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Some Novel Classifiers Designed Using Prototypes
Extracted by a New Scheme Based on Self-Organizing
Feature Map
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Abstraci—We propose two new comprehensive schemes for
designing prototype-hased classifiers. The scheme addresses all
major issues (number of prototypes, generation of prototypes,
and utilization of the prototypes) involved in the design of a
prototype-hased classifier. First we use Kohonen's self-organizing
feature map (SOFM) algorithm to produce a minimum number
{equal to the number of classes) of initial prototypes. Then
we use a dynamic prototype generation and tuning algorithm
(DYNAGEN) involving merging, splitting, deleting, and retraining
of the prototypes to generate an adeguate number of useful
prototypes. These prototypes are used to design a “l1 nearest
multiple prototype (1-NMP)*" classifier. Though the classifier
performs guite well, it cannot reasonably deal with large variation
of variance among the data from different classes. To overcome
this deficiency we design a “1 most similar prototype ( 1-MSPY”
classifier. We use the prototypes generated by the SOFM-hased
DYNAGEN algorithm and associate with each of them a zone of
influence. A norm (Euclidean)-induced similarity measure is used
for this. The prototy pes and their zones of influence are fine-tuned
by minimizing an error function. Both classifiers are trained and
tested using several data sets, and a consistent improvement in
performance of the latter over the former has heen ohserved.
We also compared our classifiers with some benchmark results
available in the literature.

Index Terms—Dynamic prototype generation, nearest neighbor
(NN} classifier, prototype-based classifier, self-organizing feature
map (SOFM).

L. INTRODUCTION

CLASSIFIER designed from a data set ¥ {x e

Li.oo,mx © R} can be defined as a function
DR — Nowhere Vo = {egli= 1, ..., ey £ M} isthe
set of label vectors, g is the number of features, and o 15 the
number of classes. If T is a fuzzy classifier, then ¢;; = 0 and
E;’:=: Faj 1. If T* is a crisp classifier, e; is a basis vector
with components oy = %4 £ ¢ and o = 1; consequently,
here also Z:_ &y = 1. However, for a possibilistic classifier
E_.- gy = o [3]. Designing a classifier involves finding
a good D. T may be specified parametrically, e.g.. Bayes
classifier [ 1], or nonparametrically, e.g., nearest neighbor (NN)
classifiers (crsp and fuzey) [1], [3], nearest prototype (NP)
classifiers (crisp or fuzzy) [1], [3], neural networks [4], ete.
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Although Bayes classifier is statistically optimal, it requires
complete knowledge of prior probabilities py; 7 = 1.2, ... ¢
and class densities gix ji; ¥ 1,2, ..., ¢ which 1s almost
never possible in practical cases. Usually no knowledge of the
underlyimg distribution 15 available except that it can be esu-
mated from the samples.

Among the nonparametric classification schemes the (NN al-
gorithms are the most straightforward. This family of algorithms
is known as f-NN algorithms. Given a set of n labeled training
samples X = ix;, Lili =1, ..., 0 % € 7, 1; € N} the
crisp &-NN (1 = & < n) classifier assigns a sample x £ X as
follows.

< Find the set of & samples {{x;, 1;1} € X closest tox.

@ Assign % o the class from which majority of % closest

neighbors has come.

All crisp classifiers assign an absolute label to a sample
tested. But in real world situation this is often disadvantageous.
It would be better to have some measure of confidence available
for different aliemative decisions. If more than one decision
have close confidence values then they may be examined more
closely using additional information (if available) instead of
immediately committing o a decision that might incur heavy
penalty. This has motivated development of several vadants of
fuzzified L-NN algorithms [2], [3].

Despite their simplicity, a straightforward implementation of
an NN classifier may require large memory (the complete set
of training samples A has 1o be kept in memory) and may in-
volve large computatonal overhead (the distance between x and
eachof the training data points has to be computed). There have
been several atlempts o minimize the computational overhead
of L-NN algorithm [5], [6], some of which approximate the
f-MN scheme. However, even with most of them, the entire data
setneeds o be mantained. The prototy pe-based classifiers over-
come these drawbacks. The raming data set 1s represented by
asetof prototypes Vo= {{v, L}i =1, ..., &, where ¢ = o,
Each prototype can be thought of as a representative of a subset
of A.

While designing a prototype-hbased classifier, one faces three
fundamental issues.

* How to generate the protolypes.

* How many protolypes are o be generated.

* How to use the prototypes for designing the classifier

Depending on the schemes adopted w address these ques-
tions, there are a large number of classifiers. To illustrate the
point we discuss the simplest of them, i.e., the NP classifiers
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with a single prototype per class. The number of prototypes is
equal to the number of classes in the training data, e, @ o
In this kind of classifier the prototype for a class is usually gen-
erated by taking the mean of the training data vectors from that
class. The third 1ssve 15 commonly addressed vsing a distance
function . A vector x & R is classified using the prototype set
Voo, Ll Loooe v & R L = N F where e is the
number of classes and 1; is the label vector associated with v;
as follows.

Decide x = class i

L= IJ‘V: .5'{}':_} =1

Ty Bxowa) 28X vy Wi/l

This simple scheme and s vanants work gquite well in many
problem domains. However, such a classifier has been proved
inadequate if the data from one class are distdbuted into more
than one cluster or if the data from two different classes cannot
be separated by a single hyperplane, as demonstrated in the fa-
mous “XOR"” data | 7). Therefore, for a generalized classifier de-
sign one must keep provision for multiple prototypes for aclass.

If multiple prototypes are used for a class, the three issues
concerning the prototypes become more difficult o address, but
in this case a lot of sophisticaled techniques become available
for dealing with them. Usoally the three 1ssues can be addressed
independently, but in some cases the strategy used for answering
onge ssue may depend on the strategy vsed for dealing with
others ora single strategy may take care of more than one issue.

