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Abstract

Waves that occur at the swiace of a power-law fuid film fAowing down an inclined plane are investigated. Using
the method of integral relations, an evolution equation is derived for two types of wave equations which are possible
under long wave approximation. This equation is valid for moderate Reynolds numbers and reveals the presence of both
kinematic and dynamic wave processes which may either act together or singularly dominate the wave field depending
on the order of different parameters. It is shown that, at a small Aow rate, kinematic waves dominate the flow field and
it acquires energy from the mean flow, while, for high fow rate, inertial waves dominate and the energy comes from the
kinematic waves. This energy transfer from kinematic waves to inertial waves depends on the power-law index n. Linear
stability analysis predicts the contribution of different terms in the wave mechanism. Further, it is found that surface
tension plays a double role, for the kinematic wave process, it exerts dissipative effects so that a finite amplitude case
may be established, but for the dynamic wave process it vields dispersion. The evolution equation is capable of predicting
amplitudes, shapes, and interaction at the finite amplitude level. It is also shown that the results of the interaction may
lead either to forward breaking waves or solitary waves with dark soliton depending on the flow rate, Weber number
and the angle of inclination with the hovizon. Power-law index # nlavs a vital role in the wave mechanism.

Keywords: Power-law fluid film; Waves on falling film; Stability of power-law fluid film; KdV waves: Forward breaking
Waves

1. Introduction

Flow of thin liquid film on an inclined plane has drawn the attention of studies since the last five
decades due to its various applications in the technological development of modern science. Linear
stability of long waves on a layer of viscous fluid lowing down an inclined plane was investigated by
Yih (1963), who found the critical Reynolds number by a regular perturbation method. Prior to this
study, Benjamin { 1957) approximated the eigenfunction in the Orr—Sommerfeld equation governing
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linear stability by a power series in the coordinate normal to the inclined plane and determined the
phase velocity of the wave. Using momentum integral method, Kapitza (1948), Shkadov ( 1967, 1968)
and Krylov et al. (1969) performed the analysis to predict the dependencies of the growth rate and the
phase velocity of the wave. They have predicted the critical Reynolds number and the characteristic
of the fastest growing waves. A detailed account is documented by Alekseenko et al. (1994). Finite
amplitude stability of a layer of viscous liquid flowing down an inclined plane were made by Benney
(1966), Lin (1969), Gjevik (1970) and Nakaya (1975). It is interesting to note that most of the
studies on the flow of thin liquid film on an inclined plane assumed the fluid to be Newtonian.
These results of Newtonian fluid cannot describe the rheological behaviour of the non-Newtonian
Auid. As most of the fluid used in industry in connection with plastic manufacturing, Hlow of molten
metals/lava, in coating process, movement of biological fluid are basically non-Newtonian. Of course,
some studies on linear stability of non-Newtonian liquid film flow down an inclined plane were made
by Gupta (1967) considering fluid be second order; by Liu and Mei (1989) a Bingham fluid, Lai
(1967) for a Oldroyd-B fluid and Hwang et al. (1994) and Berezin et al. (1998) for power-law
model. Using Benney’s (1966) approach, Dandapat and Gupta (1978) studied the stability of a
falling film of an incompressible second-order fluid with respect to two-dimensional disturbances of
small but finite amplitude. They found that in the presence of surface tension, the stability of fow
of the falling film is supercritically stable and an initially growing monochromatic wave reaches
an equilibrium state of the finite amplitude. Further, they found that the equilibrium amplitude first
increases with the elastic parameter M (say) of the fluid, reaches a maximum and then decreases
with the increase in M. In a recent study, Dandapat and Gupta (1997) have shown the existence
and the role of the solitary wave in the finite amplitude instability of a layer of a second-order fluid
flowing down an inclined plane. They observed that the number of solitary waves decreases with
the increase in M. Ng and Mei (1994) studied the roll waves on a layer of a mud modelled as a
power-law fluid Howing down an inclined plane. They found through linearized instability that the
growth rate of unstable disturbances increases monotonically with the wave number, this prevents
them from predicting any preferred wavelength for the roll waves. Further, they observed that the
existence of long roll waves depends on the power-law index even if the corresponding uniform
flow is stable. It is to be pointed out here that Ng and Mei (1994) have neglected the surface
tension term in their analysis. It is well known that the wavelength, amplitudes and their relation
with the flow rate are of primary importance for the design of process devices. Further, the analysis
of the non-linear wave evolution equation is in general very complicated. So to extract more results
from it, most of the previous studies on non-linear wave process are based on the assumption of
stationary waves which does not change its phase speed and shape during the course of propagation.
This study will be based on quasi-stationary wave process to analyse the evolution equation of a
power-law film flow on an inclined plane. In this process, the phase speed ¢ is assumed to be
approximately constant so that the wave profile in a moving co-ordinate system is deformed slightly
during the course of propagation. Alekseenko et al. (1979) have initiated this analysis to study the
wave formation in a liquid film flow on a wvertical wall. For a better understanding of a physical
phenomena on a power-law fluid film Aowing down an inclined plane, it is therefore desirable to
investigate the types of waves that occur under various parameter regions. One should remember
here that the power-law model represents a class of non-Newtonian fluids which do not exhibit any
elastic, yield or stress relaxation properties but these fluids show the behaviour of shear-thinning
(pseudo-plastic) or shear-thickening (dilatant) properties. Power-law models have been found to
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be successful in describing the behaviour of colloids and suspensions and a variety of polymeric
liquids and low molecular weight biological liquids, in the field of glaciology, blood-rheology and
geology. Since this model is different from a Newtonian fluid only in that its viscosity depends on
the symmetric part of the velocity gradient so that in a simple shear flow, the viscosity depends
on the shear rate. To be more precise such effects are inconsequential, the dominant departure from
the Newtonian behaviour being shear-thinning or shear-thickening. Andersson and Irgens (1989)
documented a review of power-law fluids which contains the names of different non-Newtonian
Auids and their corresponding values of the power-law index mn.

