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Searching Networks With Unrestricted Edge Costs

Parthasarathi Dasgupta, Anup K. Sen, Subhas C. Nandy, and Bhargab B. Bhattacharya, Senior Member, IEEE

Abstraci— Best-first and depth-first heuristic search algorithms
often assume underlyving search graphs with only nonnegative
edge costs and attempt to optimize simple ohjective functions.
Applicability of these algorithms to graphs with both positive
and negative edge costs is not completely studied. In this paper,
two new problems are identified: one in computational geometry
and the other in the lavout design of very large scale integrated
{VLSI) circuits. The former problem relates to a weight-balanced
hipartitioning of a given set of points in a plane. The goal of
the second problem is to find an area-balanced staircase path
in a VLSI floorplan. Formulations of these problems lead to an
interesting directed acyclic search graph with positive, zero and
negative edge costs and an objective function of general nature.
These problems are NP-hard. To solve such general problems
optimally, novel search schemes have been proposed in this paper.
Experimental results reveal the efficacy and versatility of the
proposed schemes, the depth-first scheme being the better choice.
It is shown that the classical number-partitioning problem can
also be formulated in this framework. The proposed depth-first
search (dfs) scheme is capable of handling very large numbers,
with a performance similar to the Complete Karmarkar-Karp
(CKK) algorithm.

Index Terms—Artificial intelligence (All, heuwristic search,
number partitioning, ¥LSI floor planning.

L. INTRODUCTION

EURISTIC search algorithms provide a powerful para-
Hdigm for solving computationally hard problems [14].
In this paper, we focus on solving two problems of recent
interest: 1) geometric bipartitioning of a point set and 2)
area-balanced staivcase bipartitioning of a VLST floor plan.
The former problem arises in computational geometry and the
latter is related to layout optimization of VLSI floorplans. The
geometrc bipartitioning problem attempts 1o find & monotone
path through a given set of points in a plane with a minimum
value of an objective function, where each point has an as-
sociated weight. The path 1s between two designated points
in the set and the objective functon is the difference of the
sum of weights of the points on its two sides. The goal of the
second problem, on the other band, 15 W Dind a staircase cul in
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a VLSI floorplan such that the difference of the sum of areas
of the rectangular blocks on its two sides 15 mimmum. These
problems can be shown to be NP-hard using a reduction from
the number partitioning problem [8].

Ohur attempts o solve the above two problems using heuristic
search have resulted moan interesting directed acyelic graph
(DAG) with unrestricted, e, positive, zero and negative edge
costs and a nonstandard objective function. Traditional heuristic
graph search wechmgues [ 14] vsoally assume nonnegative edge
costs and a very simple objective function. However, a mix of
positive and negabve edge costs have been considered in the
past while studying the shortest path problem [1], [2], [19].
The well-known problem of finding a critical path in an acyclic
digraph can be viewed as a shortest path problem with nega-
tive edge weights, Martelli [11] studied admissible search algo-
rithms in networks with positive and negative edge costs. Inall
the earlier works, however, the goal was to minimize the sum of
edge costs. In this paper, we develop new heurnistic search algo-
rithms for minimizing a general objective function in digraphs
with unrestricted edge costs. We study best-first search (hfs) and
depth-first search (dfy) strategies for solving the above class of
problems. These wchmgues also enhance the applicability of
other search algorithms of recent interest [18]. The proposed al-
gorithms are mplemented and run on severl random examples
and benchmarks. Empideal results are found 1o be very encour-
aging in terms of memory requirements and central processing
unit (CPU) time.

We further show that the classical number partitioning
problem [8] can be formulated as a search in a series-parallel
acyclic digraph with unrestricted edge costs, where the objec-
tive function is the ahsolute value of the sum of edge costs along
a path. Our experiments reveal that the proposed depth-first
approach performs as good as the Complete Kamarkar-Karp
(CEK) algorithm [ 10].

The rest of the paper is organized as follows. Sections 11 and
11l describe the two problems of geometrde bipatitioning and
area-balanced bipartitioning, respectively, and discuss their for-
mulations as graph search problems. In Section 1V, new heuristic
search algorithms have been proposed. Expenmental results are
given in Section V. The number partitioning is discussed in Sec-
ton VI Finally, Section VI concludes the paper.

II. GEOMETRIC BIPARTITIONING PROBLEM

This  geometric opumization  problem  has  applications
to image processing [3], facility location and plant layout
problems [16]. The formal description 1s as follows: Let 4
be a set of A points distributed arbitrarily in a rectangular
plane whose bottom-left and top-right corners are {0,141} and
vicr, 30, respectively. Without loss of generality, we assume
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{a) (b}

Fig. 1. {a) Example graph and (b} its tmnsitive reduction.

that the points & and v are members of A and for every pair of
points a; g, ) and el i) in Ay # ey and w # oy
The problem is 1o partition the plane by a set of interconnected
consecutive straight line segments {0-.1:, ... i}, from s 10
r, such that the end points of each {;, £ = 1...., &, coincide
with some points in A4 and each [, has a positive slope. Any
two consecutive segments I and ;) always share a common
point in A. The stanting point of {| and the end point of &, are s
and », respectively. The path L formed by these line segments
15 called a monotone increasing path, o shorly, a monotone
path (MFP).

Definition 1 An MPis sad o be maximal, if no other point
of A can be included it keeping the path monotone increasmng.

