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The FRBE network is designed bv integrating the
principles of a radial basis function network and
the fuzzy c-means algovithm. The architecture of the
network i suitably modified ai the hidden laver io
realise a novel newral implementation of the fuzzy
clusiering alvorithm. Fuzzy set-theoretic concepls
are incorporated ai the input, output and hidden
lavers, enabling the model to handle both linguistic
and numeric inputs, and providing a soft owput
decision. The effectiveness of the model is demon-
strated on a speech recognition problem.
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1. Introduction

There have been several attempts [1-4] by
researchers in making a funsion of the ments of
fuzzy set theory [3] and Artificial Neural Networks
(ANN) [6] under the heading of newro-fuzzy comput-
ing, for improving performance in decision making
systems. The integration promises to provide, o a
ereat extent, more intelligent systems (in terms of
parallelism, fault tolerance, adaptivity and uncer-
tainty management) to handle real life recognition/
decision making problems. We first provide a brief
survey of some of the existing neuro-fuzzy models
used for supervised/unsupervised classification.
Huntsberzer and Ajjimarangsee [1] modified
Kohonen's network for generating the fuzzy self-
orzanising feature map. Fuzziness was also incorpor-
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ated into the learning process by replacing the learn-
ing rate with fuzzy membership of the nodes in
each class. Further modifications on the rmte of
leaming, shrinking of the neighbourhood and tenmin-
ation conditions of the algorithm were reported by
Bezdek et al. [7] in the FLVQ algorithm. A relation-
ship between the fuzzy version of Kohonen's algor-
ithm and the fuzzy c-means algorithm [8] was
also established.

Carpenter etal. [2,9] developed a fuzzy version
of ART by designing a neural network structure
which realises a new min-max leaming rule, that
minimises predictive error and improves generalis-
ation. The model performs online learning of inputs.
A supervised neural network classifier that utilises
min-max hyperboxes as fuzzy sets (which are aggre-
cated into fuzzy set classes) was introduced by
Simpson [3]. The network has a three layered archi-
tecture consisting of the input, hidden and output
layers. Each hidden layer neuron represents a hyper-
box fuzzy set having two types of connections from
the input layer, representing the min and max points
of the inputs. Learning is a single pass procedure.
The model is capable of finding reasonable decision
boundaries in overlapping classes, and for learning
highly nonlinear relations.

The fuzzy multilayer perception (MLP) [10,11]
incorporates fuzzy set-theoretic concepts at the input
and output levels, and during leaming. The input is
modelled in terms of the linguistic properties fow,
medium and fiigh. The output is represented as class
membership values. The fuzzy MLP is found to
be more efficient than the conventional MLP for
classification and mle generation. Jang and Sun
[12] have shown that fuzzy systems are functionally
equivalent to a class of Radial Basis Function (RBF)
networks, based on the similarity between the local
receptive fields of the network and the membership
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functions of the fuzzy system. Conditional fuzzy
clustering has been used by Pedrycz [13] in the
preprocessing phase of the design of an RBF.

In this paper, we propose a fuzzy version of the
RBF network. The RBF is a three-layered network,
typically used for supervised classification. The hid-
den layer performs crisp clustering using Gaussian
basis function at the nodes. The output layer per-
forms a linear combination of the weighted acti-
vations from the hidden layer.

The Fuzzy RBF (FRBF) is designed by integrating
the principles of the RBF network and the fuzzy c-
means algorithm. [t incorporates fuzzy set-theoretic
concepts at the input, output and hidden layers. The
model can handle both linguistic and numeric inputs,
and provides a soft decision in the case of overlap-
ping pattern classes at the output. The use of fuzzy
c-means in the hidden layer allows the network to
provide a more accurate representation of real-life
situations, where a pattern can have finite non-zero
membership of two or more classes. To realise
the neural implementation of the fuzzy clustering
algorithm, the architecture of the network is suitably
modified. The classification capability of the new
model is demonstrated on a speech recognition prob-
lem.