2. Mathematical formulation of the problem

Consider a layer of an incompressible fluid obeying the power-law model that flows down an
inclined plane of inclination ¢ with the horizon where x-axis along and z-axis normal to the plane
(Fig. 1). The governing equations are

du  dv

— 4+ — =10, 1
de  dz ()
i i i i i it i,
p[7+u7+1—]=—7p+p95|nﬂ+ = 4 ﬁ'i', (2)
t ix dz ix i dz
du du du d 0Ts T
P[T +u_— +i’7]=—Tp—P!3505ﬂ+ =+ —, (3)
dt dx oz dz ix dz
where the flow is assumed to be two dimensional and the stress tensor 1;; defined by
1y = 22Dy D) 2Dy, (4)
where
1 [du; duy
L [ﬂx_ ; dx ,-] ()

denotes the strain-rate tensor, g, is the viscosity coefficient of dimension [ML'""7"" 2] and »n is
the power-law index which is positive. n=1 represents a Newtonian fluid with constant dynamic

Fig. 1. Sketch of the problem.
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coeflicient of viscosity wu, while » =1 and »# > 1 corresponds to the case of pseudoplastic
(shear-thinning ) and dilatant (shear-thickening) fluids, respectively. w, v, p and p have their usual
meaning and g is the acceleration due to gravity.

The boundary conditions are as follows: no-slip on the plane z =0

u=10, v=I. (6)

At the free surface = =h(x, ), the shear stress vanishes and the normal stress difference just balances
that due to surface tension and reads as

Toef 1 —1‘1’3}—{1’_1_1—1'_-:}}1'_.‘='[] (7)
and
Po—p+ {T.'c.thi_ s 2T:1ﬁ1 + T:::H:] + hi—}—' = fTr'f:l‘_-L_-L{] + hf}—l’?—‘ {8}

Where &, pp and & denote the surface tension, atmospheric pressure and deflection from the mean
depth hy.

Further, the kinematic condition at the free surface z=h(x. 1) is
i ih
-t U= {9}
ot dx

The basic velocity [w(z).0] in the steady flow down the plane is

_(14+2n)_ 5 3 {1En)n
o {]_(l_’e’_“) } (10)

To obtain Eq. (10) we have used the no-slip condition «(0) =0 and the condition of zero shear stress
at the free surface z=hy which is the undisturbed layer thickness. Here, iy is the depth averaged
characteristic velocity defined by

o O ]
En=l w(z)dz=—" (Pg 5'"ﬂ) pmn, an
ho Jo (1+2n) e

This steady flow has the pressure distribution p(z) given by

p:pn+pgﬁq;(]—};) cos 6. (12)

We assume the characteristic longitudinal length scale to be [y whose order may be considered the
same as the wavelength Ay and the mean film thickness /fy as the length scale in transverse direction.
We define the dimensionless quantities as

x=lx*, (hz2)=hy(h*,z*), r=(;—n)f** w=Tggld", 1:=(1¢E)Enu"~ p=piyp°,

0 Iy
(Taes Tz )= pal o /o }”_I{Eﬂa"‘"ﬂ}{f.:vf::} and  (Te, 7o) = (@ o/ o) (102 T2)- (13)
Using (13) in Egs. (1)—(3) and in Egs. (6)—(9), we arrive after dropping the asterisk at
du v

—_ + — =0, 14
dx  dz (a4
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cu fu o dp  sinf £ 0Ty 1 dt,

i s i = ) iy (13}
PilH PilH du i ap cosf £ OTn £ 0T
*‘2[5”5 "E]_ T tee RE (16)
u=0, v=0 atz=0, (17)
{1—; W :|—s:2{t_ﬁ—r_._,}%={] atz=~h, (18)
+$"3 Y _2 e [ .. ]
A 3 ox Re “dx Re ~ T\
= - 2 —32
=32We% |il + (%” at z=h, (19)
and
ch oh
HZE-'_”E at z=~h. (20)
Where Re is the Reynolds number
Re= p—ul kg
M ]