Let A" denote the set of points on a maximal monotone path
(MMP) L. Each point a; in A has an associated weight wia; ),
which is a real number. The goal of geometric bipartiioning is
to find a MMP L that partitions the set of points 4% A% into two
parts such that the difference of the sum of the weights of all the
points in these two parts is minimum. It can be easily verified
that the number of MMPs in a plane may be exponential in M in
the worst-case. Thus, checking every such path 1s computation-
ally intractable. However, the special case when wioa; ) = 1 for
all i+ = 1,..., 44, can be solved in polynomial time [6]. A re-
stricted version of the geometre bipartitioning problem appears
in [3], which considers only vertical and horizontal edges of a
grid graph.

A, Formulation of the Problem

The above optimization problem can be captured vusing a di-
rected acyclic search graph. Let us consider a directed graph
GOV EY with Vo= {u, | £ Aband £ = {la,u,) | G <
wgland { = oy, 1} Costs associated with the points may be
assigned to the edges of (7 through a suitable transformation
shown below. The digraph €5, defined above, is acyclic and the
vertex & (r) has indegree (outdegree) (1

Definition 2: An edge (w,,wg) in a graph & is said
to be rransitive if & also has a8 sequence of edges
l:ﬂt'- My 1 :.', —-- ima 1= flf.-:'-

Fig. | illustrates such a digraph and its transitve reduction.
Any directed path from s 1o + s cleady an MP in &, Since
we are interested in MMPs only, the transitive edges in (57 are
removed o yield the tansitive reduction Sy of & The path
=5 — 0y — 6z — ag — v 15 an MMP, whereas the path
L' 5 — ay — ag — visan MP. Given the setof points 4, the
graph (F can be constructed in G M log A F) time using

5

Fig. 2. Edge weight computation in geometric hipatitioning.

a plane-sweep technigque, where A% is the number of edges in
G,

1) Determination of Edge Weights: To  formulate the
problem, we first transform point weights to edge weights as
follows. Consider a DAG as in Fig. 2 and an edge, say (2, ug).
We draw two honzontal ines Hy and A through the points
ety and ey, respectively, up o the boundary of the floor. Let
Wilan, ag! [resp. Wilea, agl] be the sum of the weights of
the points o the left (resp. dght) of the edge (g, ;) lying
within the band defined by Hs, Hy; and the left (resp. right)
vertical boundaries of the rectangular floor. Then, the weight
of the edge (e, ) is given by [Wloa. ay) — W low. ag) | For
example, if we assume that the weight of each point is unity in
Fig. 2, then the weight of the edge {oy. a5} = =3,

Thus the weight of an edge may be a positive or a negative
real number, or zem and the geometric bipartiioning problem
reduces to that of finding a directed path L from 5 to v in the
weighted DAG G, such that the absofute value of the total
weight of all the edges along £ 18 mimmum.

II. AREA-BALANCED BIPARTITIONING IN VLSI DESIGN

An interesting problem of VLS layout design is the staircase
area-balanced partitioning problem [12], [13]. A VLSI floor
plan [17] consists of a bounding rectangle that is divided into
nonoverdapping smaller rectangles by a sequence of 1sothetic
(axis-parallel) line segments, called cutfines. Each cutline splits
a floor plan into two subfloorplans. A rectangle which has not
been divided is called a block. A floorplan is sficing if it is ei-
ther a block or there 15 a single cuthine (sfice) that partitions the
enclosing rectangle into two shicing floomplans. Each block 1s
a circuit module, whereas cutlines represent muling spaces or
channels. Floomplans that are not shicing are called nonslicing
i Fig. 3). For the convenience of routing, the channels are routed
following certain order called the safe (cvele-free) rowting order.
For slicing floorplans, a safe routing order exists, whereas for
nonslicing floorplans, no such order is possible. However, if
the channel definition is generalized 10 staimase (monotone in-
creasing) chamnels, then both the problems of hierarchical de-
composition and that of finding a safe routing order can be
solved for nonslicing floorplans. The utility of staircase chan-
nels as genembized routing regions has been reported n [7] and
[12].

The area-balanced bipartitioning proflem can be descnbed
as follows: given a floorplan with rectangular modules, find a
staircase path through the cutline segments from one corner of
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the floor to its diagonally opposite corner, that partitions the set
of modules inw two halves with minimum difference of areas.
This problem has been shown to be NP-hard [13]. However, if
the objective is to minimize the difference of number of blocks
on two sides of the partition, then the problem can be solved in
linear ume [6].

An example of area-balanced bipartition for a benchmark
problem from [20], is shown in Fig. 3. The area of each block is
denoted by the number on the corresponding block.

A, Formulation of the Problem

A floorplan & can be represented by a DAG 7 with T -junc-
tons as the vertices and cuthne segments as directed edges
which are oriented in either from left to rght, or from bottom
to top. Therefore, all directed paths in (7 from the bottom-left
corner 0o the top-right corner are maximal monotone. Further,
let us consider Fig. 4 where the ¥-juncuons (circular nodes)
are the red points and the centers of the rectangular blocks
(rectangular nodes) are the blue pomnts. With each blue point,
we associate a weight equal to the area of that block. In the
graph &'p, red points are the vertices and the computation
of edge costs is similar to that of Section 1l The number of
possible MMPs in a floorplan may also be exponentially large.

The area-balanced ipartitioning problem can now be restated
as follows: given asetof points of two colors (say, red and blue ),
find an MMP that passes through the red points and partitions
the set of blue points into two equal weighted subsets. Thus, the
problem here is to find a directed path in (g between the two
vertices corresponding to the opposite comers of the floorplan,
such that the absolute valwe of the sum of edge weights along
the path is minimum.

