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Abstraei.  We use the cross-comelation function as a fundamental tool w study
cryplographic properties of Boolean functions. This provides a unified treatment
of a large section of Boolean function literature. In the process we generalize old
results and obtain new characterizations of cryplographic properties. In particu-
lar, new charclerzations of bent functions and functions satisfying propagation
characteristics are obtained in terms of the cross-correlation and auo-correlation
properies of subfunctions. The exact relationship between the algebraic structure
of the non-zeros of the spectrum and the auto-comrelation values is obtlained for
a cryplographically important class of functions. Finally we study the suitability
of S-boxes in stream ciphers and conclude that currently known constructions for
S-boxes may not be adequate for such applications.

1. Intreduction

In his semmal paper on crypltography, Shannon [ 14] outhined the basic design principles
of secrel key cryplosystems. These principles were called confusion and diffusion. The
principle of confusion underlines the imporance of hiding the overall structure of the
crypltosystem, while diffusion suggests that uncertainty is spread out evenly over the
whole system.

* This work was done while Palash Sarkar was at the Centre for Applied Cryptogmphic Research,
University of Waterloo.
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In most secrel key cryplosystems, the basic components are Boolean functions,
which are maps from n-bit sirings to {0, 1}. Attempts have been made Lo translate Shan-
non's notions of confusion and diffusion to properies of Boolean functions [1]. From a
more practical standpoint, research in cryplanalysis of secret key systems have shown
the necessity for Boolean functions 1o possess certain eryplographic properties.

Here we approach the design problem for Boolean functions from Shannon’s stand-
points of confusion and diffusion. We try to explain these concepts in terms of comrela-
tion between two Boolean functions. If two functions are highly comrelated, then they
are “close”™ o each other i a precise statistical sense. On the other hand a comrelation
of zero between two functions means that statistically the functions are far apart. The
notion of confusion can be interpreted as meaning that the constituent functions of a
secrel key system should have small correlation to each other. This resulls in the con-
stitwent functions being “very different” from each other. Diffusion on the other hand
can be interpreted as meaning that the constituent Boolean functions should have certain
“uniformity” properies, leading to an overall “uniformity™ of the cryplosystem.

Most works on Boolean function design have been motivated by properties which
resist known attacks. While this is useful for current practice, a fundamental under-
standing 15 required 1o the long run. The man theoretical requirement 15 1o understand
the relationship between Shannon’s informal concepts of confusion and diffusion and
cryplographic properties of Boolean functions motivated by practical considerations. In
this article we attempt such an mvestigation.

The basic tool in our study is correlation between two Boolean functions. Special
forms of this correlation have already been studied. For example, the correlations of a
Boolean function to linear functions constitute the spectrum of the Boolean function
and have been used quite extensively in Boolean function literature. Another kind of
correlation is the correlation of a function with is dyadic shifis. The values of this kind
of correlation is given by the auto-correlation function.

We study the more general notion of comelation between two arbitrary functions.
This is called the cross-correlation between the functions. Here we weat the cross-
correlation function as a fundamental tool and present a unified view of a large section
of Boolean function theory. The relationship between cross-correlation and spectra of
functions is characterized. The concept of cross-correlation allows us 1o generalize many
of the resulis on cryplographic properties of Boolean functions that have previously
appeared in the lterature. Further, we oblain new charactenzation of bent functions
and functions satisfying propagation characteristics in terms of the cross-correlation and
auto-comrelation of subfunctions.

The relationship between the algebraic structure of the non-zeros of the spectrum and
the auto-correlation values is characterized for functions whose non-zero spectral values
have the same magnitude. This class of functions encompass several eryptographically
important classes of functions. The use of S-boxes in stream ciphers have been proposed
to speed up the system further. We carefully examine this proposition and conclude that
the currently known constructions may not be adequate for such applications.

2. Preliminaries

An n-variable Boolean function is a map f: {0, 1}" — {0, 1}. In Section 7 we consider
S-boxes (or vectonal functions) which are maps f: {0, 17" — {0, I} Let F» = GF{2).
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We consider the domain of a Boolean function 1o be the vector space (F3', @) over B,
where & is used 1o denote the addition operator over both F and the vector space F3.
The inner product of two vectors w, v € F3' will be denoted by {1, v}, The weight of an
n-bit vector u is the number of ones in u and will be denoted by wiiu).

The fundamental tool that we use in this paper is the comrelation between two arbitrary
Boolean functions which is called the cross-comrelation. The cross-correlation between
two functions f and g is an integer-valued function Cy,: {0, 11" — [=2", 2"] defined
by

Cralw) = Y (-1)fWesen, M

TEF]

Note that the quantity C; () denotes the correlation between the functions f and g.
The following simple result states some of the basic properties of the cross-correlation
function. The proof is just routing verfication from the definition.

Lemma 2.1.  Let f{x), g{x) ben-variable functions and define hix) = fix)®g{xda)
SJorsome a € Fy. Then (a) wilh(x)) = wlifilx B a)), (b) Cy o la) =2" — 2 x wiifi(x))
and (¢) Cy  la) = C, pla).

We say that two n-variable functions f and g are perfectly uncorrelated it Cyy(u) =0
forall w & Fy. Weaker forms of this notion are obtained by restricting the set of u for
which C; , () = 0. We say that two functions are uncorrelated of degree k if Cy (u) = 0
forall v & Fy such that 0 = wi(u) = k.