We now briefly review some commonly used schemes for
addressing these issues. The optimal number of prototypes re-
quired depends on both the interclass as well as the intraclass
distribution of the data. One can use suggestions of g domain
experl, or some clustering algorithm to find cluster centroids in
the training data set with enough prototypes o represent each
class. However, most of the clustering algorithms (e.g., s-means
algorithm) require the number of clusters o be supplied exter-
nally or to be determined vsing some cluster validity index. The
f=nn algorithms [ 1] use each data point in the raining data set
as a protolype.

Given the number of prototypes, there are many procedures
for generating them, e.g., clustering algorithms like e-means
[1], fuzezy ~-means [2], mountain clustering method [8], elc.
Other approaches mnclude leaming vector quantization (LVO))
methods, NN-based methods such as Kohonen™s SOFM,
random search methods, gradient search methods, ew. Each
method has its own advantages and limitations. Often more
than one method are used together for producing a good set of
protoLy pes.

Once the prototypes are generated, there are several ways of
using the prototypes in the classifier. To mention a few, inan NP
classifier a data point is assigned the class label of the prototype
closest to it In a fuzey rule-based classifier, each prototype can
be used 1o generate a fuzzey rule w define a fuzzy rulebase [ 14].
This rulebase is then used for classifying the data.

In the present paper, two new approaches o design proto-
Ly pe-based classifiers are proposed. The problem of finding the
required number of prototypes as well as the prototypes them-

selves are addressed together A setof o (the number of classes)
initial prototypes is generated from a set of labeled training data
(without using the label information) using Kohonen's SOFM
algorithm. Then the prototypes are labeled using the class in-
formation following a “most likely class™ heuristic. The pro-
posed algorithm, during the tuning stage evaluates the perdfor-
mance of the prototypes and depending on the evaluation me-
sult, prototypes are deleted, merged, and split This 1s continued
until the performance of the prototypes stabilize. The procedure
takes into account the inraclass and interclass distribution of
the rraining data and tries Lo produce an “optimal” set of proto-
types. This set of prowtypes is then used 1o design an NP classi-
fier. This is our first classifier, i.e., “1-nearest multiple prototy pe
( 1-NMP) classifier.” This 1-NMP classifier has some limitations
as will be demonstrated later. To address these limitations the set
of prototypes is further processed through a fine-luning stage.
During this stage a zone of influence for each prototype is de-
fined. A “similadty measure™ and an error function is defined.
Then the prototypes’ position and their zones of influence are
maodified iteratively in order 1o minimize the error function. Any
unknown data point is then classified according Lo its maximum
similarity with the prototypes. We call this classifier *1-most
similar prototype ( 1-MSP) classifier.” Both classifiers are tested
with several data sets and compared with some benchmark re-
sults.

II. GENERATION OF THE INITIAL SET OF PROTOTYPES
We use Kohonen's self-organizing feature map (SOFM) al-
gorithm [9] for generating the initial set of prowtypes. For the
sake of completeness, first we give a brief description of the
SOFM and then proceed to descnbe the generation and labeling
scheme for the initial set of prototypes.

A. Kohonen's SOFM Algorithm

The SOFM, denoted here by AL, 2 B — VR, is ofien
advocated for visualization of mﬁLﬁc—lup-ulugiuul relationships
and diswibutional density properties of featre vectors (signals)
A =[x, ..., %t inH7 Usually ¥ is transformed into a dis-
play lattice of ¢ < 3 dimensions. Lo this article we concentrate
on (m x n) displays in K.

Input vectors x = ¥ are distributed by a fanout layer to each
of the (v * v) output nodes in the competitive layer. Each node
in this layer has a weight vector w,; attached o 1L

SOFM begins with a {usually) random initialization of the
weight vectors Wiy For notational clanity we suppress the
double subscripts. Now let s £ ¥ enter the network and let
! denote the curent ileration number AE{H-'.-H finds w, ,_..
that best matches x in the sense of minimum Euclidean dis-
tance in . Then w. ;3 and the other weights in its spatial
neighborhood are updated vsing the mule

Wi — Wil Fenglx — wie_ (1)

Here g 15 the leaming parameter and gy 15 a Gaussian-lype
function with spread o, , gy = t—:x|.=_"1"”3""' iy | ey and e, both
decrease with tme £ The topological neighborhood also de-
creases with tme. This scheme, when repeated long enough,
usually preserves spatial order in the sense that weight vectors
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which are metrically close in H? generally have, at termination
of the leaming procedure, visually close images in the viewing
plane V' {RT), and the distribution of the weight vectors in R7
will reflect the distribution of the training data Y .

B. Generation and Labeling of Prototvpes

In this mveshgation we use a ne-dimensional (1-D) 50FM,
but the algonthm can be extended o a two-dimensional (2-D)
SOFM also. First, we train a 1-D 50FM using the tramming data.
Although the class information is available, SOFM training does
not use it The number of nodes in the SOFM is the same as the
number of classes . This choice is inspired by the fact that the
minimum number of prototypes that are required is equal to the
number of classes. Al the end of the training, the weight vector
distribution of the SOFM will reflect the distribution of the input
data. These unlabeled prototy pes are then labeled vsing class in-
formation. For each of N input featre vectors we identify the
prototype closest o i, e, the winner node. Since no class in-
formation is used during the training, some prototypes may be-
come the winner for data {rom more than one class, particularly
when the classes overap or touch each other. For cach prototype
v; we compute a score £;;, which is the number of data points
from class j 1o which v is the closest prototype. Due Lo strong
mteraction among the neighbonng nodes of the SOFM during
the training, some prototypes may be so placed that for no input
data they are the closest prototypes; e, Dy, is Ofor all 7. We
reject such prowtypes. For the emaming prototypes the class
label ¢ of the prototype v; is determined as

s = argmax £ (2)
I‘-—,':,.—--‘
J

This scheme will assign a label to each of the o prototypes,
but such a set of protolypes may not classify the data satis-
factorily. For example, from (2) it is clear that Z_'I.-_-_—“'; L, data
points will be wrongly classified by the prototype v;. Hence,
we need further refinement of the initial set of prototypes ¥, =
Avoos vaoe oo v b TP

