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Pixel Classification Using Variable String Genetic
Algorithms with Chromosome Differentiation

Sanghamitra Bandyopadhyay, Member, IEEFE and Sankar K. Pal, Fellow, IEEE

Abstract—The concept of chromosome differentiation,
commonly witnessed in nature as male and female sexes, is
incorporated in genetic algorithms with variable length strings
for designing a nonparametric classification methodology. Its
significance in partitioning different landcover regions from
satellite images, having complex/overlapping class houndaries, is
demonstrated. The classifier is able to evolve automatically the
appropriate number of hyperplanes efficiently for modeling any
kind of class boundaries optimally. Merits of the system over the
related ones are established through the use of several quantitative
Mmeasure.

Index Terms—Genetic algorithms, hyperplane fitting, pattern
recognition, quantitative indices, remote sensing images.

L. INTRODUCTION

LASSIFIC ATION of pixels for pantitioning different land-
C coverregionsis an important problem in the realm of satel-
lite imagery. Satellite images usually have a large number of
classes with overdapping and nonlinear class boundaries. Fig. 1
shows, as a typical example, the complexity in scatter plot of
932 points belonging o seven classes taken from the Systeme
Probatoire d'Observation de la Terre ( SPOT) image of a part of
the city of Caleutta. Therefore, for appropriate modeling of such
nonlinear and overlapping class boundanies, the utility of an ef-
ficient search technigue is evident. Moreover, it is desirable that
the search technigue does not need o assume any particular dis-
tribution of the data set andfor class a priovi probabilities.

Genetic algorithms (GAs) [ 1] are modomized search and op-
trmzaton techmgues guided by the principles of evolution and
natural genetics. They are efficient, adaptive and robust search
processes, producing near opimal solutions and have a large
amount of implicit parallelism. The utility of GAs in solving
problems that are large, multimodal and lghly complex has
been demonstrated i several areas [2]. Since satellite images
usually have highly nonlmear and overlapping class boundaries,
application of GAs for searching for the appropriate ones, par-
ticulady under nonparametne conditions (Le., withoul assuming
class distnbutions and a prioi probabilities), seems appropriale
and natural.

In the present article, such an atlempt 15 made by demon-
strating the effectiveness of a GA-based classifier, called the
vardable string length GA with chromosome differentiation
(VGACD)-classifier, in partitioning different landeover re-
gions. In designing the VGACD-classifier, the concepts of
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Fig. 1. Scatter plat for a training set of SPOT image of Caleutts conmtaining

seven classes (1, 7).

variable length sirings in GAs (VGAS) [3] and chromosome
differentiaion into two classes, male (M) and female (F),
have been integrated for approximating the class boundaries
of a given training data set nonparametrically by an oplimum
number of hyperplanes such that the number of misclassified
points 15 minimized. Unlike the conventional GAs, in VGACD,
the length of a string is not fixed. Moreover, two classes of
chromosomes exist in the populaton. The crossover, tmple-
menting & kind of restricted mating, and mutation operators are
accordingly defined. The fitness function rewards a string with
smaller number of misclassified samples, as well as smaller
number of hyperplanes. A comparison, in lerms of several
quantitative measures [4] and visual guality of the classified
images, of the VGACD-classifier with VGA-classifier, ie.,
the one mmcorporating variable sming kengths but without
chromosome dif ferentiation, and those based on the k-NN rule
and the Bayes maximum likelihood (ML) ratio is provided for
SPOT image of a part of the city of Calcutia.

1. DESCRIPTION OF THE VGACD-CLASSIFIER

A. Principle of Hyperplane Fitting

As mentioned, the classifier atlempts to place 8 number
of hyperplanes in the feature space appropriately such that
the number of misclassified tmining pomnts 15 minimized.
From elementary geometry, the equation of a hyperplane in
N-dimensional space (X; — X —--- — Xa)is given by

."?133.'\' | .t"'}:t:?.“-\' L ."i.ﬂ,'l"| = (1)

where #; = coscy_jsion i1y -gineex_ . Here, o) is
the angle that the projection of the unit normal in the {4, —
Xy —- - =X ;o0 space makes withthe X4 axis, Since o
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(). so the A-tuple {rp. oz, -+ aep . o} specifies a hyperplane
uniquely in N -dimensional space. An appropriate binary en-
coding is adopted for these N parameters corresponding o a
hyperplane. For details, the reader may refer to [5].