We interprel Shannon’s noton of confusion in the sense of heterogeneity. If the
component functions of a secret key system are pairwise perfectly uncorrelated, then
the statistical distance between any two functons is the maximum possible and we say
that the system has the best possible confusion. However, this may be wo restrictive
in practice. Thus it may be desirable to enforce pairwise uncorrelatedness of degree k.
Another approach could be to ensure that for each w, the values of [Cy, ()] is bounded
above by a “small” constant. This will ensure that the cross-comelation between the
functions is uniformly small.

The Fourier Transform is the most widely used ool in the analysis of Boolean
functions. In most cases itisconvenient to apply the Fourier Transform to {— 1)/ instead
of fix). The resulting transform is called the Walsh Transform of f{x). More precisely,
the Walsh Transform of f(x) is an integer-valued function Wee {0, 1} — [-2",2"]
defined by (see [6])

l:f{l!!}l = Z {_I}Jr'lf':'iﬁl:il.lr-:--
wEF]

The Walsh Transform is called the spectrum of . Note that the spectrum measures the
cross-comelations between a function and the set of linear functions. Another way of
looking at the spectrum is via Hadamard matrices. Let H, be the Hadamard matrix of
order 2" defined recursively as (see [9])

m=[s 4]

H,=H & H,_, for n =1,
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where & denotes the Kronecker product of two matrices. Considering the rows and
columns of H, to be indexed by the elements of FJ', we obtain [H, ], = (—1)*".
Using this fact the Walsh Transform can be wrillen as

=DM =D H, = W), .. W' = 1))

Since H,H, = 2"l post-multiplying both sides by H,, we get the inverse Walsh
Transform:
1 -
(DI = — 3" We(w)(=1)",
T weF]

A parameter of fundamental importance in eryplography is the non-linearity of a
function (see [9]). This is defined o be the distance from the set of all affine functions.
It is more convenient to define it in terms of the spectrum of a Boolean function. The
non-linearity nl{ f) of an n-vadable Boolean function £, is defined as

nl(f) =2""" — —l’ﬂ'ﬁ‘ Wyl

Another commonly used tool is the auto-correlation function which provides the
cross-corre lation values of a function with its dyadic shifts. The auto-correlation function
isaninteger-valued map Cyp: {0 11" — [=2", 2" | defined by (see [9] for arelated concept
called the directional denvative)

':_II' {“} it E {_l}fllr')ﬂ':l_,l'lni[-llr':l_

weFy

1t is clear that Cp(0) = 2", The auw-correlation 15 not a transform in the sense that it
does not uniquely determine the function.

Several important classes of Boolean functions can be described in emms of the
spectrum and the auto-comrelation function:

1. For even n, an n-varable function § is called bent if Wiin) = +242 for all
w & Fy (see [12]). This class of functions are important in both eryplography
and coding theory.

2. Ann-variable functionis called correlation immune ol order m (m-CLif Wilu) =
Oforall 1 = wt{n) = m (see [15] and [17]). Further, if the function 1s balanced,
then Wyilh) = 0 and the function is called m-resilient.

3. An n-variable function is said o satsly propagation characteristics of order k
(PC{k)y il Cilu) =10 forall 1 = wiin) = k(see [11]).

If f is a bent function, then C;(w) = 0 for all non-zero 1 [9]. Hence bent functions
satisty PCin).

3. Cross-Correlation Theorem

In this section we present the Cross-Correlation Theorem and its consequences.

Theorem 3.1 (Cross-Correlation Theorem).  Ler | and g be n-variable functions. Then

[CreO). ... Cre2" = DIH, =W (OW(0), ... W, "= DW,2"~1)].  (2)
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Progf. 1t is sufficient o show that for each w € FJ', 3 g Cpplu)(—1)"" =
W (w )W, (). We proceed Lo do this as follows: i

Z Cf_lu{u}{_l}l:"'w} = E Z{_1}_.rl'nH’:l,l:l.Tﬂ':HI:I{_l}l:lr.lr':'

wek] we FY xeFl
= 1; (—1)f= géi 1) EeBudBlu, )
= IFZFE{_UILT? ‘;{_l}x“rmﬂw'-néﬁu}
e J;E,[_l}ﬁ.ﬂ J;{_1}.u[nH:U:If'--THB':"'."}
= I;{_l};r.ﬂam-.z} ‘;{_l}gfﬂmﬂlr'.ar}
= Welw) W,(w). O

A special case of the Cross-Correlation Theorem is when f = g and gives us the
following:
Corollary 3.1.  Let | be an n-variable function. Then

(o711 (2" — DIH, = [WF0), ..., Wi(2" — D).
This resultis called the Wiener-Khintchine Theorem incontinuous analysis and has also
been obtained for Boolean functions [2], [20], [11]. Applying the inverse transform o
the cross-correlation vector gives the following:
Corollary 3.2.  Let | and g be n-variable functions. Then

2°[Cr,(0), ..., Crs(2"=D]=[W(O)W,(0),..., (2" —1)W, (2" -1)]1H,. (3)

Applying the inverse transform with g = fLgives 3 . Wf{u} = 2"C;(0) = 2*. This
is a conservation law for the speciral values of f and 1s known as Parseval’s theorem
(see [6]).