2. Preliminary Concepts

In this section we describe the Radial Basis Function
(RBF) network and the fuzzy c-means algodthm.
These are the essential ingredients of the proposed
fuzzy RBF, which is described in the following sec-
tion.

2.1. RBF Network

A Radial Basis Function (RBF) network [14.15]
consists of three layers. The connection weight vec-
tors between the input-hidden and hidden-output
layers are denoted as v and W, respectively. The
basis (or kernel) functions in the hidden layer pro-
duce a localised response to the input stimulus. The
output nodes form a weighted linear combination of
the basis functions computed by the hidden nodes.

The input and output nodes correspond to the
input features and output classes, while the hidden
nodes represent the number of clusters (specified by
the user) that partition the input space.
let X=(X,..X,...X)eR" and y-=
(Vs ooy ¥ o) 8 BY be the input and output
(respectively ), and ¢ be the number of hidden nodes.

The output A, of the jth hidden nodes, using the
Gaussion kemel function as a a basis, is given by
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by =exp|— (1)
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ji=1,2, ...,¢

where X is the input pattern, FJ is its input weight
vector (i.e. the centre of the Gaussian for node j),
and uf is the vadance determining the sensitivity
of the Gaussian to off-centre input, such that 0 =
=1

The output ¥ of the jth output node is

¥ = ﬁ'}ﬁ, =12 ...1 2

where ﬁ{, is the weight vector for this node, and
h is the vector of outputs from the hidden layer.
The network performs a linear combination of the
non-linear basis functions of Eq. (1).

The problem is to minimise the error

N

I
o 2 O — By (3)
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where *vi" and ¥ are desired and computed output
at the jth node for the pth pattern, N is the size of
the data set, and [ is the number of output nodes.

Leaming in RBF networks can, in general, be
performed by two different strategies [6]. A fixed
set of cluster centres is first formed by a clustering
algorithm (e.g. the c-means algorithm [16]). The
associations of the cluster centres with the output
are then learned by squared error minimisation (i.e.
minimisation of £). Alternatively, the cluster centres
can also be leamed along with the weights from
the hidden layer to the output layer using a gradient
descent technique. However, learning the centres
along with weights may lead to some locally fixed
points in the error space, leading to a deviation
from the desired result.

Here a fixed set of cluster centres is formed by
the c-means algorithm [16]. Let the cluster centres,
so determined, be denoted as _;:J,j =1, ..., m. The
parameter o, represents a measure of the spread of
data associated with each node.

Leaming in the output layer is performed after
the parameters of the basis functions have been
determined. The weights are typically trained using
the Least Mean Squares algorithm, given by

AW = —qe R (4)

where e = W — 4" and 7 is the leaming rate.
The SVD algorithm can also be used.

In an RBF network, the clustering of the input
data is represented by crisp partitions, and the clus-
ters are modelled by the Gaussian distribution. The
degree of belongingness (i.e. membership) of an
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input to any cluster may not always follow the
Gaussian structure. The learning algorthm of the
conventional RBF network essentially adjusts the
weights of the links from the hidden to the output
layer, depending on the mean and variances of the
Gaussian distribution in each hidden node. At this
stage, however, any input vector can fire one or
more hidden nodes, to some extent.

It may be more natural from the fuzzy set-theor-
etic point of view to determine the membership
value of each data point to different clusters using
the fuzzy c-means algorthm [8]. Here, instead of
considering the Gaussian structure, the membership
value of a point to different clusters is determined
based on the relative closeness of the point to the
different cluster centres. In the following section,
we describe the fuzzy c-means algorithm.