In variable string length GAs, a chromosome encodes the ¥
parameters of several hyperplanes, whose number may vary in
the range [1,01 .. |. where IT,,... is chosen to be suitably high.
Note that the choice of H ., will affect the convergence time
of the algorithm, not its classification performance. This is in
contrast 1o the earlier fixed siring length version of the genetic
classifier [5], where the number of hyperplanes H (not just an
estimate of the upper bound) had to be specified a priori. The
performance of the classifier depended heavily on the value of
H chosen, since an overestimate led 1o close or overfitting of the
training data, with resultant loss of generalization capability.

B. Incorpovation of Chiomoesome Differentiation in Variable
String Length GAs

In conventional GAS, since no restriction 15 placed upon the
selection of mating pair for crossover operation, often chromo-
somes with similar characteristics are mated. Therefome, no sig-
nificant new information is gained out of this process, and the
result s wastage of computational resources. In VGACD, we
try to alleviate this problem by distinguishing the chromosomes
mnto two calegories, M and F (determined by two additional bats
called class bits), and therefore two populations. These two pop-
ulations are mitially generated msuch a way that they are max-
tnally apart. Crossover 15 restocted only between mdividuals
from these two populations. Since, as a result of this process, we
allowy crossover only between dissimilar individuals, a higher
level of diversity is likely w be inroduced and subsequently
maintained in the system. This will in turn resull in Faster infor-
mation interchange between the chromosomes, and therefone,
faster convergence of the algorithm. Interestingly, an analogy
of this concept of chromosome differentiation exists in natural
genetic systems, in the widely witnessed phenomenon of male
and female sexes.

As mentioned above, two addinonal bits called class bits are
used to disunguish the chromosomes into two classes, M and
F. If the class bits contain either 01 or 10, the comesponding
chromosome 15 called an M chromosome, and if 1t contams
(0, the commesponding chromosome 15 called an F chromosome.
These bits are not allowed o assume the value 11 (this 18 in
analogy with the X and Y chromosomes in natural genetic sys-
tems, where XY/YX indicates male, while XX indicates fe-
male). The remaining bits are called data bits, which may be
either 1, 0, or # (do not care). The data bits encode the parame-
ters of H; hyperplanes, where 1 = H; < H, ... The stucture
of a chromosome in VGACD is shown in Fig. 2.

FPopulation Initialization: Two separate populations, one
containing the M chromosomes (M population) and the other
containing the F chromosomes (F population), are maintamed
over the generations. The sizes of these two populations, j,,
and pry | respectively, may vary. Let g, + pp = o, where pois
fixed (equivalent to the population size of conventional GA).
Initially, we considered g, gy p/2 The M population is
first generated in such a way that the first two chromosomes
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Fig. 2. Structure of a chmomosome in GACD.

encode the parameters of 1 and H ... hyperplanes, respectively.
The remaining chromosomes encode the parameters of H,
hyperplanes where | < H, < H_ . . For these chromosomes,
one of the two class bits, chosen randomly, is initialized w 0
and the other w 1. The data bits of the F chromosomes are
mitially generated i such a way that the hamming distance
between the M and F populations (in terms of the data bits) is
maximum. The bamming distance between two chromosomes
e and ey, denoted by Biep, oo}, is defined as the number of
bit positions in which the two chromosomes differ. Hamming
distance between two populations [ and 1%, denoted by
J'.L{H . Fa,is delined as follows:

B Prl=3 % Meneg), Ve B
i

i

Ve e Py

Fitness Computation: Let I, represent the maximum
prespecified number of hyperplanes that may be required to
model the decision boundary of a given data set and H; the
number of hyperplanes encoded in chromosome ¢, Using the
parameters of the hyperplanes encoded in a chromosome, the
region in which each traiming pattern point hes 1s determined
based on (1). A region is said o provide the demarcation for
class j, if among the points that lie in this region, a majorily
belong o class . Other points that lie in this meglon are
considered o be misclassified. All es are resolved arbatrarily.
The misclassifications associated with all the regions (for
these H; hyperplanes) are summed up to provide the total
misclassification miss, for the sting. If n is the size of the
training data, then the fimess of the ith string, 4 ;, is defined as
Fit=n miss) ol where o =17 Heoxe A string with
zero hyperplane is defined 1o have zero fitness. Maximization
of the fitness function ensures the minmization of, primarily,
the number of misclassified points and then the number of
hyperplanes.

Crenetic Operators: Since the strings have vanable length,
the operators crossover and mutation are newly defined as fol-
lows,

Crossover: Two strings ¢ and 7 having lengths {; and {; are
selected from the M and F populations, respectively. Let{; < 7,
Then string + is padded with #s s0 as o make the two lengths
equal. Conventional crossover like smgle poinl cmssover, Lwo
point crossover [1] is now performed over these two strings with
probability j:.. The following two cases may now arise.

13 All the hyperplanes in the offspring are complete. A hy-

perplane in a string is called complete if either all the bits
corresponding Lo it are defined (i.e., Os and 1s) or all are
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#s. Otherwise, ie., if the bits comresponding to a hyer-
planes are a combination of 1s, 0s, and #s, it 5 incom-
plete. ).

2y Some hyperplanes are incomplete.

In the second case, letw number of defined bits (either Oor
lyandt = total number of bits per hyperplane. Then, foreach
incomplete hyperplane, all the #s are setto defined bits (eitherOor
1 randomly) with probability « /L. Otherwise, all the defined bits
are set o # with probability (1 - {1/t7). Thus, each hyperplane
in the offspring becomes complete. Subsequently, the siring is
rearranged so that all the #s are pushed w the end. Each parent
contributes one class bit to the offspring. Since the F parent can
only contribute a 0(its class bits being (0), the class of the child is
primarily determmined by the M parent, which can contribute a 1
(yielding an Mchild) or a0 (yielding an F child) depending upon
the bitposition { among the two class bits ol the M parent chosen.
This process is performed for both the offspring, whereby either
two M ortwo F orone M and one Foffspring will be generated.
Theseare putinthe respective populations.,

Mutation: In order to intoduce greater flexibility in the
method, the mutation operator is defined in such a way that it
can both inerease and decrease the sinng kength. Only the data
bits, and not the class bits, are considered for mutation. The
strings are first padded with #s such that the resuliant length
becomes equal o [, where L. (proportional o IT,.)
is the maximum possible number of data bits in a string. Now
for each defined bit position, it is determined whether conven-
tonal mutation [1] can be apphied or not with probability g,
Otherwise, the position 1s set o # with probability e, . Each
undefined position 15 set 1o 4 defined bit (mndomly chosen)
according 1o another mutation probability g,

Nole that mutation may agam resull in some incomplete
hyperplanes, and these are handled in o manner as done
for crossover operation. Also, mutation may yield sirings
having all #s indicating that no hyperplanes are encoded in
it. Consequently, this swring will have fimess = 0 and will
be auomatically eliminated durning selectuon. The detals ane
available in [3].

III. PIXEL CLASSIFICATION OF SPOT IMAGE

The 512 = 512 image considered in this expenment has three
bands viz., green band of wavelength 0.50-0.359 pm, red band
of wavelength 0.61-0.68 pm, and near infrared band of wave-
length 0.79-0.89 pem. The design sel comprises 932 points be-
longing toseven classes that are extracted from the above image.
The seven classes are turbid water (TW ), pond water (PW), con-
crete (Coner.), vegetation (Veg), habitation (Hab), open space
(05), and roads {including bridges) (B/R). In the first part of
the experiment, a percentage of these 932 points (309, 50%,
and 80%) are used for training, while the remaining are used for
the purpose of testing. In the second part, the rained classifier
(using 80% of the data set for training) is utilized for classifying
the pixels in the 512 = 512 image.