Lethix) = fix) @ gilx) g1lx) = glx) & {u, x}. Then W, (w) = Wylu & w) for
all w e F' and Wy () = C; , (0). Using Corollary 3.2, this gives

1 1
Wal) = 5, D Wiw) W, (w) = = D W)W, & w),
weF] we FY

which is the so-called Convolution Theorem. We summarize this as

Corvollary 3.3. Lethix) = flx) & glx), where both | and g are n-variable functions.
Then

1
Wilt) = - )~ W) W, (u @ w). (4)

T weF]
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We say that two functions f and g have ron-intersecting spectra if We(n)Wyin) = 0
forall w. Using Theorem 3.1 and Corollary 3.2 we get the following characterization of
perfect uncomelatedness in terms of the spectra of f and g.

Corollary 34. Let | and g be two n-variable functions. Then [ and g have non-
intersecting spectra if and only if they are perfectly uncorrelated.

Remarks. 1. Let f and g be n-variable functions. Then f and g are perfecdy un-
correlated if and only if X, & f and X, & g are perfectly uncorrelated. Fur-
ther, if f and g are perdfectly uncorrelated, then using W,(u)W,(u) = O forall u €
F3, it is possible to show (see [13]) that the (n 4+ 1)-variable function f defined by
R(X 0 Taoe o X Dard) = 18 i) F i e X B Xeer gl o v X hag i
linearity 2"~ + min(nl({ /), nl{g)).

2. The Walsh Transform of an n-varable Boolean function can be computed in time
(}Hn2") using the fast Walsh Transform [9]. Using this algorithm and Corollary 3.2 we
obtain an {rn2") algorithm to compute the cross-correlation between a pair of Boolean
functions. Similarly, using the fast Walsh Transform and Corollary 3.1 we obtain an
(Hn2") algorithm o compute the auto-correlation of a Boolean function.

3.1, Algebraic Properties

Here we study algebraic properties of cross-correlations. Using the Cross-Comrelation
Theorem we are able o generalize many previous results concerning cryplographic
properties of Boolean functions. We present three such cases.

Proposition 3.1.  Let [ and g be n-variable functions. Then 3, _ . Cf_H{u}l it

Proof. Let W = (WelOW, (), ..., WelW, () and © = (Cp (), ..., Cy ).
Then

(W. W) = (CH,. CH,) = CH,H!'C =2"{C.C).

Hence
2" Z '.:;_..\- () = Z Wﬁ {ﬂ}“-f{u}
weFy HE .Fé‘
a Z H'-f (0e) Z ],q_.";{“} P 2_’" 22“ — 7
I FF; i F.FE'
From this the result follows. &

The above generalizes the bounds on sum of squares of the auto-comrelation coeffi-
cients obtained in Theorem 2 of [20)].
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Theorem 3.2. Let | and g be n-variable functions and let E be a subspace of F3.
Then

Y W)W, (w) = |E| Y Cpplu).

weE ueEL
FProgf.  Using Theorem 3.1, we can wrile

E W;{u:}iﬂ.{m} = Z Z L‘I_H{“H_l}ﬂu.u-}

wekE weE yeF?

- Z Z Crg(w) (1",

HE .FJ" weE

Wue EX then{u, w) =0forallw e £ Ifu & E+, then {u, w} = 0 for half of the
veclors w € E and {u, w} = 1 for the other half of the vectors w € E. Thus we get

Y Wiw)Wyw) = |E| Y Cpplu). O

weE ueft

For the special case of f = g, this result has been obtained in Proposition 3 of [ 1].

Let N, be the number of zeros of the auto-correlation function Cp() and let N,
be the number of zeros of the spectrum Wy (). In Theorem 2.1 of [2] it was proved
that (2" — N.J(2" — N,) = 2" and the condition when equality holds was precisely
charactenzed. Here we obtain a similar relation between the zeros of the cross-correlation
function of f and g and the pointwise product of the spectra of § and g.

Theorem 3.3. Let | and g be n-variable functions. Then

(2" — No)(2" = Ny) = max | €y (w), )
e FY
where N, = [{u € F': Cyp(u) =0} and N, = [{u € Fi': W)Wy (u) = 0}].

Progf.  Firstnote that if Cpin) = Oforallw € FY, then N, = 2" and the result holds.
So suppose there exists some n such that Cy () # 0. Using Theorem 3.1, this implics
that Wpin) W, (u) cannot be zero for all u. We prove two separate lower bounds on the
quantitites 2" — N, and 2" — N, Multiplying the bounds will provide the desired resull

Forapair of Boolean functions fy and hs definen, (hy, ha) = [{u € Fy': Cy i) =
O and n(h ha) = |{u € o Wy ()W (u) = O} Then N, = nA f,g) and
N, =n,(f. g).

We first obtain a lower bound on 2" — N, Let w € B be such that

| Wy () Wy ()] = max [ Wy (10) W ().

Define afunction g in the following manner. If W (w) W, (w) < O.then gy = 1 Fg, else
g1 = g. Thus we have W(w)W, (w) = [W{w) W, (w)| = Dand n.(f, g) = n.(f, g1).