22, Fuzzy C-Means

The Fuzzy C-Means (FCM) clustering algorithm [5]
is a set-partitioning method based on Picard iteration
through necessary conditions for optimising a
weighted sum of squared ermrors objective function
(/). Let ¢ = 2 be an integer; let X = (X, ..., X,)
C R* be a finite data set containing at least ¢ << N
distinct points; and let B denote the set of all real
¢ ®* N matrices. A non-degenerate fuzzy c-partition
of X is conveniently represented by a matrix U/ =

[t] = R, the entries of which satisfy:

w01, 1=i=c¢l=k=N (5)
Sup=1, 1=k=N (6)
jm]
N
Sug=0, 1=i=e (7)

The set of all matrices in " satisfying Eqs (5)-
(7) is denoted by Mey. A matrix U e My can be
used to describe the cluster structure of X by inter-
preting w; as the grade of membership of X, in the
ith cluster: u, = 0.93 represents a strong association
of X, to cluster i, while u; = 001 represents a very
weak one. Other useful information about cluster
substructure can be conveyed by identifying proto-
types (or cluster centres) v = (v, ..., v)7 & R,
where v, is the prototype for class i, | =i = ¢, v,
e R*. "Good’ partitions L' of X and representatives
(v, for class i) may be defined by considering mini-
misation of the c-means objective function JS,.: (M.
® R — R, defined by

N e
J“?[Ll', v) = Z Z [H“;::Imlxk TN ! [8)

k=1 i=1
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where 1 = m < = is the fuzzifier and || is any

inner product induced norm on R For m = |1,

Bezdek [8] gave the following necessary conditions

for a minimiser (U*, v¥) of J, (Uv) over Mg, X R
N

2 (teie )" Xy
k=1
V= N (9)

2. (H}.-T"

k=1

G . 'd:k" :.w—n]—l
- (2 (f'f;k.} ! 10)

=1

and

for all i, where dj; = |X, — v{]*.

3. Fuzzy Radial Basis Function
(FRBF) Network

Here we describe how fuzzy concepts are incomor-
ated at the input, output and hidden layers of the
RBF network. The input space is partitioned using
ovedapping linguistic sets, thereby utilising more
local information that aids in better classification.
Linguistic as well as numeric inputs can be handled
by using § and « functions. The output is modelled
in terms of class membership values. The input-
hidden layer weights are initialised by cluster centres
using fuzzy c-means, instead of the more conven-
tional hard c-means. The intermediate (hidden) layer
is suitably modified to incorporate fuzzy c-means
clustering during learning, such that each output
node receives the weighted membership value (as
opposed o a Gaussian function-based measure of
proximity) of the enhanced input vector within each
cluster. The resultant FRBF architecture is depicted
in Fig. 1.

Fig 1. Fuzey RBF network.
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3.1. Input Vector

Each input feature X, can be expressed in terms of
membership values to each of the three linguistic
property  sets  low (L), medium (M) and
high (H). Therefore, a n-dimensional pattern X, =
[Xi. Xa. ---, Xi,] may be represented as a In-dimen-
sional vector [10].

E-‘-'Is LERL ] -1-'3"] = Ep-!-.-uu(”] [_f,_j,
;"".llr.'\n'unm:."('J 1 (?J-j’ #.I'u;:.l'l! X (?J-j’ i | ':. 1 1 :I
;-L.I'ug.l'lixj"] (Ej.jlr

The linguistic properties low, medium and high are
modelled using | — 8, & and S functions [4],
respectively. Note that we could have used more
linguistic variables at the expense of increased com-
putational complexity.

The § and # functions of Figs 2(a) and (b) are
defined as

Sirno Ba=0 for r == o
= llrr:“]l for o= r=f
=|—1[':::]: for f= ¢ e {12)
=] fore =¢
f A .
ﬂ'{r!:'.ﬁ.]=slrir—.:'..:'—1'.:'] for F == ¢ [13]
= 1 —5[I.r: & e+ l:, e+ .5..] fior r 2=«

In S(r; o, B, ¢), the parameter 3, B = (o + )2,
is the crossover point, ie. the value of r at which
S takes the wvalue 05 In @r A, ). A is the
bandwidith (diameter), 1.e. the distance between the
crossover points of 7, while ¢ is the point at which
7 is unity. For ease of representation, let us define
the S function of Eq. (12) in terms of ¢ and A as
S(r; e, A), where oo = ¢ — A When X, is numerical,

i Sirofi, ¢}

10| = nememnas e

0.5

raf
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we use the 5 and w-fuzzy sets of Egs (12)—(13)
with appropriate ¢ and A to calculate the p values
in Eq. (11).