III. GENERATING A BETTER SET OF PROTOTYPES

The prototypes generaled by the SOFM algorithm represent
the overall distribution of the input data. A set of prototypes
useful for a classification job must be capable of dealing with
class specific characteristics (such as class boundaries) of the
data. In this section we present an algorithm (DYNAGEN) for
generating asetof prototypes that is a better representative of the
distribution of raining data and takes into account the class spe-
cific characteristics. The strategy involves a modification proce-
dure starting with the initial set of prototypes 1. In each iter-
ation the prototype set is used in an NP classifier and the clas-
sification performance is observed. Depending on the perfor-
mance of the individual prototypes in the classifier, prototypes
are modified, merged, split, and deleted, leading to a new set
of prototypes. This process of modification is repeated until the
number of prototypes and their performance stabilize within an
acceplable level. The final set of prototypes, when used to de-
sign protolype-based classifiers is expected to enhance the per-
formance of the classifier. We use the e “performance of a

LEE]

prototype” to indicate the “performance of the prowtype when
used in an NP classifier.”

In the -th iteration, the prototype set Vi from previous it
eration is used 1o generate the new set of prototypes V). The la-
beled prototypes ¥ are used to classify a set of training data.
Let W5 be the number of raming data wo which prototype v; 15
max; {1 B Thus, when v,
is labeled as a prototype for class €, 5 training data points will
be correctly classified by v; and £; = 2:}?&(5; 43, data points
will be incorrectly classified. Consequently, W; = 5; 4+ F; and
W, =3 Dy,

In the training data ¥ 12 o0 %y Flettherebe VG points
from class §. The refinement stage uses just mwo parameters
fqand Ko o dynamically generate ¢ 4 1 retention thresholds
known as global retention threshold o and a set of classwise ne-
tention threshold [y, (one foreach class), 1o evaluate the pedor-
mance of each prototype. ¢r and 3y, are computed dynamically
inot fixed) for the fth iteration using the following formulae:

the closest one. Let S,

1
(¥4 marat
' B Ve |
1
Pt = =00
Ha | V5|

{wi| v & Vi, C EF We emphasize that the
algorithm uses just two (not ¢ | 1) user supplied parameters.

Based on the classification perfformance of the prototypes,
different operations are performed to generate a new set of pro-
totypes. First, we define the vanous operations. Later, while de-
scrbing the algorithm, we state when o use these operations.

1) Merging of a Prototype With Respect to a Class: Let a
prolotype v, represent Dy, training data from class k. To merge
v, w.rl. class fwe identify the prototype v closest 1o v, where
£ = & (e, v, also s a prototype for class ). Let us denote
X as the set of trmining data vectors from class § whose nearest
prototype is v;. When we merge v with vy worl class &, vy is
updated according 1o

] » Y _?‘
where 17,

b-'i-"'f\-".r+ Z N

Ll oy

— T 3
Wit Dy ¢!

Vi
MNote that we do not say here when to merge. This will be dis-
cussed later.

2) Modifving a Labeled Prototype: A protolype v, 15 maod-
ified according to the following equation:

3 ox

iz A,

D

Vi =

(4)

F) Splitting a Prototype: A prololype ¥; 15 sphit into « new
prototypes for r different classes according o (5). Foreach of v
new prototypes v for class O we compute

e
W N

v —, (3)
Lics,
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The prototype w; is deleted. So after the splitting the number of
prototypes s ereased by » — 1.

d) Defeting a Prototype: A protolype, say v, is just deleted
s0 that number of prototypes is reduced by one. Now we are
in a position 1o describe the DYNAGEN algorithm for dynamic
generation and enhancement of the prototypes.

Algorithm DYMAGEN :
Repeat for all v, < §i_.

until the termination

(starting with v, hawving
smallest ¥} condition is

satisfied.

If by 7 by, and W, <N and there is at least
another prototype for class ()
(Global deletion)
f' If a prototype is not

then delete v:.
pure one (i.e., it rep-
resents data from more than ome class) and does
not represent a reasonable number of points, it
fails to gualify to become a prototype. However,
if there is no other prototype for class € the

prototype iz retained '/

Else if W; > n,™ but Jr, < A4, N, for all clazses
then merge ¥, for the classes for which D, =L
and delete wi. (Merge and delete)

{' The prototype represents a reasonable number
of points, but not reasonable number of points
from any particular class, so it can not gualify
as a prototype for any particular class. But
we cannot ignore the prototype completely.
We logically first split v; into A4 prototypes
Vil ¥r, o ¥ %8, & is the total number of classes
for which ft; = i, and then merge v;, to its closest

prototype from class j. v, is then deleted. Y/

Blzse if T = o N and T = de, Ve, but

LDy o dad, for all § #C0

then merge v; with respect to all the classes
other than (7, for which I&, =1 using (3} and
modify w; using (4. (Merge and modify)

{* The prototype represents points from more than
one class; however, the points from only one class
are well represented by the prototype. According
to our labeling scheme the prototype is labeled
with the most represented class. Thus, we merge
v; with respect to the classesz other than , using

{3} and then modify w; by (4). "/

Else if W, » % and Dy » 3,.N; for more than

one class
then merge v; w.r.t. classes for which

Do, < 4.5, by (3) and split v. into new
prototypes for the classes for which
Dy = 30 by (5).
Add these new protobypes to the new set of
prototypes V,. (Merge and split)

The prototype represents reasonably well the

number of points from more than one class. S50 we

merge the prototype with respect to the classes
whose data are not well represented and split the
prototype into one for each class whose data are
reasonably well represented by w;. f
Let 1V be the union of all unaltered prototypes of
Vv, . and the modified as well as new prototypes.
Fun the S0FM algorithm on V; with winner-cnly up-
date (i.e., no neighbor is updated) strategy using
the same training data as input.