46 B Sarkar and 5. Maitra

Now define iy (x) = fix) +{w, v} andha(x) = gix) + {w, x}. This implies Wi () =
Wilw) and W, 1 = W (w) and so Wy, (0) W (1) = max,c e | W ()W) Also
ne(hy, ha) = n(f, g1) = n.( f, g) = N.. Since the values of Cj,, ;,() are all at most 2,
we oblain

(2" = No) = (2" = ne(h, h2)) 227 ) Chy (). (6)
ueFy
Using the facts that ¥, Choa(t) = Wi (0) Wi, (0) and W, (0)W,(0) =
maX, e po | We () Wy ()|, we obtain

(2" — Ny =27 m:}x | Wl )Wyl )]. (7
ue £y

Now we obtain a lower bound on (2" — M) Let v £ F3' be such that |Cy . (v)| =
maX,e gr |Cy g(v)|. Define gy in the following manner. If Cy o (v) < O, theng) =1 @ g,
else gy = g. Then Oy (v) = max, cg |Cyp(v)] and nod foe) = nd f.g). We now
write i

D IWA W, ()] = D W)Wy, ()(— 1)k
ueF] e F]
=2Cru(=2" max [C (). (8)

Also we have

2ery W)Wy, ()]

(2" —N) =" —nf g) = maX,e ry | Wy ()W, ()]

(%

Using inequality {8) we obtain

X' max,.qm |Cr,
2N = Xuery |Cyplv)] ; (10)
max, ey | Wy () Wylu)l

Multiplying inegualities (7) and (10), we obtain the desired ineguality. O

Equality holds in (5) if and only if equality holds in (6), (8) and (9). However, there
does nol seem o be any simple characterization of these conditions.

4. Characterization of Benl Functions

In this section we present a new characterization of bent functions in erms of the auto-
correlation and cross-correlation properties of its subfunctions. This can be considered
to be a refinement of the characterization of bent functions presented in [ 1].

Let f be an n-variable Boolean function. Let v € {0, 1} with 1 = r = n
and v = v, ---vy, where each v; € {0, 1}. By f. we denote the function f{X, =
Vryoens Xooeri=v, Xy oo, X1).Given u £ {0, 1} and w € {0, 11", we use the
notation ww o denote the n-bit sting formed by concatenating w and w.
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Theorem 4.1. Leru {0, 1}, w € {0, 1} and f beann-variable Boolean function.
Then

Crluw) = Z Cr., fua(W0).

veFl

Proof. By definition,

L'I{HW} = Z{_l}.-rl.t)ﬂ':l_.fl.t&:llllr.':l s E Z {_l}frl'::lﬂ':lfl'l':il:lmr-j‘

rEF] veEFy ceFl—

where the n-bil vector x is written as the concatenation of an r-bit string vand an in —r)-
bit string z. For a fixed v we have f{vz) = fi(z) and fiv: & ww) = fig,l(z & w). This
ZIVES

Cyluw) = Z Z {_I}J'.I:)&If.q.ﬂf:-llzllr':l - Z c}.“f”_:.“{w}_ O

vEFT s veFS

Corollary 4.1.  Let | be an n-variable function and let fiy and fi be obtained from f
by restricting the variable X, to O and 1, respectively. Then we have:

L Cp(lw) = Cylw) + Cp {w).
2. Cellw) = Cyp plw) + Cpy jylw) =2C5 5 (w).

An immediate consequence of this result is 1o oblain g new characterization of bent
functions based on the auto-correlation properties of its subfunctions. We say that two
functions f and g have complementary auto-corvelation it Cp(u) + C, () = 0 for all
NON-2810 1.

Theorem 4.2.  Let n be an add integer and let i be an (n + 1)-variable function and
We write

I:{X,,.,..,X,, ----- X|}={1$XJ|+I}_.F{XH ----- X|}|$X,,+|S{X“ ----- xl}-

Then the following awe equivalent:

. s bent.
. F and g have complementary awtocorrvelation.
. f and g are perfectly uncorrvelated and nl{ f) = nl(g) = 2%~ — 20e-D2

Lad o —

Proof. (1) = (2) If h is bent, then Cp{w) = 0 for all non-zero w £ F.;""'. Let w be
a non-zero vector in Fy'. Using Corollary 4.1, we get Ci{Ou) = Cplu) + Cylu). Since
i 3 0we have Cp(Ou) = 0. This gives Cpin) = —Cylu).



48 B Sarkar and 5. Maitra

(2) = (3) Suppose Cplv) = —C,(v) for all non-zero v € F'. Using Corollary 3.1,
we have for eachw € FY',

Wiw =) CED" =2"— 3 G)=D"" =2 - Wi,

veFy v ey

This gives W7 () + W} () = 2",

We now use Jacobi’s lemma (see Chapter VI of [5]), which states that for odd m,
the only integer solutions to the equation x* + v* = 2" are x = 0, y = £20+ 102 gpd
x =202y =,

Thus we get that either Wﬁ (i) = 2+ 1 gnd Wﬁ () =00r Hr"f{u}l = () and H"ﬁ (i) =
21 In either case we have WilwiWyin) = 0 and nl{ f) = nlig) = p Lo iy
Since this holds for each w € F', the spectra of f and g are non-intersecting. Us-
ing Corollary 3.4 it follows that the functions §f and g are perfectly uncomelated, ic.
Ciplu) = Oforeachu € Fy.