When the input feature X, is linguistic, its mem-

bership values for low, medivm and high are quant-
ified as

(% (22 e ) 8 (% [225); e )
g T\N\ T e e BTN !
L A H
vog (™8 ) el (25) s
WO ¥ M) oos 14 g e 14)
ametinnn = 7 T i
o 0 1 (09, 1
=5 |IJ€ |H I|: oy -'L.-I| i |IJC. | };".l: [ -L:l 095
High= SAY Dot f L1V 7 A

where ¢, A, ¢, A, . A, refer to the centres and
radii (bandwidths) of the three linguistic properties,

0.95 0.95 0.95
and XJ. ( L )! xJ( M ]s XJ( H ) refer to the cor-

responding feature values X, at which the three
linguistic properties attain membership values of
0.95.

Let M, be the mean of the pattern points along
the jth axis. Then M, and M, are defined as the
mean (along the jth axis) of the pattern points
having co-ordinate values in the range [X; . M)
and (M, X, |, respectively, where X; andX,
denote the upper and lower bounds of the dynamic
range of feature X, (for the training set) considering
numerncal values only. For the three linguistic pro-
perty sets, we define the centres as [17]

f-‘.umfumxx)] = MJ
'L'.I'.-HHIJ] G MJ_. “j]

f-.ru,.;mxj] - MJJJ

and the corresponding radii as

Fig. X (a) § function, and (b) 7 function.
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'h'.-.m.'rﬂ =2 A awtaningy ™~ Eamia)

-h-n',{a.vln =12 1!'.'\:;4.&.1'.: — !'.u..i...uxln:l [.1&]
‘kﬁ-.‘k.a]‘x.l_" s ‘.u.'-t...ll.'rll] + 'h'.\.,,hxlnh'.n.r.'..u.'r} A x.l_._]

-i'.n-.r...nr.v} =¥ iy i s

Here we take into account the distribution of the
pattern points along each feature axis, while choos-
ing the corresponding centres and radii of the
linguistic properties. Besides, the amount of overdap
between the three linguistic properties can be differ-
ent along the different axes, depending on the pat-
tem set.

This combination of choices for the A's and ¢'s
automatically ensures that each quantitative input
feature value r; along the jth axis for pattern X, is
assigned membership value combinations in the cor-
responding three-dimensional linguistic space of Eqg.
i(11), in sach a way that at least one of
;"l’.l'.-quj‘_,] [«-?J:I’ F-lm.-fm.mx*,y I;i"p. or #.I'u;:.l'l-!x{-_,] [«-?J:I is
ereater than 035 in the interval [cg,.. €ugl This
allows a pattem X, to have strong membership of
at keast one of the properties fow, medium, or high.

3.2, Ouiput Vector

Consider an f-class problem domain such that we
have ! nodes in the output layer. Let the n-dimen-
sional vectors € and V, denote the mean and
standard deviation (respectively) of the numerical
training data for the kth class. The weighted distance
of the tmining pattern X, from the kth class is
defined as

M X,'_ O 3
= /Z [ ”] fork=1,....,1 (17
\I‘l_| ij

where X; is the value of the jth component of the
ith pattem point, and C; is the kth class.

The membership [10] of the ith pattern to class
C, is defined as follows:

|
p(X) = : (18)

N
& (J‘)

where z; is the weighted distance from Egq. (17),
and the positive constants f, and [, are the denomi-
national and exponential fuzzy generators controlling
the amount of fuzziness in this class-membership
set (Le. in the distance set). Obviously, py [f,] lies

in the interval [0,1].

£ Mitra and [ Basak

1.3, Architecture

In the fuzzy c-means algorithm, the membership
value of any pattern vector X, to a class k can be
represented from Eg. (10) as

1
HJ.;" —r :

> (@

i .rfjfI

(19)

where dj; is the distance of the pattem vector from
the centre v, of the kth class.