IV. PROPOSED GRAPH SEARCH METHODS

In this sectuon, we develop search methods noan arbitrary
directed acyelic graph & with unrestricted edge costs. We as-
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Fig. 5. {a) Search graph and {b) its equivalent tree.

sume that the search graph 7 has Vo vertces and £ edges. It
has two designated nodes—sowrre (=) and goal (v). A pathin &
is a sequence of consecutive vertices in 5, whose start and end
vertices are different. We assume that the goal node » is reach-
able from every other node of (. We define a sofution path in
€r as a path in & from 4 o » The cost of a path is the alge-
braic sum of the edge costs along the path. If the edge costs are
unrestricted, the cost of a path may be either positive, or nega-
tive, or zero. For both the problems stated above, the objective
15 1o find a solution path from s w + with minimum absolute
caoxt. The existing heuristic search algorithms [14], [15] cannot
be directly applied to solve this problem. Hence, every solution
path may have to be examined completely o find the optimal
ong becavuse a nonpromising path atany stage of the search may
turn into a promising onge later. Even ina tree search space, the
first solution obtained by A* algorithm may be suboptimal. A
graph-search space further complicates the siwation. No path
can be discarded since the evaluation function is not order pre-
serving [15]. In [11], it is shown that the A* algorithm without
heuristic estimates may expand an exponential number of nodes
for search graphs with negative edge costs and sum-cost objec-
tive function.

A. Maotivation of the Proposed Methods

In the graph search problems presented above, the objective
function is nonadditive and nonmonotonic [ 13]. The cumulative
cost along a path may vary in an arbitrary manner. Hence, no
path can be discarded during the progress of the search.

For instance, consider the graph & shown in Fig. 5(a). There
are two paths from node = 1o the node m. The absolute cost of
the path & — g — vre 18 2 and that of the path 8 — o — 1S
4. However, the path $ —+ o — 1 cannot be discarded because
the optimal solution path 18 3 — o — m — v

Now, let us consider the tree search space [Fig. 5(b)], corre-
sponding to the graph of Fig. 5(a). The absolute cost at node n’
is 4. However, the optimal path from s to + passes through e’
and its cost is 0. Here, bfs never selects the node w2’ for expan-
sion smee the currently known best solution 15 observed in the
path & — p — w® — + with absolute cost 2. dfy prunes the
path s — & — m’ since the current upper bound set by the path
s — p— " — vis 2 and, in tum, misses o report the optimal
solution path. Exhavsuve search certanly yields the optimal so-
lution, but it is extremely time consuming and almost imprac-
tical as the number of paths may be exponental in the number of
nodes in the search graph. In the next two sections, two different
approaches based on &fy and dfs paradigms are presented. Both
have their respectuve advantages and disadvantages [14], [15].
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B. Preliminaries

Given a node wn €7, several solution paths may pass through
it and the one with minmmum absolute cost will be termed as the
optimal sedution path through . The corresponding absolute
cost is denoted by fop. (0.

The maost promising sedution path through a node » at an in-
stant 15 the currently known best solution path through o, e,
ong with minimum absolute cost. Let f{n} denote this absolute
cosk.

For a node »n in €7, g{n, ) is the sum of costs of the edges
from » o n along a path I, Consider a node v in & There may
exist several paths from Lo the goal node », cach one having
an associated cost. Let I{n) and «{n} denote the minimum and
the maximum values of all these costs.

Let fiawin, £ = gin FF ) and fuipnin, B =
gin, Dohv4uind. Thus, . (e T30 and (e, 550 provide the
lower and upper bounds, respectively, on the actual costs of the
solution paths through = having F) as the mital path segment.

Let [, I denote the absolute cost of the currently known
maost promising solution path through o having B as the mitial
path segment. Henceforth, this will also be referred o as the
F-value. Now, two different situations may arise.

1) e e, ) and fygun (e, %) are of the same sign.

2) St 51 and friani i, 250 different signs.

In the former case, the node xois said 1o be informed along path
I while in the latter case, it is said 1o be blind along that path.
Lemma 1:
a) If a node n is found to be informed along a path I, the
minimum absolute cost among all paths baving mmital
path segment P, will be

Flo, Iy fredn, B, i foetn, I =100

= | frsgnln B [;4€ hosln By < 1

by If v is blind, the cost of the path from s to v with initial
path segment & and having minimuom absolute cost, will

lie in the range [ flo. (550 fuen e, )
Proaf: Clear from definitions. ]

If & node » is found to be blind along a path F,, Lemma 1
cannot uniquely determine §v, I So, weset [in, 1) =Uin
this case.

Al an instant, f{n) is the minimum of e, 53 )s for all s
explored up to that instant. Let 2™ be the initial path segment
having absolute cost fin). Since the edge costs may be negative,
Pis s not set with the least cost path from s to 1. We define
qind = g{n, ™" and call it as g-vafue of node n. Note that,
the path of minimum absolute cost from a node 1o a goal has no
a priovi significance for finding the optimal solution path.

C. Best-First Search (bfs) Method

We first discuss the by approach based on algorthm A" [14],
[15] and name it 5 A"

The proposed algorithm N A" uses two lists, (PEN and
CLOSED. The algorithm stans with node ¢ i OPEN and
keeping CLOSED emply. At every instant, the currently known
best node (having minimum g-valuwe) is selected from OPEN
and put in CLOSED. The selected node 15 expanded and new

successors, if any, are added o OPEN. Al each node n in
COPEN and CLOSED, N A" maintains a currently accumulated
cost g0, £, two bounds #in) and win and an absolute cost
Fln, £ where & is g path in the search graph.