(3 = (1) ‘&mLL the non-linearity of both f and g is 2"~' — 21%=U72 it follows
that for each u & . we must have [We(u)], [Wyln)| = 2102 et the number of
non-zero points of W; () and W, () be .{ .md ka, respectvely. Using Parseval’s theorem
and the bound on |[Wy(u)], f“"H{I!}If we have 22 < 2" gnd 22 = 2 This
gives ki, ka = 271 Since f and g are perfectly uncorrelated, their spectra are non-
intersecting, 1.e. Weln)Wylu) =0 for allu F3'. Thus the number of points at which
Hr;{}l is zero is at least as large as the number of points where W, () 15 non-zem. Henee
2" — k| = ky. This combined with &, &y = 27! shows that k, = & = 2"! and hence
the spectra of f and g can take only the values 0, £2" 12 Also for each u € FJ,
exactly one of W) and Wyn) is non-zero and takes the value 2002

Let w £ .|‘:7‘”+I Then we can write w = Ow or w = lu for some w € FJ. Itis
casy Lo verfy that Wi {lu) = Weln) + Woln) and Wi(lu) = Welu) — Wolu). Smee
exactly one of We(u) and W, {n}l is non-zero and equal to :|:7“"""'*', iL ft)llthas that
Wilw) = £2" 02 forall w e F_;""'.Hunuufa 15 bent. O

Remark. Thesubfunctions f and g ha\-L non-intersecting three valued spectra and both
their non-linearities are 2~ — 2012 Thege facts are also stated in Theorems 4011)
and 3(iv) of [1]. However, the complementariness of the auto-correlation of f and g and
their perfect uncorrelatedness have not been considered in [1].

5. Propagation Characteristics

The concept of propagation characteristics was introduced by Preneel [ 11]. Later investi-
zations can be found in [3], [4] and [8]. Here we study the cross-comrelation between the
subfunctions of a function satisfying propagation characteristics. We charmclenze prop-
agation characteristics in terms of the uncorrelatedness of its subfunctions. By fy, -, and
fx.=1 we denote the (n — 1)-variable subfunctions obtained from § by setting X; 1o 0
and 1, respectively.
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Theorem 5.1.  Let f be an (n + V)-variable function. Then | satisfies PC({ + 1) if and
only if foreach 1 = i = n + 1, the pair of functions fy,—q and fy.— are uncorrelated
af degree .

Progf.  Suppose f satisfies PC{I +1). Let g = fy.—pand h = fy - andletu € Fy be
of weight {. Let v be a permutation of the vardables which interchanges X; and X, .
Let f' be the new function formed from f. Clearly, f also satsfies PC(! 4 1). Since
0 < wi{u) < I, the vector 1u € F7' is non-zero and has weight at most [ + 1. Thus
Cf-{lu}l = (). Using Corollary 4.1, we have Cf-{lu}l = ECHI,, (). Hence L'H_,, () =10,
We now prove the converse. Lel w € F‘E”’I be non-zem and have weight at most
{4+ 1. Since w £ 0, there is an i, such that w; = 1. Let g = fy—gand i = fy—.
Then from the given condition Cy5(v) = 0 for all § = wt{v) = [. Again ket 7 be a
permutation that interchanges X, and X;. Let the corresponding changes on f and w
be denoted by £ and w'. Then w' is of the form 1u forsomen € F) and 0 < wiin) < [
Then Cyiw) = CJr-{m'}l = Cp(lu) =2C, j{u) =0 O

Let f be any function defined on the domain F)'. By a dvadic shift of f{x) by u we
mean the function f{x & u). When f is a Boolean function the sum (over £ ) of fand
its dyadic shift by u is called the derivative of f at i, Propagation characteristics assures
that the derivative is balanced at all i of bounded Hamming weight. A dyadic shift of the
spectrum Wy () of F by e is the function W) defined by Wiv) = Wylu @ v). Wenext
explore the relationship between the spectra of the derivatives of & Boolean function and
the dyadic shifts in its spectrum.

Let hylx) = flx) & flx & a). We now define two matrices as follows, Let Dy
be a 2" x 2" matrix whose rows and columns are indexed by the elements of F)'. The
(o, v)th entry of Dyus Wy (). Let Ty be another 2% x 2" matnx whose rows and columns
are indexed by the elements of Fy', where the (u, vith entry of Teis Wil ) Wyl & ).
The entries of Dy are the spectral values of the dervatives of f. On the other hand, the
entries of Ty are products of the spectral values of £ with its dyadic shifts. The following
resull relates these two matrices and provides the relationship between the spectra of the
derivatives of f and the dyadic shifis of the spectraof f.

Theorem 5.2.  For any n-variable Boolean function H,T; = 2" Dy, where H, is the
Hadamard matrix of order 2.

Progf. Let g,(x) = flx &a). It is easy to verify that W () = (—1)""“'W;(u). By
Corollary 3.3, we have

1 1
W, () = . E W)W, (u & w) = = E W, ()W & w)
=~ we FE‘ b |r'F.FE:‘
1 -
= Z; (=D " W ()W & w).
weFy

The last expression is the inner product of the ath row of H, and the wth column of Ty,
Hence the result follows. O
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A consequence of the above is the following known result [6], which states that the
dyadic shifis of the spectrum of f are orthogonal 1o each other.

Corollary 5.1.  Ler | be any Boolean function. Then

Z Wilw)Wiln g w) = o it =0,

weF]

=0 if u#0.