In the architecture of a conventional RBF. the
transfer function of a hidden node is modelled by
Gaussian distribution function, which allows a hid-
den node to produce non-zero response, even when
the input pattern vector does not match with the
corresponding cluster centre. The nonzern response
depends upon the variance of the Gaussian distri-
bution function. Since the Gaussian distribution
transfer function of each hidden node is its local
property, the output of each hidden node can be
computed locally.

In the fuzzy radial basis function network, the
objective is to perform a fuzzy partitioning of the
data in the hidden layer. In other words, the objec-
tive is to compute the membership value of any
pattem to a class comesponding to any hidden node
(Eq. (19)) without using a Gaussian distibution type
transfer function, and combining the responses of
the hidden nodes in the output layer. However, the
membership value of any pattern to any cluster
depends upon the distances of the pattern from
all existing clusters (Eq. (19)). Therefore, if the
architecture of the Fuzzy RBF is exactly the same
as that of a conventional RBF, then it is not possible
o compute the fuzzy membership values of a pattern
locally. To pedorm the local computation of Eqg.
(193, a modified architecture for Fuzzy RBF is used.

Equation (19) can be written as

R0
dy =t (20)
x W
=]
wherne
1 J;;:.'f
B = |- 21
J (a:,) a1

The activation of each output node in the output
layer is given as

W = Wik (22)
J=1

where W is the response of the ith output node
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when X is present at the input of the network.
From Egs (20) and (21), +/"" can be written as

T
W= 2 3 WP (23)
i i=1
where
Hp =3 ip (24)

i=]

Equations (21) and (23) reveal the fact that #'s
can be computed locally in the hidden nodes, and
the activation of the output nodes can be computed
from the hidden node activations with an additional
nomalisation by the total output in the hidden layer
(H,). For this purpose, we introduce an auxiliary
hidden node in the Fuzzy RBF (as shown in Fig.
1) to compute the total activation in the hidden
layer, and feed it to the output layer. The weights
of the links from all hidden nodes to the auxiliary
hidden node are set to unity. Note that the member-
ship value u,;, of Eq. (19) is implicitly included in
the network architecture in terms of the hidden
node activations.

During training, the rule for updating the weights
(Eqg. (4)) is accordingly modified by the response
of the auxiliary node, and is given as

'ﬁ'H'ﬁ;l'H = T;

5 (= W) B (25)

where 7 is the leaming rate and *y/" is the target
ocutput computed from Eg. (18) as *y" = uw, (X,).
AW is the change in W, during training when X,
is presented at the input in the 3n-dimensional form
of Eq. (11).

4. Results

The Fuzzy RBF has been tested on a set of 571
Indian Telugu wvowel sounds, awailable from
hitpfdvwnivicalac.in=sushmitwpatterns.  These  were
uttered by three male speakers aged between 30 and
35 years, in a Consonant-Vowel-Consonant context.
The data set has three features F|, F, and F,,
corresponding to the first, second and third vowel
formant frequencies obtained through spectrum
analysis of the speech data. Thus, the dimension of
the input vector in Eq. (11) is 9. Note that the
boundaries of the classes in the given data set are
seen to be ill-defined (fuzzy). Figure 3 shows a 2D
projection of the 3D feature space of the six vowel
classes (@, a, i, u, e, o) in the F| — F, plane (for
ease of depiction). The parameters f; = 5 and [, =

1 M 1 E 1 e
00 a0 g LEin a0 zo HW 7
Rin Hr

Fig. 3. Vowel diagram.

I in Eq. (18) were chosen after several experiments.
The training set consisted of 30% damm, selected
randomly, while the remaining pattems constituted
the test set.

Table | shows the recognition scores obtained by
the Fuzzy RBF for different numbers of hidden
nodes (clusters) ¢ and fuzzifier se. It can be observed
that the overall performance is better with a larger
number of hidden nodes. This is natural, since more
hidden nodes imply a larger number of clusters.
Generally, the performance starts degrading from
around m = 3. There exists a band of m-values,
around the middle of the range along each ¢, where
the performance of the model is poor. These are
also evident from Fig. 4, which demonstrates the
change in classification performance of the FRBF
for different combinations of fuzzifier (m1) and num-
ber of hidden nodes (c).