We = a/piphy is the Weber number, Fr = /gh, is the Froude number and & =/, /l; <1 is the aspect
ratio for long wavelength approximation. Using the dimensionless form of Eqgs. (4) and (5) in Egs.
(14)—(20) under usual boundary layer approximations for long-wave expansions, we arrive at

du  du
e =4 (21)
it it &) dp  sinf 1 & faul
— —_— J— T — e — E— " 22
it i “ox T UE: v &Fr  :Redz (T:) 12}
dp  cost
e L (23)
The boundary conditions are
u=0=v atz=A(, (24)
;—‘j=u at z=h(x1), (25)
&*h
p=py— F:J'Wf:ﬁ at z=h(x,1) (26)
and the kinematic condition is
ih ih

p= — — atz=h 27
v +u= a (27)
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Here we assumed that the Weber number We is large enough which is a fact for thin films. The
z-momentum equation (23) and normal stress boundary condition (26) are used to eliminate ¢ p/dx
in Eq. (22) and the resulting system reduces to

u, + v, =0, (28)
w; + Uty + vit: = Weetho, — Fr' cos 0k, + (eFr) ! sinf + (sRe) ™ '[(u: ) i B (29)
u=0=v atz=0, (30)
u. =0 atz=hx.t), (31)
h +uh,=v atz=h(xt) (32)

Here the subscripts denote the derivative of the respective variables with respect to ¢, x and =.
Integrating Eqgs. (28) and (29) with respect to = from 0 to & under the assumption that the velocity
profile (10) is valid in a non-transient and non-uniform flow, we get

e (B (33)
ot (ks
2 2
9 Y e 1_(4
+ (8% +o5 ) = Weetbhe+ - b ()], (34)
where the flow rate per unit film width is
]
= f udz (35)
L]

and the shape factor ff is defined as

L 2(1+ 2n
g=-L [pge=21+20) (36)
huy o (24 3n)
For shear-thinning fluids, 0 <n =< I, therange of fis 1 = fi = 3 i is defined as the depth-averaged
velocity

" q
ﬁ:h"/ wdz=1. (37)
L]
Relations
sinf_ 1 ( 1+2n ) o
Fr Re n )

and

(38)

cosf? 1+ 2n\"cotfl cotf

Fr Re b

have been used in deriving Eq. (34). Using Eq. (37) in Eqgs. (33) and (34), we get
e + (@) =0, (39)

n
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2 = M
(@h), + (,ﬁﬁlh i i) e [ﬁ _ (5) ] . (40)

24 V& f
It is to be noted here that the momentum integral method has been used by earlier researchers
in connection with boundary layer theory Schlichting (1968) and on stability theory starting from
Kapitza (1948), Alekseenko et al. (1985), Jurman and McCready (1989) and others for Newto-
nian fluid and Ng and Mei (1994) for power-law fluids. It is to be noted here that the first
term on the right-hand side (rh.s.) of Eqg. (40) is missing in Eq. (39) of Ng and Mei (1994)
as they have not considered the surface tension term in their analysis. Further, the difference
on the second term of rhs. is a factor I/ye. This discrepancy is due to their particular choice
of horizontal characteristic length scale [;. In the following analysis, we have discussed wave
evaluations/generations for various parameter regions depending on flow rate, surface tension and
angle of inclination. Throughout the analysis, we have assumed that the Weber number is large
enough which is a fact for thin film. Moreover, it is to be remembered that surface tension is the
Auid property and it does not have any bearing on the length scale and according to our definition
We = {{] +2”},|"I” }n{]n—2:.{2—Jr:!Fi'Re—{2—3n:]I.{Z—Jr]{sin ﬂ}{}_—]n]'{}_—n]" where Fi= If'f{l_”:.."I[P{Z_”:,fj'{]”_h}'i]
is the Film (Kapitza) number and v, = pu,/p is the kinematic viscosity. Experimental results as re-
ported in Alekseenko et al. (1994), for vertical thin film with Re ~ 1, Fi''' =954 and 4 are
observed for water and maximum viscous solutions, respectively, used in their experiment. These
two results lead to We =~ 5600 and 250, respectively, which are large enough. Further Alekseenko
et al. (1985) have shown that the governing equations (21)—(27) are valid for all real fluids within
the range of Reynolds number 1 < Re =& 2.