6. Non-Linear Combining Funetions

Boolean functions are used as non-linear combining functions in LFSR-based siream ci-
phers. The outputs of several independent LESRs are combined using a Boolean function
to produce the keystream. Research in stream cipher eryptanalysis have shown that such
a function must be balanced, have high non-linearity, high resiliency and high algebraic
degree. Here we study the correlation properties of this class of Boolean functions.

In [18] the concept of maximum correlation analysis was introduced. This con-
siders the comrelation of an p-vadable function to all p-variable function which are
non-degenerate on al most m vardables. For the usual notion of correlation immunity,
correlation 1o only the linear functions are considered. The next result assures us that
if a function is m-resilient then it is uncorrelated to any subfunction on al most m
vanables,

An n-varable function f{X,, ..., X, ) is said 1o be degenerate on varable X, if the
functions

J(Xq, ..., X .Xi=0, X000, X,
and

FRen Rz n = T v Xe)

are identical. Oherwise f s said o be non-degenerate on the vanable X;.

Theorem 6.1.  Let f be an m-Cl (respectively m-resilient) function. Then Cyp () =
{1,-’2“}“’; )] H-’H {0} (respectively 'M. (0) = 0) for any n-variable function g which is
non-degenerate on at most m variables.

Pwaf. Letw e FY beavector of weight at most w such that w; = 1 if and only if g is
non-degenerate on variable X;. Then for any vector u € F)', such that w £ w, we have
gix) & {u, x} o be a balanced function and hence Wl =0. Using Corollary 3.2, we
have Cy (0} = (1/2") Z..FF{' Wilu) W, (u). Since 15 m-Cl, we have Wylu) = O for
allw & Fy' with 1 = wilu) =_f_m. Ifwiin) > m, then u £ wand hence Wolu) = (). Thus
we get Cp (00 = (1/2") W (W, (00, IF further § is balanced we have Wy () = ) and
hence Cp.,(0) = 0. O
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The Walsh Transfomm of a function f determines the correlation of the function 1o
the linear and affine functions. However, f may be comelated o non-affine functions
also. Any function g with which § has a non-zero comelation is called a correlator
of f. Suppose [ is m-resilient. This implies that the correlation of §f to any affine
function non-degenerale on al most m varables is zero. However, there is the possibility
that there exists non-affine functions non-degenerate on at most m variables 1o which f
15 cormelated. Theorem 6.1 assures us that this does not happen.

Remarks. 1. In Theorem 6.1 it is easy 1o see thatif f is not balanced, then the function
£ (non-degenerate on at most m variables) o which f is maximally comrelated is the all
zero function,

2. Let g be non-degenerate on m + 1 vardables and let w be defined from g as in
the proof of Theorem 6.1, Suppose that f is m-resilient. Then vusing the argument of
Theorem 6.1, we have Cp, () = (1/2")yWw) Wy{w). Cleary, Cp,(0) is maximum
when gix) = b & {w, x}, for b € {0, 1}. Thus the maximum correlators of an m-
resilient function with respect to any (m+ 1) variables are the two non-degenerate affine
functions on these m + 1 vanables. In fact, this is the result obtained in Theorem 3
of [18].

3. If we consider more than m + 1 varables, then the maximum comelator of an m-
resilient function need not be an affine function. As anexample, ket f{X,, X2, X5, X4, X5
= (1B XI B XM B X B PXIXNXN B X BXAl B XN B XD B
XsXq(Xy & Xa 5 Xy). The function f is l-resilient and Welw) = 0, £8, for all
TS Ff and hence the maximom correlation W affine functons s 8. However, il we
choose g (X, X0 X0, X0, X ) = o B X o B XoXa P XN\ Xy B XoXa e X Xy &
XiXa B X1 X3Xa, then C;, (0) = 16. Again if we choose g(X, X2, X3, X4, Xs5) =
Xi@Xad X @ XXXy, then Cp (00 = 12 These are the (non-affine) maximum
correlators for four and three variables, respectively.

We now concentrate on functions for which the magnitude of the non-zero spectm
values are all equal. Such functions can have at most three valued spectra. Functions of
these type are important from the cryplographic point of view. We give three examples:

1. Bent functions of n variables have two valued spectra £22,

2. Subfunctions of n variables obtained from (n + 1)-variable bent functions by
restricting any one varable to zero or one have three valued spectra: (), 220102
Such functions have been studied in[1].

3. Resilient functions of order m with maximum possible non-linearity have three
valued spectra [13].

We analyse the relation between spectrum and auto-correlation values for the above type
of functions. Given a Boolean function f, we define NZ{ f) to be a matrix whose rows
are u € F3' such that Wy in) = (0 In other words, NZ{ f) 15 a matnx whose rows are the
veclors at which the spectrum of f is non-zero. Suppose NZ{ f) is an r x n matrix, Le. r
is the number of places where W, () is non-zero. Let the magnitudes of all the non-zero
spectrum values be M. Using Parseval’s theorem we have rM” = 2%, where f is an
n-variable function. This gives r = 2% /M?, Itis clear that M has to be a power of two,
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say M = 2% Thusr = 2* % Using Corollary 3.1 we can write

1
n

C-_,f{u} - Z wf{l!}{_l}l:u.l'! L _!Ju:—.ll Z {_l}l:ll.l':'

vef] [e: W rehz

i zlk—ul Z {_l}l:ll.l':' Y 22‘):—"{2_:'"—_:'): 2 2“‘L{N2{f}url}}l
rEMNZ )

— 2!k+|—.'| “'L{NZ{I}HF}I,

where [‘~IZ{_,|F'}IJ:!‘l~ is the product of the matrix NZ{ ) and the vector u' . We summanze
the above description as

Theorem 6.2. Let f be an n-variable function for which the magnitude of the non-zero
spectral values are all equal to 2%, Then Crlu) =2" — Pt wL{INZ{ Fin T}ﬁ)r all
u £ Fj.