It can be seen that a value of m = | indicates a
crisp partition of the data. Since no separate Gaus-
sian distribution to model the cluster structures is
considered here, the output of a hidden node is zero
if there is a small mismatch between the input data
and the corresponding cluster centre; and it is unity
only when the input data perfectly matches with the
corresponding cluster centre. Therefore, the output
of the FRBF is zero for all input data, except the
points representing the cluster centres. As m
increases, the membership value of an input takes
nonzere values, and it decreases with the distance
of the point from the cluster centre. The rate of
decrease falls with the increase of m. In the limit,
when m — = membership values of all points o
all clusters become equal, and the FRBF loses the
classification capability. Depending on the cluster
structure, the FRBF network exhibits an optimum
performance for a certain range of m.

Sample confusion matrices generated by the Fuzzy
RBF over the training and test sets are provided in
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Table 1. Recognition score (%).

MNodes Class Fuzzifier m =

[ &

125 15 20 25 3.0 35 4.0 45 5.0 55 6.0 0.5 1.0 15

8 d 10 125 00 275 250 175 00 175 200 100 0.0 5.0 5.0 5.0
a 733 T8 TIR TOO 66T  S5TR 5TR 556 556 TIH 689 667 607 667

i 831 807 892 952 BEO 735 759 892 916 892 916 T8I TS5 BT

it 962 962 923 936 962 923 756 641 o641 923 641 92 962 962

e T&3 B30 Ted Tie T26 774 736 679 o604 T4S5 585 821 802 802

a TRE  B0O 941 BOO  T1IR 612 671 565 576 165 635 BTl 906 906

Ner 7537 774 783 771 746 687 648 632 622 636 625 Te2 T67 Ta9

10 d 225 250 625 200 50 0.0 50 125 0.0 400 300 5.0 5.0 5.0
a TI8 956 489 756 556 556 578 556 o600 511 578 667 667 667

i 976 940  B6T  BeT 904 7R3 BRO HO2  92F  HREO  B6T  B43 RO B3

it 974 923 679 962 936 462 603 551 641 859 936 936 936 936

I 660 T74  BSE 906 745 6BY9 642 415 o044 840 B40 B0 B0 B0

a T2 BOO 988 TT6  TeSs 941 Toos 6R2 O 600 906 TSI 906 929 W41

Ner T62 B08 794 203 730 638 632 570 616 790 Te9 TRO 792 TR7T

12 i 250 100 175 TO0 175 100 200 0.0 5.0 5.0 50 50 10.0 125
a 978 BRO9 978 556 556 556 556 556 T 7Ll 689 689 G6BY9 6RO

i T71 0 892 916 940 892 B3 843 B6T  6RT 7Ll 904 B43 M3 843

i 962 962 BT2 962 974 B59 962 923 962 962 936 936 936 936

e 877 BTT  B40  T45 7360 T3 TE3 623 915 H946  B40 M0 B0 B0

a Ti6 0 800 955 TOe 694 941 694 965 H59 BRI B4T BT BT M7

Ner 806 B10 B3I® 790 730 751 732 T25 Te9 774 7R3 TI1L TIe  TIR

14 i 225 150 625 650 475 225 15 100 5.0 5.0 50 50 50 5.0
a 956 956 667 556 556 TL1 578 933 733 733 756 T8 TIE TILR

i B80T 904 831 952 B19 B8RO 940 B892 843 843 843 B35 855 855

i 821 910 923 B85 923 974 0936 962 936 936 936 936 936 916

e B58  B21 B840 792 B3O B840 TO8 B3R B6B  H6R  B6B  B6E B6.R OB

a 929 918 953 929 965 38E 553 B00 941 941 941 1 Wl

Ner H0E  HB24 HIR H2E  B1O 714 691 H10  BO1 RO HD3 HOE BOE HDE

16 i 200 200 350 50 100 100 125 50 15 100 100 w00 100 100
a 978 978 933 B89 556 578 556 6RO 911 689 933 822 889 BR9