The numbers of bits used to represent an angle and the per-
pendicular distance are 8 and 16, respectively. Rouletie wheel
selecton 15 adopted o implement the proportional selection
strategy for a population size of 20. Single poinl crossover is
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TABLE 1
PERFORMANCE OF VGACD-CLASSIFIER FOR SOME TYPICAL GA
PARAMETER VALUES. HERE, “perc” = 31, AND g, 15 KEPT VARIABLE IN
THE BANGE [(L015, (0.333]

fe | ey | fmg | T Recognition Score

G | 0.2 0.2 Th.4E

0.7 | 001 | 0ot 22,16

BE | ikl ni H3.58

e | 02 n.z a0.48

l].&? .U'.Ul 0.1 H1.410) -
TABLE 11

COMPARATIVE RESULTS 1N TERMS OF RECOGNITION SCORE "fl‘c':.'::l_l;d (%)
AND Eama VALUES (%), HERE, "|'.I|::I'(. INDICATES PERCENTAGE OF
Drara UsED Fok TRAINING

R 1 .i:"{,‘ﬂ on r:;':.'.-..-:.:}:irr'._- i"'-r;.-'i-r:fl.'.-..-s.:_,l'iﬁ-r:'. .-_é:'t_l.'ﬁﬁ k.MM
resig Bappa | recoy | Ryge | eeeng | kappa | meng | kappa
| EEE #1.56 . ﬂ[J‘s\fl ?ﬁ’lﬁ ‘HJH | THAE . HZ?T?F"-.IVT
o[ &M ghlb 24,36 | BLGT | S5oHG | BRES | BR01 | BAG4
'EJ E8.2G BT.07 24,12 | BO6Z | BE.24 | 8328 :39.41 . BT

applied with a fixed crossover probability fe.. g, and prg,, are
also kept fixed (note that we have experimented with several
combination of these values, the results of which are reported
in Table ). We have kepl gy, = 4, since we would ke the
chances ofincreasing or decreasing the number of hyperplanesin
achromosome to be same. Or, inotherwords, it would be undesir-
able toinflictany extemal bias 1o the algorithm ineither direction.
The conventional mutation operation 15 pedormed on a bitby bit
basis for varying mutation probability values (e, ) in the range
[0.015, 0.333], which was found o provide good performance
in previous experiments [3], [3]. The algorithm is terminated if
the population contains at least one sring with no misclassified
points. Otherwise, the algorthmis executed for 3000 generations.

Table 1 shows the performance of the VGACD-classifier for
some typical values of i, ity »and pe, when the algorithm is
mnitiated from the same state (Le., with the same chromosomes
in the imtal population). The mutation probability value 1s kept
variable within the range [0,015, 0.333]. Ascan be seen from the
table, the performance of the VGACD-classifier is best when
jr. = U8 and o, = e, = 0.1 Results in the subsequent
tables and figures are therefore shown corresponding 1o only
the sawd parameter values.

The performance of the genetic classifiers is compared with
those of the Bayes ML classifier (capable of handling overlap-
ping classes) assuming normal distribution of the data set for
each class with different covariance matrces and a priori prob-
abilities for the classes and the k-NN classifier (well known
for generating highly nonlinear boundaries through piccewise
linear segments) with k= 1. It is known that as the number of
training patterns & goes o infinity, if the values of k and k/fn can
be made to approach infinity and (), respectively, then the k-NN
classifier approaches the optimal Bayes classifier [6]. One such
value of k for which the limiting conditions are satisfied is /7.
Also, as demonstrated later in Fig. 4(d)—(1), the performance of

.
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the k-NN rule is found o improve with the value of k, being the
best fork o/ for the SPOT data.