' At this stage we want only to fine tune the
prototypes. If the neighbors are also updacted the
prototypes again might migrate to represent points

from more than one class.

3) Termination Conditions: The algorithm terminates under
any one of the following two conditions.

a) Achievement of a satisfactory recognition score defined in

terms of percentage of correct classifications (¢).

by A specified number of iterations (4, ) is reached.

Proper use of condition a) requires some knowledge of the
data. However, even if we do not have the same, we can always
sel a high (conservative) percentage for (&), say 95%.

Condition b) is used 1o protect against infinite looping of
the algorithm for some data with highly complex structures for
which the chosen values of ¢ may not be reachable.

We now design a nearest multiple prototype (1-NMP) classi-
fier using the set of prototypes generated by DYNAGEN.

A Results of 1-NMP Classifier

We report the performance of the classifier for ten data sets.
The data sets are divided into two groups A and B. Group A
consists of six data sets including Iris, Glass, Breasi Cancer,
Vowel, Norm4, and Two-Dishes while group B contains Cone-
torus, Normal Mixture, Sat-image and Phoneme. For group
A data sets, some results are available in the literature but the de-
tails of the expedmental paradigm ( such as training test division,
computational protocols, ete. ) used are not available. Hence, we
have mandomly divided each data set in group A into two ap-
proximately equal partitions. We then use these partitions alter-
nately as training and test sets and report the performance. For
the group B data sets, many benchmark results for different clas-
sifiers are documented in [17] along with computational proto-
cols. We have used the same partitions as well as compared our
results with those reported in [17].

Iris data [10] have 150 points in four dimensions that are
from three classes, each with 30 points. Glass data [11] con-
sist of 214 samples with nine atiributes from six classes. Breast
Cancer [ 12] have 569 points in 30 dimensions from two classes.
A normalized version of the Breast Cancer data is generated
by dividing each component by the largest value of that com-
ponent. The Vowel [15] data set consists of 871 samples of
discrete phonetically balanced speech samples for the Telugu
vowels in consonant—vowel nuekeus—consonant (CNC) form. It
is a three-dimensional (3-D) data containing the first three for-
mant frequencies. The 871 data points are unevenly distributed
over six classes. The data set Normd [13] is a sample of 800
points consisting of 200 points each from the four components
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TABLE 1 TABLE 11
PERFORMANCE OF THE 1-MMP CLASSIFIER FoR GROUP A DaTA SETS PERIOIRMANCE OF THE [-NMP CLASSIFIER FOR GROUP B DaTa SETS
Tialn Hlaa Fo. ol prololypes 5 ol Etror Avarags Data Size | Mo, of prototypes | % of Error
Cad Mrg. | Test | Tllal | Final | Teng. | Teal | Test Prror Sot Trng. | Test | Initial | Final | Trng, | Tet
Ire FER I 5 ZAE | E0% ; Cone-torus 00 | 40 | 3 12 1825% | 225%
75 ] 5 1.0% 5,507 065 Normal Wicture | 250 oo | 2 i 1405 CR
Clnss 106 s | p] 17105, | 3d.F6%
Sat-lmage i) 035 [ T 27 13.6% | 15.66%
I U i TE% | $0.0% | adiek Bt s - i A ¢ i b 2 MEER ol SR
Trea 28 s |3 1 10.81% | 10680 Phoneme i) ELT ] 5 HE A LS
Ciancer ELEELIEE 5 I | 1EE% 12.13%
“Warmalized Tl TR [ B LR
Bresst Cancer | 285 | 244 | 2 [ G.0E8% | I056% BOER "/
Vel 431 &7 | 8 31 1B4% | 10335 -
I 5 E | TEAER TR o
— T N B T el Bkl ml O ket
400 7400 | 4 I I I i) 1.75% ® —Ckan 2
Two-Dishca | 350 TRO T4 E] 618 [ 5335 16} L] + —Chesd
= s T ] A% | R 5935 a, ? By
16 * ® Ak 5
b ® =] a B Coams b
of a mixwre of four class 4-variate nommals. The Two-Dishes is o " ? Yoo,
a synthetcally generated data set consisting of 1500 2-D data wal » ‘;aﬂ 0 "::;c
points distributed uniformly over two well-separated dishes of ‘E. 2 = o &
different radii. Each dish has 730 points. £ = i‘% “
In group B the Cone-Torus data set has 400 2-D points in 11l o ! P an
both the traming and test sews [17], [18]. There are three classes % "
each representing a different shape, a cone, a half torus, and a T *
Gaussian shape. In the Normal Mixwre data each of the two ol
classes come from anormal distribution of 2-D points [17], [ 19].
The traiming sel contains 250 points and the est set conlams B ] 3 : 5 5 7 7 T 10 T
. - . . Friewized Conppunent 1
1000 points. The Sat-image data set is generated from Landsat i
Mulu-Spectral Scanner image data _[1“’ [—{}E'_ The present data Fig. 1. Scatterplot of the glass data along the two most significant principal
sel covers an area of 82 x 100 pixels portion of the whole  components.

image. Each feature vector has 36 components contaming the
gray values of nme (a 3 = 3 neighborhood) picels captured by
four sensors operating in different spectral regions. The data set
has seven classes representing different kinds of ground covers.
The traiming set has 500 points and the test set has 53935 points.
The Phoneme data set contains vowels coming from 1809 1so-
lated syllables (e.g., pa, ta, pan, ... ) i French and Spamish [17],
[20]. Fve different attributes are chosen o characterize cach
vowel; they are the ampliwdes of the five first harmonics AHi,
normmalized by the wial energy Ene (integrated on all frequen-
cies) AHiEne. Each harmonic is signed positive when il come-
sponds o a local maximum of the spectrum and negative other-
wise, The Phoneme data set has two classes, nasal and oral. The
traming s¢t contans 5300 points and the test set contans 4904
poinls.