i 952 892 892 819 B3l 928 6T 952 904 940 916 90 MO 940

i 910 936 923 872 923 923 962 910 936 910 962 952 92 962

£ 774 849 821 962 830 764 B11 774 821 ROZ2  B21 B2l 821 B2

@ 929 80O 918 929 788 859 718 976 HR2 976 B35 B59 859 859

Ner H31 BLT B40 822 744 T62  T41 T4 BLO  BOG6  H12 RLO ELT  HLT

20 250 225 325 525 175 400 200 475 125 425 400 475 350 425

i

a 978 978 956 511 556 533 733 TIR 978% Tse 978 9L1 918 800
i B0 BEO  H92  BEO  B6T  Bl19  B6T 904 B92 940 928 MO 928 940
it B59 949 923 949 949 962 949 949 949 923 949 952 W9 923
£ B30 BTT B6E  B6S  B49  B49  B40  B21 B30 HO2 792 B2l BD2 BO2
a 941 918 941 918 918 929 RR2Z 929 91L& 965 894 929 929 965

Ner H28  B49 H56 826 792 H06  BO3  H44 B3l B42  H490  HeT  H54 HB47
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Flecognition Scone (%) —

Fuzziher {m) —
Fig 4. Recognition scores (%) of FRBF for different combi-

nations of [uezilier () and number of hidden nodes (o) with
Vowel data,

Table 2. Sample confusion matrices of FRBF.

Training Testing

d a i u e o d a ! e o
a 20 5 0 012 3 17 7 0 0 12 4
a & 25 0 0 0 12 1024 0 0 0 11
i 0 0 72 011 0 0O 0T 0 13 0
w 0O 0 0 T 0 4 0O 0 07 0 5
e 1 0 10 090 5 1 0 12 0 8 35
o O 0 0 6 1 78 0O 0 0 8 275
Table 3. Comparison between various models.
# RBF FRBF (m = 2.0) Baves'
Nodes : - classifier

i 9 12 810 12

Score  59.7 T12 T14 TH3I 794 #3848 792

(K]

Table 2. The overall recognition scores are 82.2%
and 79.3%, respectively. It can be observed that
most misclassifications are made between adjacent
vowel classes in Fig. 3, viz 4 and ¢, @ and o, and
i and e. This behaviour is similar in the case of
the RBF, the only differences being the poorer
classification performance and longer time for con-
vergence.

Table 3 demonstrates the performance of the RBF,
Fuzzy RBF and Bayes' classifier on the Vowel data.
The conventional RBF used » input nodes, a crisp

1 z 3 4 8 & T T e
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{-dirmensional output and hard c-means clustering at
the hidden layer. The Bayes' classifier has been
implemented for multivariate Iy nal pattems with
the a priori probabilites p, = ", where |C)| indi-
cates the number of patterns in "Yhe ith class and N
is the total number of pattern points. The covarance
matrices were considered different for each pattern
class. The choice of nommal densities for the vowel
data has been found to be justified [18]. It should
be noted that the resulis of the RBF was obtained
after 20,000 iterations. The fuzzy RBF, on the other
hand, provided a superior recognition score with
around only 5000 iterations.

5. Conclusions

A new fuzzy radial basis function network is
developed by integrating the merits of the fuzzy c-
means algorithm and the RBF network. The archi-
tecture of the RBF network is suitably modified to
incorporate fuzzy c-means computation within the
model. The input is in terms of linguistic values
fow, medivm and high, modelled vsing § and =-
functions. The output is provided as class member-
ship values.

It has been experimentally demonstrated that the
FREF model exhibits better classification perform-
ance than the conventional RBF model, on real-life
data, for a suitable range of fuzzifier values. The
fuzzifier value depends upon the cluster structure.
Theoretical andfor experimental investigation towards
adaptively selecting a suitable range of fuzzifier
values, for a given input data, holds promise for
future research.
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