Table 1 presents the comparative results of the different clas-
sifiers for different percentages of training data, and H,,, =
15 for the genetic classifiers. Note that the choice of H,...,.. a5
long as it is sufficienty high, is not crucial for the perfformance
of the genetic classifiers. Results are provided in terms of two
measures, the percentage recognition scores and Kappa values
[4]. The classwise recognition scores for the different classifiers
when perc = 80% are shown in Table 111 Table IV presents, as
an example, the confusion matrix obtained for the 80% training
data corresponding to the Bayes classifier

As seen from Table 11, the performance of the VGACD-c lassi-
fieris always betterthan thatof the VG A-classifier, irrespective of
the percentage of data used for training. Thisindicates that incor-
poration of the conceptof chromosome differentiation leads to an
improvement in performanceof the vanablestang lengthGA clas-
sifier as well. Overall, the pedormance of the VGACD-classifier
is found tobe betterthan orcomparable to that of the k-NN rule for
30% and BO% trmining data, while for 50% trmuning data, thek-NN
rule outperformed allotherclassifiers.

From the classwise scores shown in Table 101, it 1s found that
the VGACD-classifier recognizes the different classes consis-
tently with a high degree of accuracy. On the contrary, the other
classifiers can recognize some classes very nicely, while for
some other classes their scores are much poorer. An example,
the Bayes ML classifier provides 100% accuracy for the classes
TW and PW, its scores for classes B/R and Hab. are only 36.36%
and 49.55%, respectively.

Fig. 3 demonstrates the variaion of the number of points
misclassificd by the best chromosome with the number of
generations for the VGACD-classifier and VGA-classifier
(when pere — B0). As is seen from Fig. 3, both the classifiers
consistently reduce the number of misclassified points. The
best value is obtained just after the 1700 and 1900 iterations
for VGACD-classifier and VGA-classifier, respectively. Incor-
porating the concept of chromosome differentiation therefore
helps in faster convergence of the algorthm, since any given
value of the number of misclassified points is achieved eardier
by the VGACD-classifier than the VGA-classifier (if at all).

Fig. 4(a)-1) provide, as an illustranon, the results oblamed
by the different classifiers {including results for k-NN rule with
k= 1and 3) for patitioning the 512 = 512 image by zooming
a characteristic portion of the image containing the race course
(a triangular structure ). Here, 80% of the design set is used for
training. Table V provides the classwise and overall values of
an index, called /7 [7]. which is the mto of the total vanation
and within class variaton. The higher this value 1s, the better
the performance of the classifier.

As seen from the figures, although all the classifiers (with the
exception of k = 1 for k-NN rule) are able to identify the race
course, only the VGACD-classifier and the VGA-classifier are
able o identify a tdangularlighter outline( whichis anopen space,
corresponding o the tracks) within the race course properdy. The
performance of k-NN rule is found to gradually improve with
the value of k, being the best for k = /. On inspection of the
full classified images, it was found that the Bayes ML classifier
tends o overestimate the roads in the image. This is also reflected

TABLE 111
COMPARATIVE CLASSWISE RECOGNITION SCORES (%) FOR “perc’™ — 8.

Recognition Seores

Clasz

VEACD-clussifier | VOA-vlassifier | Bayes | k-NN
TW 100.09 S00.00 | OO | L0000
P HERTh 2 oo LOOLGY | 96.97
Crner | BilLEa .42 91.4% | 02,53
Weg 02,24 8331 BEAL | D421
Hab ! 2055 G2.50
“';'_')"'S““““'“"'“'“"' | B 24T H4.74
I 16.36 | 45.45

TABLE IV
ConFUsIon MATRIX FOR TRAINKRG DaTa OF SPOT IMAGE OF CALCUTTA
ORTAINED Using Baves ML CLASSIRER

Recngnired as

TW PW  Coower Yeg Hab O5 5/

TW L[ 1 0 | 0 ]