Tables 1 and I summarize the classification performances of
1-MMP classifier for group A and group B data sets, respec-
tively. We used the values &y = 3. Ky = 6. ¢ = 33%, and
Wi 10 for all data sets. The % of error column shows the
percentage of misclassification for training and est data.

It is well known that classes 2 and 3 of Iris have some overlap
and the typical resubstitution error with an NP classifier defined
by three prototypes obtained by some clustering algorithm 1s
15-16(1e., about 10% error with three prototypes). The average
test performance of the proposed system with five prototypes is
quite good resulting in only 6.66% emor,

Glass data show a high percentage of error; this is possibly
unavoidable because a scatterplot (Fig. 1) of the first two prin-
cipal components shows that the data forclass 3 are almost ran-
domly distributed among the data points from other classes. In
fact, the points from class 3 (represented by | ) are not visible in

the scatterplot. In [ 14], the recognition score for the glass data is
64.4%, 1.e., about 353% error. Our classifier could realize more
than 66% accuracy with 26 prototypes in the best test result and
the average test emor 1s 34.00%,

Breast Cancer data have been used in [12] to train a hinear
programming-based diagnostic system by a variant of multisur-
face method (MSM) called MSM-tree and about 97.5% accu-
racy was oblained. Breast Cancer data of a similar kind have
also been vsed ina recent study [ 14] with 74.0% accuracy with
100 rules. Our classifier could achieve as low as 12.13% average
test error with only four to five prototypes and it is quite good.
With the nommalized breast cancer data the 1-NMP classifier ex-
hibits a much beter performance.

Although the Vowel data set has three features, like other au-
thors [15], we used only the first two features. Bayes classifier
forthisdata set [ 16] gives an overall recognition score of 79.25%.
InFig. 2, the scatterplot (different classes are represented by dif-
ferent characters) of Vowel data depicts that there is substantial
overlap among different classes and hence some misclassifica-
tion 1% unavordable. The proposed classilier could achieve an
average of 7922% correct classification.

The performance on Nommd [13] with only four prototypes,
L., one prootype perclass, 1s quite good. In this case, the DY-
NAGEN-based classifier could achieve up to 96% accuracy with
only four protolypes.

The Two-Dishes data is a synthetic one generated for in-
vestigating the hmitatons of the 1-NMP classifier. Although
a straight line can separate the two classes, the 1-NMP clas-
sifier achieves an accuracy of 96% with two prototypes only.
Or tuning algonthm could have produced more prototypes and



RE6 [EEE TRANSACTIONS ON S¥STEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, WOL. 31, NO. & DECEMBER Xiil

e+
4
avsr e . & D1
4
A ® -Diase @
ark e
ttemew = -Olss3
FtaEham
asa - Al d BEE O -Clagg £
+ = -
+ ewgeens = -Clts b
aar rre mbans O -Cleasd
YT YT
e SFEENEERNE
T v @ew O
B + waC
3 .
g as- et LT
a ¥ ROX®O
+  sed@e OO0
L a
043 L IEr
«COBFO8x
b a4 ODEE
#0000 RBR
GORRERBEN H X
O Cxax
el oEEEﬂJ::::
B oooOmx
GAG00aE
aar Gk oo
Addgon
125 E%E s
e [ 33 k2 2.1 a4 ©.5 a8
Faahire *
Fig. 2. Scatterplot of first two feaures of the vowel data

thereby could reduce the error, but we used only two prototypes
to demonstrate the usefulness of the classifier described in the
following section.

Table 11 shows that for all of the group B data sets, the 1-NMP
classifier generalizes quite well. For two data sets the perfor-
mance on the testsets is litde better than that on the training sets
while for the other two cases the performance on the training
sets s litthe better.

As evident from the results obtained, a 1-NMP classifier de-
signed with the prototypes generated by the DYNAGEN algo-
rithm results in a very efficient classifier. As with any proto-
type-based classifier, the performance of this classifier depends
on the quality of the prototype set used, i.e., how faithfully the
distribution of the data is represented by the set of prototypes.
In our case, the DYNAGEN algonthm 1s ulumately mesponsible
for the guality of the prototype set. On closer examination of
the DYNAGEN algorithm, one can find the following general
tendencies actung on the protolypes.

* The DYNAGEN algorithm tries to generate a very small
number of prototypes while at the same time tries o keep
the error rate as low as possible. This 1s achieved by means
of two opposing actions: 1) splitting of prototypes and 2)
deletion of prototypes. The former leads 1o an increase in
the number of prototypes with a view toensuring that class
boundaries are taken care of while the latier decreases the
number of prototypes by deleting prototypes, which do not
represent an adequate number of data points. These two
actions together try o ensure that there are enough pro-
totypes o mepresent the distnbution of the data and each
protolype represents a substantial number of data points.
In other words, the number of prototy pes does not increase
in an uncontrolled manner o become comparable with the
number of training data points.

* The DYNAGEN algorithm tnes to place each prototype at
the center of a dense set of points. This 1s achieved by the
retraming of the prototype set using SOFM algonthm with
the winner-only update scheme at the end of each modi-
fication cycle. This step reduces the effect of outlier data
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Fig. 3. Scatterplot of the Two Dishes duta.

points on the positioning of the prototypes o the feature
space.