A preprocessing procedure caleulates #0001 and ulw! in a
bottom-up manner starting from the node + and it takes OFE)
time, where £ is the number of edges in the graph.

The search starts from the source node s and proceeds in
a best-first manner. For our definitions of blind and informed
nodes, we have the following result.

Lemma2: An informed node along asolution path will never
have a blind successor along that path.

Proaf: Letn be an informed node on a solution path £ and
n' be a successor of node n. As « s informed, fi..-(n, P and
Juigu (e, PP} are of the same sign. Now, consider the following
mnequalities:

) Flnd = fn") + eln, v and win) = win’) + e{n, vl

2) fewin'. FY=agin, P14 eln,n’) HE01 2 fLeln. P

3 fuadn’ P = gl Piteln, ni+uln’) € flaie. 2.

If fiwin, &) and  fiadn, £ are both positive, then
Jiewin®, ) = 0 [using inequality 2)] and fuenin’, ) =
Sl i, 0 =0

Stmilarly, if fiw(n, P) and fiiin, F) oare both negative,
then fyienin', £1 < 0 [using inequality 3)] and ). [n', P <
Jusu (7', '} < 0. Hence the proof. [ |

Lemma 3: The successor of a blind node along a solution
path must be either informed or blind.

Proaf: Follows from the fact that only r (goal node) has
no successor and « is informed along all paths from =, [ |

The computation of two bounds, £{n) and win) is described
in the procedure preprocess. Al every instant, N A" selecs a
node m from QPEN with minimum fn). In the case of ties,
priorty is given o an informed node. Otherwise, the one at a
higher depth is selected. During execution, a path Iy 1o a node
is discarded in &A%, when an altemative path & is obtained
and fim. Fob < fin, F) Like A7, in this case also, a node
may be expanded more than once.

In & A® algorithm, a global variable 7 is used o store the
absolute cost of the currently known best solution path. The
value of I is set to x: al the beginning; it is resel whenever
an informed node w with fin) < I is found. F thus decreases
in a step-wise fashion. An ordered list of nodes, called outpath,
is globally maintained that represents the path segment from the
start node # o e of the currently known best solution path. The
search terminates when a node » with fin) = F is selected for
expansion. [ s not the goal node v, outpath contains the initial
path segment (i.e., from s o the node n) of the optimum path.
The path from # 1o the goal nore + is determined as follows.

We use Lemma 2 to compute the fi..{n', I*) or (e, I
for each successor «' of n, depending on whether fi,., (n, /)
[ fuignin’, £l is positive or negative. By Lemma 2, all these
successors will be informed and their suceessors will again be
informed and soon. In order o proceed along the optimum path
from the node n we choose the successor n* such that

Frow(n® B = Floe (1 £ Iﬁ,,.,,.lf;fl_, Fio= i
_."],;ghl;u*,i",'l =_||-]_|_i_g]1'i'l".1i-’_:|1 if o (e, I3 <2 D0

The process continues until the goal node + 15 reached.
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A formal description of the algorthm is presented as follows.

Algorithm M4
input: A directed graph & having positiwve and
negative edge costs.
cutput: A path of minimum absolute cost in the
given graph between nodes s and r.
begin
MAPEN ks R — g
for every node n ¢ r do begin I{n) = oo; win) =
i end;
preprocess(s);
M= oo putpath = & f.'f-*‘_l t=1; state(s) !'= blind;
if £18} and wis) are of same sign then begin

Fro— fisd i wind| ad || wiad 1;

state(s) '— informed; outpath :— {s};
end;
else begin

Fisp:— fios wi—s; put » in CLOSED;
while fin)} < F do
for sach successor ' of » do begin
g il 4 el
New =0 L8000 Juicni= g |oafn’);
if fi and f,. are of same sign then
baegin (*n’' is informed *}
Fr=nunf| Fow || fron |17 state = informed;
if F = I’ then begin
fH s OH
o il = pithis ') by tracing backward
pointers;
end;
end;

else begin (*wx’ iz blind "}

Fr—1b; state :— blind

end;

if (' g OPEN and o ¢ OLOWED
then begin

il i=ae Tin' = shafeln') o= slals

put »' in OFEN;
direct backward pointer from n' to n;
end;
else if in' & QKN or onf
and (f(w') = f} then

bagin

= CLNsED

gl = g; fin'i:=F; statein'):=state;
redirect backward pointer from n»' to i}
if »' € CLOSED then

remove 1’ from CLOSED and put «' in OPEN;
end;
end;
select a node n from OFEN with minimom fiwh;

resolve ties in the order of a goal node, in

formed node, or a node at a higher depth
endwhile;
end
output # as the solution cost;
oputput solution path from cutpath by tracing
if anvy,

the remaining path, to goal;

end .
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TABLE 1
EXAMPLE ILLUSTRATING EXECUTION OF % 4°
Steps T o ¥ 1 ) i
Nodes
Tty m 00
2 =50 | =30,k
s =Tl =70,k =T.0,b
L =40,k =40,k =5, b =5,0,b
LT =11,15, =12,16,i
e -EE:I‘E.l -Q.ﬂ,lﬂs,l
Ny 5,1, 6,01
ny 4,6, "E"Ef:’
M -4,10,0 -5,9,
10 6,21,
F o E=) 3 i 1 1]
nutpath [\ [\ [ [ ATLpTLILY -] Engtig iy