3. Linear stability analysis for the uniform flow

Following standard linear stability analysis, we introduce the perturbed field h=1 + H(x.¢) and
=1+ Ulxt) in Egs. (39) and (40), where H and U/ are infinitely small so that their product or
higher order terms are neglected to obtain the perturbed equations

H +{U+H)=0, (41)

(U + H) + (QPU + (2 + f)H )y =Wee Hyo + ;T—r[{n + 1H — nU] (42)

We assume that the perturbations of the system of equations (41) and (42) are of the form of a
travelling wave

(H.U)=Re[(H.U)exp {i(ks — wi)}], (43)

where the wave number & is real and o =, + iw;, is the complex frequency, ¥ =x/¢ and 7= t/e.
The dispersive relation

w’ — (2fk — iy o — iy 4+ 2k + (f — 2k — Wek' =0 (44)
is obtained by using Eq. (43) in Eqs. (41) and (42). The solution of Eq. (44) gives

w* = Pk — ;ﬂ + (a +ib)"?, (45)

{
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where
1
a=Wek* + [B(f — 1} + alk* — ;ﬁ.—zn; and b=(142n— fn)y 'k (46)
It is clear from the definition of /i that b is positive for all # and 5. &+ 0. The separation of the

real and imaginary parts of Eq. (45) gives
wF = fk + Gga + (& +h2}%])

12

and
1 w12
fu}h=—%i(%[—a+{ﬂl+bl}5]) .

It is obvious from above that @ gives stability while @ will ensure stability provided

1/2

G[—a+{al+b2ﬁ]) <

In other words, for & #0,

n
2y

1+ 2n
24+ Wek? > —— 2 (47)
72
Using relation (38) for =z, stability criterion reduces to
(1—n}) 2427 —1
Wen~k
RE{Rﬁlimar=”(]+2”) cot []— l+2n] ; (48)

This shows that the surface tension renders stability to the flow under long wavelength approx-
imation. This result confirms the earlier findings of the stabilizing role of surface tension. Further,
Relinear depends on power-law index n. It is clear from Fig. 2 that the Reynolds number Rejinear
increases with the power-law index n. In other words, increase of non-Newtonian character stabi-
lizes the flow. For example, if the flow of Polystyrene at 422 K (n=04) is stable, then the How of
3% Polyisobutylene in decalin (#=10.77) is also stable but the reverse is not true. For large &, the
asymptotic amplification rate is

1 h 1
w ~ ==t —=~ ——n 49
o —glkig s 49)
ensuring stability while the phase speed is
it
— ~ *kvWe. (50)
In the neutral state m; =0 gives
1+ 2n
c = A (31)
i

It is to be noted here that for Newtonian fluid Yih (1963), Benjamin (1957) have found the phase
speed equal to 3. It is clear from Fig. 3 that ¢ increases as n decreases.
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Fig. 2. Effect of surface tension on the variation of Rejmes with n for fixed wave number k=005 and #=10", Solid
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Fig. 3. Variation of the phase velocity oy with respect to power-law index n.

4. Derivation of the two-wave egquation

To study the slightly non-linear waves, let us assume

h=14+H(xt), g=1+0Q(xt), HQO=<I1, (52)

where H and (0 are dimensionless perturbations of the film thickness and flow rate, respectively.
Substituting Eq. (52) into Egs. (33) and (34) and retaining the terms up to second-order fluctuations,
the continuity and momentum equations reduce to

Ho+0.,=0, (53)
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0, +280; + (a — B, — %[{EH + DH — n0)] - WeeH

_ MHE — 2nHQ, — 2B[00, + (2n — 1)HO, — OH,]
H{] - ?’1'} 3
=Bl =AhoRe b = S0 Wee2n 1) G4)

Egs. (53) and (54) can be expressed into a single equation for the film height disturbance H by
differentiating Eq. (54) with respect to x and eliminating () and its derivative according to the
following procedure described below:

(i) To eliminate the linear derivative of () use Eq. (53) and for

(ii) the non-linear terms, approximation methods of quasistationary process is to be used. Alekseenko
et al. (1985) have used this method for a vertical film. In this method, the basic assumption used is
in conformation with the experimental observation that the waves generally evolve in shape rather
slowly with the downstream distance. In effect, this procedure limits the ability of the equation to
describe the behaviour of very rapidly growing or decaying waves (Jurman and McCready, 1989).
Following Alekseenko et al. (1979), we assume the system of coordinate moving with velocity e,
which allows the coordinate transformation (f,x) — (t.& =x — er). It is further assumed that the
phase velocity ¢ is approximately constant for quasistationary waves in the interval A¢. Under this
transformation, Eq. (53) gives

H —cH: + Q:=0. (33)
The wave profile in a moving coordinate system is deformed slightly in the quasistationary process,
this approximates Eq. (55) as ¢H:=(Q; from which relations are obtained

0 =cH, (56)

i, |
e 57
ot fx 92

After using rule (i) and substituting relations (56) and (57), where needed, into Eq. (54), we get

Wi i i i “We
{Hr + CHH'L} + f;{ﬂ: + 1y }{ﬂ: + CZEJ.I}H e R |lT“"J‘r]r.'l:t.m.m

=~ |+ 20+ 22| @ + 22 - )+ T e,
+ %{2,&{] —n)+ 2l +2n)|(HH, ) — %Wﬂ“ﬂ:}{ﬂﬂnx s (58)

where ¢p as in Eq. (51) and

cp=ftVpP-f+a (59)