The above capabilities make the tumng algorithm suitable
for generating quality prototypes even for complex taining
data sets with linearly nonseparable classes or for data sets for
which points from the same class are divided into more than
ong cluster. These desirable gualinies of the prototype set 1s
reflected in the performance of the classifier.

However, the result obtmned for the Two-Dishes data set
i Fig. 3) indicates that just placement of prototypes at the center
of each class in some situations can turn into a weakness of the
algorithm. Though the 1-NMP classifier with two protolypes
generates only 5.93% emror rate for Two-Dishes, it is not
zood enough. Fig. 3 shows that the data from two classes are
linearly separable and each class forms a distinet cluster. But
the two classes have considerably different variances. One can
reasonably expect that this data set should be classified with
very high accuracy with only two prototypes, but it 1s beyond
the capability of the 1-NMP classifier. This is due to the fact
that the tuning process places a prototype at the center of a
cluster and in case of clusters having considerably different
variances, such a set of prototypes, when used in an (NP)
classifier, may not classify the data accurately.

To address this problem, we propose a new strategy of fine-
tuning the prototypes and design a new classifier. In this new
strategy each prototype is associated with a zone of influence.
This modification is expected 1o improve the classification per-
formance over the NP classifier and it might reduce the number
of prototypes as well. The scheme is described in the next sec-
Lion.

IV, NEW CLASSIFIER AND FINE-TUNING OF PROTOTYPES

We describe the design of a new prototype-based classifier,
the 1 most similar prowtype (1-MSP)” classifier, and the fine-
tuning of the prowtype set in order to achieve better classifica-
tion performance.
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A, The I-MSP Classifier

Given a set of labeled prowtypes ¥, we define a zone of in-
fluence foreach prototype. The influence of a prototype w; at a
point x ¢ R is defined by the equation

a{v, X1 = oxp Ibes x| %/ (6)

where o, > [} is a parameter associaled with prolotype v;.
rrivy, %) 15 a decreasing function of the Euclidean distance
[[w, — x||. The surface of constant influence for a prototype is
a hypersphere in B centering at the prototype. Note that other
choices of « are also possible.

The function e{v,, x) also serves as a measure of similarity
between the prototype v; and the point x. The 1-MSP classifier
is designed to classify a data point x as follows:

Decide x T oclass e

<F I‘hi". 2 [_X':' ]-1'

& alx v, = oalx vy L=
B. Fine Tuning of the Prototypes
Let V¥ obe a set of prototypes (|V] = & = the number of

classes) generated from the training data ¥ by the DYNAGEN
algorithm discussed in Section I or by some other means. Let
%, & X be from class r and v, be the prototype for class &
having the greatest similanty e with X, Also let v ; be the
prototype from incorrect classes having the greatest similarity
it with 2¢;. Thus
o — eyl = [ e
Chap = LD
and
i = OXp [: waerlfmmes
where o, and o—.; arethe values of the o parameters associated
with the protolypes vy and v, respectively.

We use an error function &

E=3%" {1-ag+aul’ o)

MR

Such anerror function has been used by Chiu [21] in the con-
text of designing a fuzzy rule-based classifier. The fine-luning
algorthm presented here involves minimization of E following
the steepest descent search to modify the prototypes and their
zones of influence.

EFrototype Modification Algorithm
Begin

Set the learning parameters #,, and n,.
Set a parameter reduction factor & -« < 1
Set the maximum number of iteration oolmiter
Compute [y, uwsing (T for T, — (v]. vi. ... ¥}
Compute the misclassification M, of 1-MS5P classi
fier using .

While (¢ < muweiler) do

For each x; © X\

AT

'and ¥iDl.

Find the prototypes v'o
Compute o, and o ...
Modify the prototypes v'.! and v!.; and their

zonges of influence uwusing the following eguations.
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Compute K, using (7} for the new set of
prototypes Vi,
Compute the misclassification 5, of 1-MSF
clazsifier using V.
If My > M, or £, = E_,
then
R T
oo (1 — i,
L= Vi
/71f the error is increased, then possibly
the learning coefficients are too large.
5o, decrease the learning coefficients, and

retain 19, ; and continve. “f
1f My =N or I, =1
then Stop.
End wWhile
End

In each ieration for each data point the algorthm finds the
prototype which has the maximum possibility of being respon-
sible for correctly classifving the point and the protorype which
has the maximum possibility of being responsible for wrongly
classifving the point. Then the parameters associated with these
two prototypes are modified so that the possibility of comrect
classification of the data point increases while that of wrong
classification decreases.

When the algorithm termminates we have the final set of pro-
totype Veinar, which is expected o give a very low error rate
when used with the 1-MSP classifier.
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C. Implementation and Results of 1-MSP Classifier

To implement the above prototype refinement and classifica-
ton scheme, one guestion needs o be answered. How do we
zel an initial estimate of the zones of influence, ie., o5 for the
mital prototypes’!

In our implementation we used the prowlype sel generated
by our previous SOFM-based DY NAGEN algorithm. If we set
the initial values of 7.5 as

@, constant Wi

theoreucally the tuning starts with a set of prototypes whose
performance in a 1-MSP classifier isthe same asits perfformance
in a 1-NMP classifier since

LV Kp ) (v, Xg)

2l — ]| vy —we Vv, vyoxg 2 I

Then with the progress of wning, the prototypes and &5 will
be modified to reduce £, However, there are a few practical con-
siderations. I the constant 1 not chosen judiciously, the tuning
may not yield the desired result. To elaborate this point, if the
s are oo small, then there will be a sharp fall of o with dis-
tance and this may cause loss of imporant digits due to finite
precision on a digial computer. Consequently, unless high pre-
cision is used, the performance of the 1-NMP and 1-MSP clas-
sifier may be slighty different. On the other hand, if the o5 are
too large for a data point, all the prototypes may produce high o
values and, during training, the reduction of the emror may be oo
slow making the tuning less effective. We get an initial estimate
of the zones of influence {im;s) for the prototypes as follows.