Frocedure preprocess (nods @ o)

begin
if n has no successor then begin £(mn) = 0;
Wiwh = 0; end;

for every successor o of n do begin

preprocess  (1,);
LT (1 T R B N B S o ST
RN I TTER |.'|"'rr_::r'l:_.'.':_ nwy |.:I:'rr_.-:l_!;
end;
end;

1) Exampfe 1: We now illustrate the algorithm ¥ .A4*
through an example. The term expheit graph at an instant
means the part of the graph explored so far by &% A,

Consider the digraph &7 in Fig. 6. There are 13 nodes
Thpwfea, oo, rigg o the graph. The start node 15 ¢ ng ) oand
the goal node is #{= w3} Edge costs are shown beside the
edges and the bounds are shown beside every node as a pair
(£0.1, w1, Table 1 summarizes the stepwise execution of V.4*
for this graph. Rows of the whle correspond to the nodes of 7
and colurmns correspond o execution steps. Each entry in the
table gives the g-value, [-value and the state (b means blind, «
means informed) of the corresponding node at the concerned
mstant. An underscored entry represents a node (in the OFPEN
list) which 1s selected for expansion and a bold entry indicates
a node (in the CLOSED List) which has just been expanded. An
ordinary entry represents a node, which 1s generated and placed
in OPEN; a blank cell indicates no change in the status of the
corresponding node 15 made at that instant.

Nodes not in the explicit graph are not shown in Table L
Two additional rows are used to show the values of I" and our-
path at different instances. The total number of nodes expanded
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Fig. 7. Explicit search graphs.

and generated in this graph are sixoand ten, respectively. Node
ree is expanded twice. At instant 1, the value of [ s 0o; & is
selected for expansion as it is blind and owtpath is ¢. When
g gets expanded, nodes vp and neg are added o OPEN with
fingd = fing) = 0 gina) = 3 ging) = 7 and both ng
and rz are in the blind state. Assume s 15 selected next for ex-
pansion; the choice 1s arbitrary as both v and g are at the same
depth. & A" proceeds in this manner and #' remains oo until a
node of the explicit graph is found to be informed. AL step 4, 14
15 expanded and the nodes yi;. g, iy, g and iy are inserted in
OPEN. All these successors of ruy are in informed state; so s
reset ol [_."{?!TJ = 1) and outpath now contains {H,'fn’-:: My T:',T}
in this order [see Fig, 7(a); outpath 15 shown in bold]. Smee there
is still some node in OPEN with f-value < F. N A" must ex-
amine them before deciding the optimal path segment. S0, ng
gets expanded at the next instant. & A" terminates when the in-
formed node 17 is selected for expansion with J{nz ) < 8 Now,
outpath contains {4, nay, 7,07 b as the initial segment of the op-
timal path and the optimal cost 15 0. On terminaton, the explicit
graph s shown in Fig. 7(b).

2) Properties of N A% We now prove some additonal prop-
erties of N 1*.

Lemma 4: Al any instant, fin) for a node n is the least
among the absolute costs of all the currently known paths
through .

Proaf: We refer to the formal description of N A" If n
15 blind, the result s obvious. Assume » 15 informed and s
reached along a different path. Lrespective of whether n is in
OPEN or CLOSED | [in]) is resetto the f-valwe computed along
the path, if it is lower. ]

Lemma 5: Each solution path in €5 has at least one informed
node.

FProaf: Since cach solution path in (7 must lerminale at
eoal node v and v is always informed, the claim follows. [ ]

Remark 1: The costs of all informed nodes along a solu-
tion path are same.

Lemma 6: AL any stage before &A1Y terminates, there is a
node n in OPEN such that fin) = f.isl

Proaf: Al any stage before &A™ terminates, GPEN con-
tains al least one node from every solution path. Consider the
solution path P that determines the value of £, {+) and a node
#ion that path which 15 in QFEN . The node » may either be
blind or informed. In the former case, f{n) = 0 and inthe latter
case, fin)  Flwd = fup(e) (by Lemmas 4 and 5). ]

Lemma 7: Algorthm &7 terminates al goal node .

FProaf: Smee by Lemma 6, OFPEN always contains a node
mosuch that find = fia(s) a failure exit is impossible. Each
solution path in €7 has a finite cost since (7 is a directed acyclic
eraph and is finite. [ ]

Role of I': A simple b strategy would be to select the node
i with minimum value of f{x} from OPEN in turn untl the
eoal is reached. 1t does not consider the current value of I". We
now show that it does not guarantee an optimal solution. The
following example indicates that it is not so. Consider a node
w reached along a path PP and observed o be informed. Al a
latter instant, the same node is reached along a different path
P, and is observed to be blind. Now, the cost of a blind node is
less than or equal to that of an informed node. Thus o will now
be explored along #; and its earber cosl 1s nol remembered. At
a later stage. during the search along I, an informed node is
reached. The cost of this informed node may be higher than the
cost obtained at node n along path P Thus, the optimal cost is
not guaranteed. Thus o ensure the optimality, an upper bound
£ on the optimal cost is revised each time an informed node of
lower cost 15 obtained.

Theorem [: The algorithm VA" always outputs the path
having optimum absolute cost, on Lemination.