It should be noted here that weakly non-linear waves are small in curvature, therefore, the contribu-
tion from the higher order derivatives of the quadratic terms on the r.h.s. of Eq. (58) are very small
and hence may be neglected. Therefore, Eq. (58) consists of a two-wave structure which reveals that
two-wave processes occur simultaneously on the thin liquid film. They are according to Whitham



B8, Dandapar, A. Mulhopadhyvay! Fluid Dyvnamics Research 29 (2001 ) 1992240 200

2.0 = T T T T T T
2 .
e
ioEil ///
1 /
1 e i
gbl. | TSR i
i 1 3 1 1 1 1 1
-1 BRIk I 0.0% .1 s & .45 L
et Be —
Fig. 4. Variation of the wave velocities ¢z — vs — cot /Re with power-law index . Solid lines correspond to o and

dotted lines to c2. Bold and faint lines for both cases correspond to n=1 and 0.4, respectively.

(1974) (1) Kinematic waves: These are the lower order waves with characteristic velocity cp. These
waves are non-dispersive and are expected to be a low frequency disturbance. These waves are
responsible for the transport of fuids. (ii) Dyvaamic waves: These are higher order waves with char-
acteristic velocities approximated by ¢, and c2. These waves are dispersive, their speeds in general
depend on fluid inertia, gravity and surface tension. No net transport of the fluid is associated with
the motion of these types of waves. On the other hand, these waves may be called inertial waves,
since Eq. (58) has appeared due to the inertial term of the Navier—Stokes equation. It can be seen
from Fig. 4 that ¢, increases while ¢; decreases with the increase of either cot /Re or n.

Inspecting the non-linear wave equation {58), it can be seen that the kinematic waves, associated
with the first order terms, dominate the wave field for Re ~ 1, while for large Reynolds number
Re ~ fr =1, the waves of higher order dominate. In ranges where one of these processes controls
the type of waves and its behaviour, hence for easier analysis, Eq. (58) is linearized since analytic
solutions are rarely available for the full non-linear system. On the other hand, linear results may be
used to infer the corresponding non-linear behaviour of the various waves. To do so, the physical
processes of the two distinct wave equations (58) will be reduced following the method of Whitham
(1974). In this process of reduction, the dominant wave type is first determined from the relative
orders of the parameters of the original wave equation. For Eq. (58), the parameters are considered
Re ~ 1,We ~ 1/&%,cot ! < 1. Under this approximation, Eq. (58) reduces to

H+ coH =0

which describes the kinematic wave.

In the next approximation (order of &) the insensitive time derivative i.e., those that do not corre-
spond to the dominant wave process, are replaced by &/dr = — ¢pd/dx, where ¢ is the approximate
speed of the wave and is used to eliminate the time scale by which the overall equation is governed.
To study the effect of different waves, orders of different parameters are considered.
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4.1. Case-I: Small flow rate; Kinematic waves, for Re ~ 1, We ~ 72, cotf < 1
In this limit, the kinematic waves are expected to dominate the wave field. To get the reduction
equation as outlined above following Whitham (1974), the time derivatives of higher order terms
are replaced by —cpd/dx in Eq. (58), the equation then reduces to
AP

wE Weye
H; + cpH, + ';{m —coNex — ep)Ho + ”’ Heor + [2(1 + 21) — (1 — n)]HH,

+ 2 4peo(1 —m) — 28 — m)e§ — 21 — n) — 11 + 20)(HHL ),

+ =2 Wed (HH ) =, (60)
where the non-linear quadratic terms with higher order derivatives in x may have been neglected on
the basis of weak non-linearity, but have been retained here for the sake of completeness. It would
be better to take a note on the contribution of different terms of Eq. (60), although the following
conclusions are valid for the entire range of Re. In general, odd-order spatial derivatives contribute
to the celerity of the waves. Due to the presence of viscosity, there exists a mechanism for energy
pumping from the mean flow to the perturbations, as a result, the second order derivatives pump
energy to the perturbation which results in the instability but the fourth order derivative containing
surface tension term introduces dissipative effects resulting in stability. The non-linear HH, term
causes an asymmetric sharpening of the peak to the steeper front and more shallow back as is
observed for solitary waves, while the non-linear H? term contributes to the symmetric growth of
the peak. On the other hand, both allow for weak interaction between modes. To obtain a better
understanding, linear stability analysis is needed.