For each prototype v° in the set 15 = vy =
1,...,8 v = KRP} let X; be the set of tmining data
closest w v?. For each v a set

& T E=dvipad

i / |-

is computed. Then the set of inital ;s is computed as

= \r'r Z 'T )

LT

5 [ F
Hi=alimpli-=ilianapdams= E T o
[

| T

As evident from the above definitions, «; is the average of the
standard deviations of the individual components of data vectors
x € X; about the prototype v5. This is just a choice for the
mnital ;s other choees are possible too.

Table L summarizes the result of the 1-MSP classifier for six
data sets in group A, We have used the same trmining and 1est
division for all data sets as used for the 1-NMP classifier. For
most of the data sets, the results show marked improvement over
those of the 1-NMP classifier, while for the rest the perfformance
remains almaost the same. We emphasize the Two-Dishes dataset
to explain our motivation for the design of the 1-MSP classifier.

The result shows an average of .07 % error rate for Two-Dishes
with only two prototypes, and the best result obtained shows
ZET0 EITOL

However, the 1-MSP classifier fails in the case of the onginal
Breast Cancer data set. Our algorithm assumes hyperspherical
clusters in the feature space. This is expected when, in a cluster,
the standard deviations of all feawres are nearly equal. But the
Breast Cancer data have 30 features, of which the majority have
values of the order of 1077 and some are of the order of 107,
and the standard deviations of different features are consider-
ably different. Our initialization scheme computes the average
of these standard deviations 1o associate a hyperspherical zone
of influence with each prototype. Since most of the components
have small values, the s are small and s for most of the data
points also become very small, leading 1o loss of precision and
huge misclassification rates. However, if the ;s are increased
artificially (by a factor of say 400), the performance matches
that of the 1-NMP ¢lassifier, but the reduction of the error func-
tion £ becomes very slow during training. Such data could be
better handled if the zones of influence of the prototypes are
not limited o hypersphere. But such schemes (ke vsing Ma-
halanobis distance instead of Evclidean distance) would lead 1o
more computational overhead. So, we get around this by nor-
malizing the data over each component. The Normaleeed Breast
Cancer data shows an excellent performance of the 1-MSP clas-
sifier.

Apparently the 1-MSP classifier has some similarity with the
radial basis function (RBF) network, since each prototype is as-
sociated with a zone of influence, and the strength of the in-
fluence is determined by a Gaussian function of Euclidean dis-
tance from the prowtype. The hidden nodes in an RBF net-
work also use the Gaossian functions as activation functions
(there are other possibilities too). However, m the conventional
RBF network, a linear aggregation function is used between
the hidden layer and the output layer. There 1s complete con-
nection between the hidden layer and the output layer. If we
think of an RBF-like architecture for the 1-MSP classifier, we
canmol have the complele connection between the hidden layer
and the output layer. The aggregation function in each output
node would be a max operator, not a linear function. Moreover,
the ce-function used here need not necessarily be a basis func-
ton. As we shall see, in general, the RBF network needs more
nodes for similar performances. However, our algorithm can be
used as a preprocessing stage for the RBF classifier, where the
weight vectors of RBF nodes can be imtiahzed with the posi-
tions of the prototypes and the spreads of the activation func-
tions can be initialized with the value of the comresponding o
To make a comparson, we have classified the group A data sets
(same asin Table 1) vsing RBF networks with the same number
of RBF nodes as the number of prototypes used by the 1-MSP
classifier. We have used the routines available in the Neural Net-
work Toolbox of Matlab 5. For all experiments we use 2.0 for
the spread of the RBFs. The results for the RBF classifiers are
summarized in Table 1V,

Table IV reveals a poor performance of the RBF classifiers
compared to our 1-MSP classifiers for most of the data sets. For
Iris and Normalzed Breast Cancer it shows a shightly better per-
formance. These results clearly suggest the superiority of the
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TABLE Il
PERFORMANCE OF THE 1-MSP CLASSIFIER FOR GROUP A DATA SETS
Dhaka D No of T e Brrae Average
Seb Teng, | Tesl | prolotypes | 'Trog. | Teal ‘Tesl Eeeor
Ids Th (] 5 2067 | 2000
Th LE] 5 EX I 5.55%
Glnas I06_ [ 108 |28 | 1428% | 34.86%
T s | 13.76% | 2T.E2% 31.34%
Mormalized fLT) 5 | R AT | 4215
Breast Cancer | Z8G 7 [ 4 1O1T% LT S.62%
Vowecl [ET] 437 | 21 16.55% | 1R.5a%
AT 434 [ 1§ 1709 | 1T.51% | 18.02%
Norm HETE ] AN | 4 435% | 4.5%
don i | d T 357 IETR
Torg-Ehishes Thi I % 0,13%
D I [ % -07%
TABLE IV
PERFORMANCE OF THE RBF NETWORKS FOR GROUP A DATA SETS
Dala z I | Malwork T of Ertor Average
Set » Irng. | "Test” ; conBgucoticn | “Trmg-” et 7 Test Ereor
Iniz | Th R 4 0% EXTES
[ Th TH 153 TEET. | Foa 2. 66
Class ¢ 108 109 | G2A-6 TAT . A
T E IITR  43d% d8.67%
Mormalized - 284 285 30-8-2 31770 A5
B, Cuncer 285 [ZH 3043 ] ABIR L@ | 4.21%
Vowel [ 431 437 | B2 35.M% T MiATH
R I L I O L WY W4t | 5ATLE
Norm L A0 A | a4 A% MW2Is | T
IR B
Two-DHehes | 750 | 750 | 2-2-2 wE% 0145 | '
[FBD | TER | Fe-Z TAGT G0 | 8.
TABLE WV
PERFORMANCE OF THE 1-MSP CLASSFIER FOR GROUP B DATA SETS
Data Size No. of T of Brror
Set Trng. | Test | prototypes | Trng. Teat
Conetorus 400 | dop | 12 16.6% | 14.76%
Mormal Mixture | 250 1000 | 4 13.4% 970
Sat-image 500 5035 | 27 134% | 16.8%
Phoneme 500 4904 | 5 19.8% | 20.53%

1-M 5P classifier over RBF networks with comparable configu-
rations especially for data sets with complex class structures.