FProaf: [By contradiction] Let us assume that the solution
path obtained by & A" 15 not optimal. AL any instant befone ter-
mination, P EN contains at least one node from every solution
path. The nodes in OPEN may be either blind or informed. If
this node 1s blind, it will be expanded. Thus, as the search graph
is acyclic and finite, one informed node from the optimal solu-
tion path must appear in GPEN. The cost of this node is smaller
and by our assumption, it will be selected later, which 1s impos-
sible. [ |

Remark 2:

1y If edge weights are all nonnegative, the proposed VA*
algorithm terminates in £ ¥ 2} time in the worst case and
can be viewed as a general form of Dijkstra’s uniform cost
method [3].
2y For the standard additive cost function with unrestricted
edge weights, VA* again finds the optimal path in
€3{ &*} ume in the worst-case if the graph does not have
any cycle. Asin 1), VA" only needs the lower bound for
every explored node and it explomes a node at most once.
Inalgorithm & A*, the number of changes in the parameter £
is al most equal to the number of informed nodes in the search
eraph &, By Lemma 4, each solution path in ¢ has at least one
informed node. As the number of solution paths in €5 s expo-
nential in the worst case, we have the following observation.

Remark 3: The number of nodes expanded by & A" may

be exponential in the worst-case.

D Depth-First Search (dfs) Method

Lo this section, an alternative method called depth-first branch
& bound for graphs with negative arc costs (NDFBB) is de-
scribed. 1t is based on depth-first branch-and-bound technigue
(DFBB). The core of this algonthm is a recursive procedure
SOLVE (s, g) which is used 1o explore the graph in a depth-first
mannéer. The parameter no1s an intermediate node and g 15 the
costof the current path from the start node # to the node n. Asin
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the case of DFBB method, an upper bound {744 of the absolute
cost 15 used m oour algorithm. The algorithm starts by calling
SOLVE (2,0). The procedure SOLVE (. |, ) explomres the suc-
cessors of 2 in a depth-first manner by recursively calling itself.
The downward movement along a path s controlled by an upper
bound I75, a lower bound L2 and the absolute cost of the cur-
renty known most promising path through the explored nodes.
Usually, LE is set 1o 0. However, it can be sel 1o some positive
high value based on some a priori knowledge of the problem
domain. In that case search terminates faster.

As in the previous case, each node w of the graph has two
bounds #in) and w{n). Initially, they are set to o and —oo,
respectively, for all nodes except for » for which these are set
Lo (.

In this case, since the search graph 15 a wree, there exists
only one path from = to any node ». Thus, f(n) = fin, F),
gl = gin. 143, Moreover, for simplicity, we will use the nota-
Hons fo. (o) and frg,10n) for feede, 5 and e (e ) ore-
spectively. The search starts from the source node s and pro-
ceeds in a depth-first manner. Let n be the current node under
processing and is reached from & along a path ' with a cost g.
It computes fiw il = g+ £n) and fiiaie! = g 4+ win) and
then fin) = min{| fimin) |.| fuenin) |} which is used to
reset T B o minf f{vn), I7B) during the search. In case I7B is
updated, the path # s stored 1nan army outpaih.

Lemmas 2 and 3 suggest that if node » is informed along a
path I*, each of ils successors will also be informed along the
same path and have the same F-value.

If » is found o be blind along #7 and the updated value of
7B is equal to LB, there is no need 1o explore further. Thus, if
ne is found to be blind along &, the successors of nare explored
recursively until {78 = LB or some informed node is reached.
On termination, I B will contain the minimum value of f{n),
considering all nodes » of the graph, i.e., the oplimum value of
the absolute cost. The optimum solution path is oblained from
outpath.

The algorithm NDFBB is described as follows.

Algorithm NOFEE
begin
= ooy LB =N
SOLVE (%,0);

output I'M} az the zolution cost;
let cutpath contain a path from node » to an in
cermediate node n;
begin
trace the remaining path from » to r and de

note it by rempach;

output the concatenation of cutpath and rem
path as the optimal path;
end;

end.

Procedure SO0LVE (node: n, cost: gl

begin
push » in STACK;
if U8B = LB then prepare cutpath by popping the
STROK;

if

return;

(0= L oand e ois informed) then begin
prepare cutpath by popping the 5TACE;
end;

return;
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E12,1% -
o,

n, ! o,
(hCL LD [
Fig. 8. Snapshot of our depth-first search {dfs) algon thm.
if ({'F > LB and i iz blind) then
(* fiowln; and fu;. (1) cannot give the absolute
cost of the optimal path passing through w®)
begin
for every successor n, of n de
bagin
FleIn =g —ain i —Ffln:l;
Shienimd =g el b oviv g
Fiwsdomind Fuuims fuaadn 10
if fin,) < L'D then
bagin
L = Fingi;
aptpndh = the contents of S5TACK along
with n,;
end;
SOLVE (n:og | afn vl
end;
if (bounds of n are not yet defined) then
bagin
Flnd i min(finl el n ] 4+ Cngl;
wied = wax{fln} ol | owin:d);
end;
end;
pop the STACK; return;
end;

Theprem 2: The algorithm NDFBE terminates and always
outputs the path having optimal cost.
Proaf: Since we are dealing with finite acyclic graphs, the
algorithm must terminate. The second part of the proof follows
from the formal description of NDFBB. [ ]

E. Example 2

We now explam the algorithm with an example. Consider the
graphin Fig. 8. Ithas 12 nodes &, g, 0 - i, ... Do, 1, 1o edges
and ten paths from s o v, The edge weights are shown besude the
edges and values of £0n) and uln} for cach node v are shown
along with the nodes. The optimal path s shown with thick lines
and has absolute cost zero. We now explain the execution sweps
of the algorithm.