4.1.1. Linear stability analysis for the kinematic waves
In this section, we shall examine the linear response for a sinusoidal perturbation of the film by
assuming a perturbation of the form

H = dexp[i(kx — wi)]. (61)

where o= (. + i) is the complex wave speed and the amplitude & is real. We shall first use the
transformation x = &% and =& in Eq. (60) and then use Eq. (61) on the linearized part which gives

2

k “We
—itn + ikeg — '?[aﬁ O B = edef:u‘

Equating the real and imaginary parts, we get

o, = gk
and
i W
;= '?{ﬂfa ~2fco+ f —a) - %ﬁ 62)

Hence the phase velocity
oy _2n+1

= —=

k Cn n
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Fig. 5. Variation of the neutral curve and line of maximum growth with power-law index n. Solid lines and & =0 line
denote neutral curve and dotted lines indicate the line of maximum growth. Bold and faint lines for both cases correspond
to =085 and 0.5, respectively.

is obtained. This shows that the phase velocity is independent of the wave number k, implying
non-dispersive waves. But, m; is different from zero containing two summands which appeared due
to second and fourth derivatives present in Eq. (60). It is clear that the second term which is
related to surface tension is always negative and results in the attenuation of perturbations implying
dissipation. On the other hand, the first term may have any sign. When > (¢ — 2ficy + ff), then
this term also contributes to dissipation. But for & 0, if

% < (cj — 2feo + B) — Wek?,

then the flow becomes unstable. In other words, if

L—s 2527 —1
) cmﬂ[l—ﬁ”—;] : (63)

Re = Re|imm=n(] i

then the perturbation grows resulting in instability. It should be pointed out here for We =10, that

this result was obtained by Ng and Mei (1994) and it agrees with our earlier result equation (48)

for stability criterion. This shows that the second derivative yields the energy pumping into the

perturbation causing the instability while the fourth derivative term describes the dissipation effects.
For neutral perturbations (m, =0) gives two relations

i (64a)

|
142 113
“é*.-:[( ;”—1) _WE:| ; (64b)

This shows two branches of the neutral curve and the flow instability takes place between them.
They are depicted in Fig. 5 for We =400, 6 =5 with different values of #n. The minimum Re, at
which instability sets in may be denoted as critical Reynolds number Re, for wave formation and
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Fig. 6. Variation of critical Reynolds number Re, with power-law index # at different angles of inclination 8. Bold, slim
and dotted lines are for =10, 30 and 75 , respectively.

obtained from Eq. (63) as

| —n
n
Re.=n cot . 65
¢ (l +2n) 193}

It is clear from Fig. 5 that at this value of Re., two neutral curves bifurcate. The wave number
of the waves with maximum growth is obtained from the relation dm,;/dk =0, gives

[ f1+2n 17" ke
wo[(5-)m -

where ky is given by formula (64b). Further, it is shown in Fig. 6 that a flow which is stable for
Newtonian fluid may become unstable for shear-thinning (# < 1) fluid or a stable shear-thickening
(n = 1) fuid flow loses its stability if the fluid is replaced by Newtonian fluid.

4.2, Case-II: High flow rate; Dynamic or inertial waves

This section will deal with the waves of higher order that dominate in the range of large Reynolds
numbers Re ~ 1/&2% 1. In this range, dynamic or inertial waves have a controlling position over
the kinematic waves. Different limiting cases are considered depending on the relative orders of
magnitude of the parameter We and the angle of inclination #.

4.2.1. Case<(i): Re ~ 4, We~ 1, cotfl <1
Under this limit, Eq. (58) will be controlled by the dynamic or inertial wave field. Retaining the
linear terms of the order of 1/: as the first basic approximation, Eq. (58) reduces to

g lax)\ar T TPex )T T
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The equivalent forms of the above equation are

(i +e|£)H=ﬂ. (68)

ot ix

(i +cli)H={] (69)
il dx

describing the propagation of the travelling waves in the mean flow direction with velocities ¢, and
ca, given in Eq. (59) above. It is clear from Eqs. (68), (69) and (59) that the first and second wave
propagates faster and slower, respectively, than the mean flow. The factorization of the classical
wave equation results in two waves moving in opposite directions with the same velocity. The same
result may be obtained if systems (68) and (69) are transformed through the system of coordinates
moving with velocity @ and it results in

iH {{.‘| —Cl} idH .

- =10,
it 2 i
H (e —ec) 0H
& 2 8

where £=x — (¢ + 2 )t/2.

Following the procedure described above, the time derivatives in Eq. (58) are replaced by the
relation 7/dt = — ¢ d/dx, except for, naturally, the operator ¢/t + ¢, d/dx. The time scale ¢, is chosen
because it corresponds to the wave in the direction of shear and should be the primary disturbance.
The resulting equation after integrating once with respect to x yields

West

Rog—C 1—n "
H +eH -~ ————H- Heo — (14 20) + :
VEC] — 2 £ — ¢z 2] ve(c) — ca)
% (142m)x +2(1 —m)f(1 —2a1) + 2(B — n)e] 14 2n

WeelHH o =A(t). (70)

]Hh& =

] —C2 ] —C2

Assuming the amplitude of thickness perturbation & ~ & and keeping the terms up to (&), for
periodic stationary waves (4(r)=10) one obtains
nlco —c1) 4,
yeler — e2)
1+ 20+ 201 —nX1—2e )+ 2p —n)c’ £We
SO+ 2t 20 =)L = 2e) 2B -mF
(c1 —e2)

It can be shown that the third term on the left-hand side is always negative for Re ~ 1/&° and
cotfl < 1.

