Var (e (1)) + (E(Bye (1) — 0(1)))* (2.44)
Cre B840 | o [(4B/2B+D)

E(Bye (1) — 8(1))

=
A8/ 841
= Cmfl B2 ]‘

As a consequence, we have the following result.

PROPOSITION 2.1. Under the conditions stated earlier, for 0 =1 < T,

(i) One(t) > 0(1) as € —0O;

(i) E(fy (1)) — @(1) as € — O
(i) 1im,_ g E(@y (1) — 0(1))P = 0 as e — O;
(iv) limsup, _,, E(@ye(1) — 8(1)) e~/ < o0,

(v) €-22BD@G (1) — (1)) 5 N©,0%(1) as e —0,

where N(0, a(1)) denotes the normal distribution with mean zero and variance
aZ{I]] given by

I fa e}
a’(1) = — f G*(u) du. (2.45)
Y R+ 1) S
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Let
N A 82 3
B A (A + D (1
0. (1) = izl OA (i + Dt (O (2.46)
2 i1 A + D (1)
where
(1) = vye 1 fabheods, (2.47)
Note that for any | i < N,
ek i 2 [ ]
E I:f &-F{.r;]ds—f H(.r;jdr;il = E[f (. (5) —Hf.r.‘jjd.{l
0 0 0
I -~
< E[f f (B (5) —!—Il‘(s]]zd.'r:|
0
, o ¥
= r‘f E[(Ge(s) — 0(s)) ]ds
0
g Clnfzf[{ﬁflﬁ-e-l]
and hence
I . 'y p
f 2 (51 ds —f disids =0 as € —=10 (2.48)
0 0
for | =i = N. This in turn implies that, for0 < < T,
Gic(t) S wi(r) as e =0 (2.49)

for 1 =i = N.Inview of (2.30), it follows that the estimator &5, (1) is a consistent
estimator of @{f) for) = ¢ = T ase — (.

THEOREM 2.2. Under the conditions stated above, for 0 =1 < T,

gt (1) 5 0(1) as e —0. (2.50)

Note that

N A 1204 . ~3

Z;:[Ifwi:fjf:, (A +_I_J]H‘F{Ij —am |,
Yoo A+ DL

Y B () — B)RF + DL (1)

s A+ D (n)

}’s[ﬁ,:'Fff] —a(n] = [

Since

() %6, (1) — 0(1)) 5 N(0,0%1)) as e—0 for 1<i<N,
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(ii) () 2> u;(1) as e—0 for 1<i<N,

for 0 = r = T, and since the estimators fij;{f]‘ | <i< N are independent random
variables, it follows that the estimator #5_ (1) is asymptotically normal and we have
the following theorem.

THEOREM 2.3. Under the conditions siated earfier, for 0 <1 = T,

Ve On (1) — 0(1)) i N{0,6°(1)) as €— 0, (2.51)
where
ye = e~ QBB+ 2.52)
and
2 I *
agot) = ZjL PORO D) ﬁx G () due. (2.53)

Remarks, (11Ifk =0 and 8 = L that is, the function #(.) € ® where & is the
class of uniformly bounded nonnegative functions which are Lipschitzian of order
one, then it follows that, for0 =1 < T,

e2P B}, (1) — (D)) 5 NO,0%(1) as e —0. 2.54)

(2) It is well known that if «;, | =i < N are independent unbiased estimators
of a parameter & with variances cr‘-l. I < i < N respectively, then a better estimator,
in the sense of smaller variance, can be obtained by taking a linear combination
of ¢;, | =i = N with the coefficient of «; inversely proportional to the variance
o7 and adjusting the proportionality constant so that the new estimator is also
unbiased. Here the estimators :‘i‘-é {r), 1 =i = N are asymptotically independent un-
biased estimators of @(r) and the estimator e?l’.;-éfrj is obtained following the above
procedure so that this estimator has smaller asymptotic variance compared to the
asymptotic variances Gfﬂ"j; ), 1=isN.

(3) If the function #{1 ) = & isa positive constant, then the problem of estimation
of & becomes a problem in parametric inference. It was shown in Huebner et al.
[2] and Prakasa Rao [12] that the parameter & can be recovered in the limit either
by letting € — 0 or equivalently T — oo or by letting N — oo keeping €
fixed either by the method of maximum likelihood estimation or by a Bayesian
approach. It should be possible to study nonparametric estimation of the function
#{r)in(2.1) and hence in (2.7) by other methods of estimation such as the method
of sieves or method of wavelets (ct. Prakasa Rao [9]) and recover the function &(r)
either by keeping e fixed and letting N — oc or by linking € and N such that
N = Nie) — oc. We hope to come back to this discussion in future.

i4) Conditions {C ) and { ;) are the natural conditions to ensure the asymptotic
nommality of the stochastic integral in (2.39) and to ensure that the remaining part
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in {2.39) is negligible. It would be interesting if these conditions can be removed
and the results can be proved directly. This will involve asymptotic expansion of
the quantity E(u;, (1) x(A; ).
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