Initially = is explored and {78 and £03 are set to the winf
Al || uis? | and O, respectively.

One of the successors of 2, say ny, is then expanded. The
procedure SOLVE() recursively explores along the path & —
g oo g and finds that node s 1s mfomed. 1L sets (78
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TABLE 1l
SUMMARY OF RESULTS Fok GEOMETRIC BIFARTITIONING
Txamples | & vertices | Av. absolute WDOFED Y
cost Ax. nodes Av. U] Av. nodes Av. TP
generated | time (secs.) | generated | time (gecs.}

Ex1 ol .00 LHNE] 000015 148.35 0.00048
EX2 104 0.00 104,17 0.0024 403.53 0.00146
EX3 150 0.00 155,22 0.0011 7925 0.00316
EX4 200 0.00 204.99 0.00185 1155.92 0.00533
EX3 260 0.00 255.8 0.0019 1654.16 0.00813
EX6 300 0.00 305.35 0.0022 2222.63 0.0115
EXT 350 .00 357.52 0.0024 2583.81 0.0156
EXS 404 0.00 408.04 0.002% 360852 0.0201
EX% 450 0.00 456.91 0.0031 443646 0.0254
EX10 500 0.00 510,48 0.0035 532753 0.0312
EX11 05} .00 610,16 00045 T359.18 0.0447
EX12 804 0.00 B816.82 0.008 12411.37 0.0716
EX13 1000 0.00 1014.42 4.012 15306.81 0.1181
EXli4 G000 .00 4562.25 0.042 19123.1 1.2522
EXI1i5 100040 .00 9218.12 0.095 24256.72 13.56
EX16 150040 0.00 14123.66 .133 J0123.74 147.12

to the value of the absolute cost of the path with initial segment
& — my — e — nig, which s equal o 1.

Since UF = LA, the algordthm backiracks to nz and ex-
plores its successor n;. Node ny, is observed informed with ab-
solute cost = 10,

As LA <2 10, 1018 not updated. The algorithm backtracks o
no and explores n-.. Node o, o1s again observed infommed with
absolute cost = (L

Nowy L0015 updated o 0 and the algonthm terminates. Cur-
rently, outpath conlams & — ng — 1z — vy From g il
reaches » through the path ne — ng — o+ Thus, the eported
optimal path is & — 7y — ne — 0y — 1 — ¢, with absolute
cost = (),

V. EXPERIMENTAL RESULTS

We have implemented both the algorithms & A* and NDFBB
i 7 on a DEC Alphastation 250 running at 266 MHz clock
rate. Experiments are performed on vadous randomly generated
problem istances. The average CPU tme and average number
of nodes generated are observed for 100 different instances of
each of the examples.

In the mmplementation of &A%, the OPEN hist s carefully
implemented as a prority quewe. For each node, a bit s used
which 1s set 1o 0 or 1 depending on the node being in OFEN or
in CLOSED. The bounds are observed to be very sharp so as 1o
prune off most of the nonpromising nodes.

For geometric bipatitioning, & .1~ is found 1o be relatively
slow and the number of nodes expanded 15 guite high. For
area-balanced bipartition, both the algorithms pedonm almost
equally well.

A. Geometric Bipartitioning

For each problem instance, M points are first generated in a
plane rectangular region K. The DAG is created using a plane
sweep technigque. All pairs of points satisfying monotonicity and
nontransitivity relaton are connected by directed edges. The
left-bottom and night-top comers are assumed o be the source
and the goal nodes respecuvely of the graph. The weight of
each node (a real number) is generated using a uniform random

number generator. Edge weights are then computed as in Sec-
tion 11 by sweeping a horizontal line from the bottom boundary
of K o its top.

Performances for both NDFBB and N " are reported in
Table I for A varying from 50 o 15000, For &¥A47, the
number of node generations and CPU tme, are much higher
compared to those of NDFEB.

B. Awa-Balanced Bipartitioning in VLS Flooplans

We have considered a benchmark floomplan [20] with 24
blocks and some randomly generated floomplans with number of
blocks rnging from 60 to 400. Area of each block is generated
using a uniform random number generator. For testing the
performance of the proposed algorithm we have scaled up the
area values Lo order of 105, Results are summarized in Table 111
Interestingly, for all the examples, the nodes generated by dfs 15
larger than that by &5, though the CPU times are comparable.

V1. APPLICATION OF PROPOSED SCHEMES TO
MNUMBER PARTITIONING

Number paritioning 15 a well-known NP-complete problem
[8]. Its corresponding NP-hard optimization problem may be
stated as follows.

Instance: A finite set < of positive numbers, ey, iy, . .
=9 |=2

Output: A patition (4:. A:) of A(4; U 4, = A
is such that A £ o, Aa #F o ANy = & oand
| Zn,:cA_ 05 = 2 onr.d, B | 15 minimum.

The number-parttoning problem 1s hard, in theory as well

sl

as in practice. Special purpose heurstics are known for this
problem. e.g.. the method by Karmarkar and Karp [9]. Subse-
quently, Korf reported an optimal solution technigque called the
Complete Karmarkar-Karp (CKK) algonthm using branch and
bound [10].