Remark. If u = 0, then we have Cp(0) = 2" as expected. For bent functions, k = n/2
and NZ{(f) = Fi. Hence for any non-zero u, we have wi{NZ{ fu }'} = 2! and so
Crlu) =10

An elegant recursive construction for resilient functions has been provided in [16].
A modified version of this construction has been used in [ 10] to construct functions with
the best possible radeoff among the parameters non-linearity, resiliency and algebraic
degree. We study the auw-correlation values of the functions constructed by the method
of [10]. To do that we briefly describe the construction of [ 16] as modified in [10].

The initial function 1o the recursive construction in [ 10] is a r-varable, resiliency
p function, which is formed by the concatenation of two {r — 1)-variable, resiliency
p functions f and g having non-intersecting spectra and hence perfectly uncorrelated.
The spectra of f and g are three valued: (0, £2¢2, (In [10] the initial function used is
a T-variable, resiliency 2 function that was obtained by computer search.) The method
of [10] constructs functions fi; of + + 3 variables for i = 0. The function f; 15 the
concatenation of two functions f;, g; of {{r — 1) + 3i) variables. For the base case,
fo = fand gy = g and fy is the concatenation of f and gy. The recursive construction
of firi, giyr from f;, g is the following. Let h? = X,45, @ f; and b} = X, 13 ® g1,
Define S =X Xina®hiandg ) = X i (1B X, +2+.:'I.$X]+|+3J}'I!f &
(X g 6B X,.,...,._-q,,-}lfaf. Then h; 4 is the concatenation of fi and g;;;. We have the
following result on the maximum auto-correlation value of fi; .

Theorem 6.3. Let by bethe (n = 1 +3(i + 1))-variable (i = O) function constructed
by the above described method. Then max, cry o) |Ch,,, (1) = QU= TR =1

Proaf.  The non-zeros of the spectra of f and g are the rows of the matrices NZ{ f) and
NZ{g). The matrix NZif;) is formed from NZ{ f) and NZ{g). In fact, we can provide
a recursive description of NZ(h;) for all i = 0. For this we need to introduce some

notation. Let w £ Fy and let M be an 5 * ¢ malrix of bits. Then w)| M is the s = (r+ 1)
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matrix whose rows are of the form wv, where v is arow of M. We number the columns
of M from the rght, i.e. the nghtmost is numbered 1 and the lefimost column gets the
highest numbern

The structures of NZ{ fi ), NZ(g; ) and NZ(f; ) are as follows:

F110/ NZ(f)]
. L11)| NZ( f)
NZ(fie) = | |00 Nzien
L111]|NZ(g,) ]
FO11)|NZ(f)]
) 101]| NZ( £;)
NZ(gi+) = | o111 Nz
L 101 NZ(g,) |
FO110]| NZ{ f;)]
Q111 NEZ{fi)
O110§] NZig)
0111 NZig)
LI N f7)
1111 NZ(f;)
OIINZ(fi+1) 1110)| NZ(g)
NZy < | VINEGe) || TH1IINZ ()
0]INZ(gi 1) 0011| NZ( f)
1| NZ(gis1) 0101]| NZ( f;)
Q011 NZ{g;)
0101 NZ{g;)
LTOLT|) N f7)
L101]] NZQ i)
1O11)) N&i g )
L1100 N g0 ]

Note that NZ{ i) NINZi{g ) = W, hence fi, g+ have non-intersecting spectra
and consequently are perfectly uncorrelated.

The function fi; 1 isa function of n = ¢ + 3(i 4+ 1) variables and is {p + 2{i + 1))-
resilient. From this it follows that the spectrum of A, takes only the values 2° where
k= p4+2+42{i+ 1) (sece[10] and [13]). Then the number of non-zerms of the spectrum
of by is r = 222 Let u be such that u,_; = 1 and wj = Ofor j # n— 1L
Then it is easy to see that wiNZ{h o u") = /2 + r/4. Using Theorem 6.2 we get
C,, () = 20 = 22+1=0(p 12 4 pfd) = —2"~1. Also a careful examination of the linear
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combinations of the columns of NZ{f; ) shows that there 18 no combination which
provides an absolute auto-corelation of more than 2"~ O

7. S-Boxes for Siream Ciphers

Here we consider functions with more than one output, ie. maps from £ o F3". Such
functions are called S-boxes and are mostly used in block ciphers. However, the use of
S-boxes in stream ciphers can speed up encryption/decryption in the following way. A
non-linear combining function extracts only one key bit per n bits. Use of an S-box will
mean that m = 1 bits can be extracted per n bits. Thus the use of S-boxes for stream
ciphers s an attractive proposition and has been suggested in recent papers [19], [7].
Here we carefully examine this idea and show that there are several difficulties in such
an approach.