FWw i s 1 0 . L 12

Chooer | 1 11 516 0 Hi u} 4
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Fig. 3. Variation of the number of points misclassified by the best chromosome
with generations for VGAC D-classifier and VG A-classifier,

in Table ¥V, where this class 15 seen o have low beta value and
hence low homogeneity corresponding to the Bayes classifier.
On the other hand, the VGA-classifier tends o confluse between
the classes bridges and roads (B/R) and pond water (PW)L It was
revealed on investigation that a large amount of overlap exists
between the classes Coner and B/R on the one hand (in fact, the
latter class has been extracted from the former), and PW and B/R
on the other hand. This 1s also evident from Table 1V, where 27%
and 20% of the points belonging to the class B/R wentio class PW
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Fig. 4. Classified 5POT image of Calcutta (zooming the moe course,
represented by “K” on the first figure, only) wsing (a) VGACD-classitier,
H e — 15, final value of 5 — 13, (b) VGAclassifier, H,,.. — 15, final
value of £ = 11, {c) Bayes ML classifier, (d) k-NNrule, 7 =1, {e) k-NN mle,
ho— 300 k-NN rule, k— n.

TABLE ¥
CLASSWIEE AND OWVERALL 3 VALUES FOR INFFERENT CLASSIFIERS

Class | VOACD-clossifier | VG@A-classifier | Bayes | k-NN
TW 0. 011 47.68 P1E8.06 | TR.63
P 4Gl 313 1638 | 14.01
Coticr 1.3z 1.14 1,32 125
Veg 2.58 3.42 207 | 269
Hab 1.0 159 150 | 131
5 10.33 B3 B.EZ 11.84
B/R 11.60 22,62 519 | 8.49
Overall 31982 26738 | 2.5847 | 2.9061

and Coner., respectively. These problems were notevident for the
caseol the VGACD-classifier. Also note that the overall 7 valueis
largest for this elassifier and is worst for the Bayes ML classifier

EltH

( from Table V), thereby indicating the significant supenority of
the former. Theindividual AD values for all the classesconsistently
show that theregionswiththe highestand lowesthomogeneity are
the classes TW and Concr, respectively.

IV. CONCLUSIONS

The concepts of variable string length and chromosome dif-
ferentiation in GAs have been integrated for the development
of a nonparametric classifier which can approximate well any
kind of highly nonlinear boundaries (e.g., in remote sensing im-
ages) by evolving automatically an optimum number of hyper-
planes. Unlike the k-NN rule, where k needs o be supplied,
the genetic classifiers with varable length strings do not re-
quire the number of hyperplanes to be specified to model var-
ious landeover boundardes, while providing good region parti-
tioning. Moreover, unlike the Bayes ML classifier, no assump-
tion on class distributions is needed here.

An interesting analogy of the concept of chromosome differ-
entiation can be found in the sexual differentiation found in na-
ture. The class bits in VGACD are chosen in tune with the way
the X and Y chromosomes help to distinguish the two sexes.
Because the initial M and F populations are generated so that
they are at a maximum hamming distance from each other, and
crossover is resticted only between individuals of these two
classes, VGACD appears 1o be able to strike a greater balance
between exploration and exploitation of the search space. This
is in contrast w its asexual version. It is because of this fact that
the former is consistently seen w outperform the latter.

With regard to liming requirements, it may be noted that the
genetic classifiers take significantly large amount of tme during
training. However, the time taken during testing is very small.
On the contrary, the k-NN rule (with k /0 takes significant
amount of time for testing, while for the Bayes classifier both the
training and testing times are quite small. As an illustration, the
VG A-classifier ook 515.76 s during training on a DEC-Alpha
machine (when 3000 iterations were executed). Note that the
problem is compounded by the fact that no appropriate criterion
for terminating GAs is available in the literature. The k-NN rule
took 639,90 s when it was tested on the full SPOT image of Cal-
cutta, whereas for the VGA-classifier and the Bayes ML classi-
fier these values were 3.54 s and 2.06 s, respectively.
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