A. Formulation of the Problem

Number parttioning problem can be mapped o a search
problem in graphs with unrestneted edge costs. Without loss of
generality, we consider partitioning of a set of integers. Let i
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TABLE 11
SUMMARY OF RESULTS FOR AREA-BALANCED BIPARTITIONING
Examples | # Blocks | Av. ahenlute NDOFRE MAT
ot AY. Todes Av, UPL AY, nodes Ay, CPL
generated | time (secs.) | penerated | time [secs.)
EX1720] 24 18 Ta 0.00000H2 24 0.00MKIDS
EX! 60 36833 a7 0000011 25 D.O0RI005
EX2 70 58350 140 00000011 31 [ OORIN0S
EX3 &0 T4292 164 00000015 41t ChOMMHIO LS
EXh a0 36837 342 0.00000H 164 0. ({0a02
EXE L0 ZHEZ0 235 0000003 i {.[Haan1
EXTY 1) 47240 647 LG0T 231 {1 HHI00201
EX8 173 254954 Sl 0.0000085 44 1.0002
] 200 R332 363 0.0000085 44 LINL LA EE T
Ex10 250 2HLE6 1319 0.00003 628 0. H0a03 14
EX11 350 1476 1317 0.000052 421 0. {0035
EX12 400 105835 266 (LOQOMIA2 173 . N00GT1
TABLE 1V
SUMMARY OF RESULTS FOR NUMBER PARTITIONING (10'7)
Example | # numbers | Av. difference NDFHR NA®
pattitioned Av. #F nodee Av. CFUT Av, #F nodes Av. CFU
generated Kime (secs.) generated time (secs.)
NP1 0 S1841168.46 16.76 DM 968G 0.
NP2 20 TOZIT.G5 13047 8 D.Q0ML 4112064 D527
NP3 an TH82 HEZROAZ 32 D.Q0H 54 28061223 420,14
NP4 40 0.47 9413766287 00045 H6113214.34 942,11
NFD a0 0.63 102354.97 0000035 X x
NI'E G0 0.43 9023148.15 000003 i *
NET 70 0.49 0594.87 00025 . .
NPH 10 047 HO6.95 (LOMET * *
NPG 125 0.40 197.44 D.000LT ¥ %
NI*11 L0 0.43 158,34 D.Q00MLE ¥ ¥
NI*11 175 0.54 17176 0,000 * *
NFP12 200 .56 195,38 000031 * .
* extremely large number of nodes and CPT time
=4 s Hin tentative decision on the relative positions of a subset of num-
P o bers of the input set. The numbers to be considered are always
z 3 o preserved in descending order.
a dy [ 5

Fig. 9. Grph model for the number partitioni ng problem.

be the number of mtegers having elements «a;, ¢ L. oo
The set of numbers 15 0 be partitioned into two disjoint subsels
such that the difference of the individual sums of the two
subsels 1% minimum.

We construct a graph with nodes linearly ordered as shown in
Fig. 9; the source node s = and the goal node 1s ». Each pair
of nodes (+,% | 1) & = 1....,% 15 connected with two di-
rected edges having costs o, and —a, |, respectively. Ina solution
path, all the edges having positive costs will form one subset;
the ¢dges having negative costs will form the other subset. The
absolute value of the sum of the costs of all the edges along a
solution path gives the difference of the sums of the numbers in
the two subsets. Hence, the number partitionmg problem can be
solved by linding a path from s o v o this graph with min-
imum absolute cost.

B. Empirical Qbservations

A parameler &, giving the moge of the random integers is
used. The value of re s varied from 10 1w 200 and I, 1s varied
from O to 10 llion. A node in the search tree comesponds o a

The proposed dfs algorthm for this problem terminates when
the value of {4115 0 or 1. Such cases are called perfect parti-
tions [10]. In NDFBB, the descending order of the numbers to
be partitioned is always maintained, considering (i, ) along
path & from # tox for anintermediate node « as one of the
numbers participating in the parttioning. If, for some node o,
gim, £ is less than the remaining numbers and the descending
order is disturbed, the problem is reconstructed, placing g, )
in the right place in the set of numbers. Results oblamed are as
zood as those observed using Korf™s implementation in terms of
the optmal partition value and the number of nodes generated.
We could also optimally partition 40 48-bit double precision -
tegers ina tme of about 20 min.

The results obtained for random integers in the range of 104
are shown in Table 1V, The number of integers w0 be partitioned
is assumed 1o be within a range from 100 200. The consolidated
results for NDFEBE appears in Fig. 10, Each data point is com-
puted based on the average of 100 mndom problem instances.
The horzontal axis shows the number of mtegers o be parti-
tioned. For the continuouws curve, the vertical axis represents the
number of nodes generated, while for the dotled curve, it repre-
sents the average absolute cost of the solution.

It 1s mteresting 1o note that the trends observed in our graph-
ical mepresentation are similar o those of Korf™s [10]. &A%,
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Fig. 1.  Nodes generated for optimal partitioning of 10-di git integers,

however, quickly exhausts memory. For more than 40 integers,
NA" s unable 0 reach a solution within a reasonable amount
of CPU time.

VIL CONCLUSION

The main contribution of this paper is to demonstrate the need
of new search algorthms o solve practical problems, where
edge costs in the search graph are unrestneted and the objec-
tive function is of more general nature. These problems arise in
computational geometry and VLS layout design. The classical
number partitioning problem can also be formulated as a spe-
cial case in this framework. Novel heunistic search algorithms
are developed for solving such general problems. The proposed
methods are guaranteed o terminate with the optimum solution.
Further theoretical and experdmental siudies are needed for eval-
uating efficacy of these algorithms w other similar problems of
mterest.
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