Note that a tovial way o extract more than one bit per clock eyele 15 W increase
the number of LESRs. For example, if n LFSRs are used to obtain one bit per cycle,
then we can repeat this armngement (with different combining functions) & times o
obtlain & bits per eycle. However, imcreasing the number of LESRs will escalate the
cost of implementation. Hence the idea is 1o obtain more than one bit per clock cycle
without increasing the number of LESRs. This means that the security parameters remain
constant, but we will still be able 1o increase the speed of encryption. 1t is this approach
that we investigate here.

Let f: {0, 1} — {0, 1} be an S-box used to extract m bits from each n-bit input
provided by n LFSRs at each clock. An m-length decimation of the output key stream
will provide the sequence of bits generated by a component Boolean function of the
output of the S-box. An obvious extension of the correlation attack would be o look for
correlations between some combination of the output bits and (some linear combination
of) the input bits.

Thus we would like the cross-comrelation between an arbitrary combination of the
output and any linear combination of the input to be zero. Of course this is not possible
since it would violate Parseval’s theorem. Instead we require that any arbitrary non-tnvial
combination of the output is uncorrelated to any linear combination of input involving not
more than + vanables. Hence using Theorem 6.1, 1t 1s also uncormelated to any arbitrary
combination of the input involving not more than ¢ variables.

A class of 5-boxes called resilient functions have been studied in the lierature. An
S-box o {0, 1} — {0, 1} is said o be r-resilient if any subfunction of § obtained by
fixing at most ¢ input bits to constant is balanced. Here, by balanced we mean that every
vector in F)" occurs in the output of the subfunction the same number 277"
is known that an S-box is r-resilient if and only if every non-zero linear combination
of the component function of the output is t-resilient. However, this does not assure
that an arbitrary combination of the output is correlated to a linear combination of the
input. First we prove this form = 2. Let f: {0, 1}" — {0, 1} be an S5-box and let
g0, 11 — {0, 1} be the m-variable Boolean function. Then g o § is an n-variable
Boolean function defined by (g o fi{x) =g(fix)).

! limes. 1t

Theorem 7.1.  Let f: {0, 1}" — {0, 1} be a t-resilient function. Let g be any two-
variable Boolean function. Then g o f ist-CL
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Proof.  Let the component functions of f be fi, fa. Then fi, fr, fi & f> are n-variable,
t-resilient Boolean functions. The function gi{Xs, X)) = a & bX| B cXa G dX 1 Xa,
where a, b, c.d € {0, 1}. Without loss of generality we can take a = 0. If d = (),
then clearly g o f is f-resilient for any combinations of b and c. Thus ket d = L
If b = ¢ = 0, then the function g is the logical AND of Xy, X5. It is not dif-
ficult to verify that (—1@=PE) = (AR o 30 F(-1)A0 4 (A
{_l}flf.ﬂiﬁlle.ﬁ'}_

Hence WH._.I{H}I = _1,{2"5{u} -+ Wﬁ{u} -+ Wﬁ{u} — Wﬁiﬁﬁ{u}}, where diu) = 11l
u = 0, else it is 0. From this it follows that g o fis t-CL If b = ¢ = 1, then g is the
logical OR of X and X5, In thiscase (g o flix) = filx) v fHix) =1 & (1 F filx))
(1 frlx)).

Hence forcach u € Fy', W plu) = —%{2".’.‘?{1!} — Wy lu) — Welu) — Wygp(n)).
Again we have that g o f is +-CL

The only cases that remain to be considered are when exactly one of b or ¢ is
zero. Without loss of generlity let b =0, ¢ = 1. Then g{X2, X) = Xa(l & X;) and
{go fix)= falxed 1 fiix)). Using an argument similar 1o the logical AND case we
have g o f o ber-CL O

Remark. [tis not clear how this result can be extended when g is a function of three
or more varables. Thus it may be possible that for m = 2, some Boolean combination
of the output is comrelated to a linear combination of the input. Further, the next result
shows that the non-linearity of non-affine output combinations can be very low.

Theorem 7.2. Let f: {0, 1} — {0, 1} be a t-resilient S-box where m = 2 and
T Jw are the component n-variable Boolean functions. Then nll f; ~ f;), nll fi v
fi)=2 02 foralll =i, j =n.

Progf.  From the proof of Theorem 7.1, Winplu) = _{-{2"5{1!} + Wolu) 4+ Wein) —
Wy @) Sinee fist-resilient, wehave fi, fr, fi @ ftobe r-resilient and so Wy (0)
Wi () = Wigp(0) = 0. Hence Wy, n(0) = 21 and consequently nl( £~ f)
201 _ 222 Similarly for £ v fa.

oAl

This shows that it is possible to obtain good affine approximations of certain non-
affine output combinations and could also prove o be a potential weakness. Similar
analysis is possible for the algebric degree and the order of resiliency of Boolean
combinations of the output. Our conclusion from these results is that though extracting
more than one bit at each clock eyele is an attractive proposition, the concept needs
to be examined more closely before it can be considered secure. A suitable model for
extracting multiple bits from the n LESR bits is a future research question.

8. Conclusion

In this paper we have studied several classes of cryptographically useful Boolean func-
tions and S-boxes. Our main ool has been the Cross-Comrelation Theorem. This has
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allowed us to oblain new characterizations and explore relationships between the spec-
trum and correlation properties of a Boolean function. We have studied the possibility
of using S-boxes in LESR-based stream ciphers. Our conclusion is that currently known
constructions of S-boxes are not suitable for such applications.
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