H; +CIH1 o

(e1 —e2) o WLk

4.2.2. Linear stability analvsis for the dynamic/inertial waves

In this section, we are interested in understanding the contribution of separate terms to the for-
mation of the wave process (71). To achieve this goal, linear stability analysis is being performed
by assuming the perturbation of the form

H =dexpli(kx — wi)], (72)
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where o=, + ie;) is the complex wave speed and the amplitude & is real. Use of Eq. (72) in
Eq. (71) gives
Wee?

i ; n o .
—im + ke + — L+ ik? =10
YECL —C2 cL—

cp —

By equating the real and imaginary parts, we get

Wes”
wr=crk + ——— 3, (73)
Cp — €y
O, o (74)
TEC — 02
and the phase speed
Wes”
c=c + —=— g, (75)
) — 2

It is clear from Eq. (75) that the surface tension yields dispersion in this case. The third term in
Eq. (71) comes from the contribution of the kinematic waves and it leads to «y (Eq. (74)) which
is always positive, imparting instability to the film flow. Thus, it can be concluded that this term
whose appearance is due to the kinematic waves is responsible for a low frequency energy pumping
resulting in instability to film flow at high Reynolds number. Under this approximation

ey 22D o [MEAD) | oy
£‘|—|I'?+‘I'/m+ﬂ{} s {'l—ﬁ—‘,llllm-l-ﬂ{f}

make the above observation of energy transfer always possible while kinematic waves interact with
the dynamic waves. Hence for instability, one obtained from Eq. (74), as

l—n
Re::-n( E ) cot 0. (76)
1+ 2n

A pgeneral comment on the wave process described by Eq. (58) can be noted as follows. The lower
order waves (kinematic waves) obtain energy from the mean flow through the wave mechanism of
higher order and control the process with small Reynolds number. On the other hand, higher order
waves (dynamic waves) dominate the mechanism with high Reynolds number and obtain energy
from the kinematic wave process. The surface tension plays a double role. For the first case, it
exerts dissipative effects or in other words it stabilizes the flow, so that a finite-amplitude case may
be established, but for the second case it yields dispersion.

4.2.3. Case<(ii) Re ~ 1/&*, We ~ 1/&%, cotf < 1
At this order of approximations, Eq. (58) will reduce to the form
(B + 18 X8: + c200)H + EWeHy e = 0. (77)

In deriving Eq. (77), it was assumed that the amplitude of the thickness perturbation & ~ & To
obtain the dispersion relation, thickness perturbation is assumed as

H =dexpli(kf — mf)],
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where o=, + iy ) is the complex wave speed, the amplitude & is real and transformed to x = &¥
and = &f. The dispersion relation becomes

—® + 2Bk — (B — )k + Wek? =0.
By equating real and imaginary parts, we get

oy =1,

= fk £ kB2 — B+ a + Wek?
and the phase speed
e=f+ /P —p+a+ Wekl (78)

It is thus at this order of approximations of the parameters that the exchange of stability takes place
and the wave is dispersive.

4.3. Case-1lI: Moderate flow rate: Re ~ 1/e, We ~ 1/&%, cotf < 1

At this approximation, the linearized form of Eq. (58) reduces to
yWe

- “:—? - -
{ar + qd )H + ;{ﬂ: + ﬂ.t}{a.r + fla.t H + Hone =0. (79)

To study the stability of this film flow on the basis of the two-wave equation (79), introduce the
time varying perturbations of the film height

H =dexp[ik(£ — ef) + Af] (R0)

Here, £=x/&, i =t/&, k is the real wave number, ¢ is the real part of the phase velocity and A is an
increment (the imaginary part of the frequency). Using Eq. (80) in Eq. (79), we get, after equating
real and imaginary parts of the dispersion relation,

. R{1+2n =i

Re=-3 (% )E_ﬁ~ @®1)

A+ 222 Y 2fe 4 B— ok + Lwek* =0. (82)
nonm n

Elimination of A from Eq. (82) by using Eq. (81) gives a quadratic relation for (kRe)* as
tRey' — B kRe)”
(kRe)* — T [(e — e1)(c — e2)J(kRe)
ReZ rny2 {1420\ (c—cp\ [e+cp— 28
-+ & () (=) (222~ 83)
The solution of Eq. (83 ) reduces to
2

, Re
(Rek)y = :?.W'E;{C —CrRC—C2)

We , (‘ +2")2” (c—ep)e+co—25) (84)

li\/‘"‘Rez”_ o (c—a¥(c—c2)l(c— B)
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Fig. 7. Variation of dispersion curve for different values of n. Bold, slim and dotted lines correspond to n =12, 1 and
0.4 respectively.