Table V summarizes the perdformance of the 1-MSP classifiers
for the group B data sets. For each of the data sets, the training
error 15 lower for the 1-MSP classifier than the 1-NMP classi-
fier. The test error for Cone-torus data decreases substantally.
Testerror for Normal Mixture and Sat-image remains almost the
same while, for the Phoneme data, there 1s some improvement
for the test sel.

These four data sets, as mentioned earlier, have been exten-
sively imvestgated in [17]. In Tables V1 and VIL we reproduce
some results vsing a multlayer perceptron (MLFP) and an RBE
respectively, on these data sets. To make a fair companson, for
both networks, we have chosen two architectures having the
number of nodes closest to the number of prototypes used by
our 1-MSP classifier.

Companng Table ¥V with Table V1 shows that for Cone-Lorus
data, the pedformance of the 1-MSP classifier with 12 proto-
types s comparable to the average perdommance of the MLP
with ten and 15 hidden nodes. For Normal Mixture, the perfor-
mance of 1-MSFP with four prototypes 1s also comparable with
the peformance of MLP networks with five and ten hidden
nodes. While for Sat-image the 1-MSP classifier produces

B59

TABLE VI
REsULTS WiTH MLP NETwoRKS FoR GrROUP B DaTa SETS
Data HNetwork | Trog Test,
Set Size Error Error
Cone-torua 2-10-3 15.25% | 14.26%
2-15-3 13.60% | 12.00%
Kverage | 14970 | 14.19%
“ormal Mixture | 2-5-2 12.00% | 10007
2-10-2 12.80% | 10.30%
Average | 12.40% | 10.15%
Bat-image 4206 T9.20% | ro.92%
4-G5-6 24 40% | 23.08%
Averaga | GL.A0% | 440,607
Phoneme 5-5-2 14.00% | 1H.23%
5-10-2 16.80% | 21.04%
Average | 15.40% | 18.64%
TABLE VII
REsULTS WiTH RBF NETwoRrKS For GrOUP B DaTa SETS
Data Metwork | Trng Test
Set Size Error Error
Cone-torus 2-10-3 16.50% | 13.7A%
for =3 2-15-3 17.00% | 14.00%
Average | 16.75% | 13870
Normal Mixture | 2-3-2 1400% | 2.50%
(o = 1.5) 2-10-2 12.40% | 10.00%
Average | 13.20% | 9.75%
Sat-image 4156 14.50% | 17.02%
for == 10} 4-20-6 12.80% | 15.52%
| Avorage | 10.80% | 16.27%0
Fhoneme bB-5-2 21.00% | 23.65%
o =2 5-10-2 18.50% | 21.31%
Average | 10.60% | 22.48%

13.4% trainmg error and 15.6% test emror, the MLP even with
64 hidden nodes prodoces 24.4% tmining emor and 23.08%
test emor. The performance of MLP with 20 hidden nodes 1s
very poor (79.2% traming ermor and 75.92% test ermor). For
Fhoneme data, the MLP with five hidden nodes produces a
litthe better result than 1-MSP with five prototypes. Comparing
Table VII with Table V we find that the performance of 1-MSP
classifier and RBF network is comparable for Nommal Mixwre;
for Sat-image and Phoneme the 1-MSP classifier performs a
littke better than the RBF network, while for Cone-torus the
performance of RBF 1s a httle better than the 1-MSP classifier.

V. CONCLUSION

We have presented two comprehensive schemes for designing
a prototy pe-based classifier. The schemes address all major is-
sues imvolved with the design. Based on the raining data set,
our SOFM-based DYNAGEN algonthm takes care of prototype
generation as well as determination of an adequate number of
prototy pes necded for the classification by an NP classifier. The
performance of the 1-NMP classifier is quite good. However, as
pointed out eardier, the NP classifier cannot take care of large
variations in the vanances of the data from different classes. To
equip the classifier w deal with such a situation it muost use the
varnce of the data represented by each prototype.

In our second classifier (1-MSP), we associate with cach pro-
totype a zone of influence that tres o cover the spread of the
data represented and thereby it accounts for the class vanance.
To measure the proximity we use a (Evchdean) norm-induced
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similarity measwe that implicitly defines the limit of the zone
of influence of each prototype. Due o the choice of Euclidean
nomm, the surfaces of constant influence are hyperspherical in
shape. So 1-MSP performs better for the data having hyper-
spherical or near-hyperspherical class/subelass structure.

Apparently one can think of two ways of using Mahalanobis
distance to deal with data having nonhyperspherical elass/sub-
class structure. The first is o run some clustering algorithm on
the whole training data and compute the covarance matrix for
cach cluster. However, in this method, the class information is
ignored and a cluster may contain data from different classes.
This may particulady defeat the purpose of the exercise. The
second is o cluster the data from each class separately o gen-
erate the protolypes and compute the covadance matrix of the
data points closest to cach prototype. This “closeness™ criterion
is again based on Euclidean distance. So the computation of Ma-
halanobis distance based on the covariance matrix thus obtaimed
may not solve the problem unless it is updated during training,
which may not be simple. Moreover, although this option uses
the class label information, it cannot capture interaction between
classes and this has 1o be accounted for during refinement of the
prototypes. We are currently investigating such possibilities for
dealing with most general types of class/subelass siructures by
the 1-MSP classifier.
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