From relations (81) and (84), we can find that on the neutral curve (A=0), the phase velocity
¢ = ¢p, which gives

k=0,

(52 ]

It should be pointed out here that relation (85) was obtained earlier in connection with the kinematic
waves (case-I, Egq. (64)). It is further clear that the perturbations will decay so long as ¢ = ¢;. But
for the growth of perturbations, the phase velocity ¢ must lie in f < ¢ < ¢y It is evident from
Fig. 7 that dispersion curves for growing waves ¢ < ¢ have points of local velocity minimum for
which growth rate 4 becomes maximum. Further, A depends on the power-law index » of the fluid.

So far, we have discussed when the angle of inclination is large enough or near to vertical. It
may be of interest to study the cases for small # or when inclination is near to horizontal.

4.4, Case-IV: At moderate flow rate with very small angle of inclination with the horizon:
Re ~ 1 WE“-":I—L cmﬂw#

B!

In this approximation, the wave speed c» given in Eq. (59) will be modified as

£‘|11Mﬁ;‘l‘:a"\'r-.
where
14+2n\"? [coté
h_( ; ) VR ~ Oe) (86)

is the dimensionless velocity of gravitational waves on the surface of a thin layer. Since the char-
acteristic time of the system depends on the wave velocity, so the time derivative will have the
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order of 1/& as N has. This is due to the fact that the time is made dimensionless through the film
velocity. In this relation, Eq. (58) may be approximated by considering the order of magnitude of
each term as

. - U o . #rWe 1—n , =
{!::‘;+£‘q;£‘_1}H +;l{ﬂ: +J\'f.'_t}+|ﬁa.1][{ﬂl_hﬂ.1 }+ﬁﬂ.1]H+THuu+ (1+ 2”}"‘7‘3 (H™ )
(e 1) 1[(NJe 1) 1 Y e 1) /e [1 1 &

- gyttt — 22— ), — 2B~ ) + a1+ 2L,
1 (1/e) 6 1 1/ & 1 1 1/ ] &
+ (‘]+Tzn") we’:"zj{HHx.u =10
1/ i (87)

Assuming the amplitude of perturbations & ~ & and keeping the terms of order 1/:%, Eq. (87) reduces
as the factorized equation for gravitational waves on shallow water

(8: + N&. X & — Noy)H =0. (88)
Following the procedure as outlined above, the time derivative in Eq. (87) are replaced by the
relation ¢/dt = — Nd/dx and keeping the terms up to the order 1/&, one derives a non-linear equation

y n N £We
H; 4+ NH, 4+ ET:I:H 52 E“ + 28)HH, — fﬁm + pH, = 0. (89)

If the system of coordinate is transformed for a moving coordinate with velocity f then the Eq. (89)
reduces to

3
EWe

N
H, + NH; + ziH - %“ + 28 )HH; — Heee=0. (90)
vE

It can be noted here that Eq. (90) represents for dynamic (gravitational) waves on a slightly inclined
film and having analogous structure to Eq. (71) for dynamic (inertial) waves on a near to vertical
film. The basic difference between two Eqs. (71) and (90) is the sign in front of the third term on
l.h.s which produces energy pumping for the inertial waves and attenuation for gravitational waves.

4.5, Case-V: At high flow rate with very small angle of inclination with the horizon

One may be tempted to know what type of wave may occur during high flow rate with very small
angle of inclination when Weber number changes.

4.5.1. Moderately high Weber number: Re ~ 1/&*, We ~ 1/&2, cotfl ~ 1/&*

Although the values of Reynolds number Re and cotf are changed, but as stated earlier, N ~
(X 1/z) =1 is maintained. Therefore, in the first approximation one obtains from Eq. (87) the gravi-
tational waves described by the same factorized equation (88). But in the next approximation along
with 6 ~ & we obtained

4
H, + NH, + ’E{l + 2B)HH, + fH, =0, 91)
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instead of Eq. (89). Using

(N +B) + MH )
in Eq. (91), we get
':: + ':':1 =10 (92)

It is interesting to note that Eq. (92) represents a forward breaking wave. Propagation of surface
wave speed in Eq. (92) is ()= {. Since de/d{ = 0, the velocity of propagation will be faster for
higher values of (. This fact may cause steepening of the surface profile in the course of time.

4.5.2. High Weber number: Re ~ 1/, We ~ 1/&, cot ~ 1/&*
Following the procedure as outlined above, one may obtain the non-linear equation up to & order
terms as

N #We
H,+ (N + P)H, + =(1 + 2p)HH, — =" H,, =0. (93)
2 2N
Setting
N(1+ 2 .
N+ + {TMH ={ix1) {94)
in Eq. (94) one gets
L EWe,
i R F'ﬁ.xn =0 (93)

It is to be noted here that Eq. (95) is a standard KdV equation with a negative sign in front of the
dispersion term indicating the existence of dark soliton.

5. Results and discussion

Fig. 2 shows the variation of Reynolds number Re with power-law index » for fixed Weber number
and angle of inclination. It is clear that Re increases with # indicating that, slightly non-Newtonian
(small values of # < 1) fluids are more unstable than the highly non-Newtonian (large values of n)
fuids. Further, the surface tension plays the role of a stabilizing agent. Fig. 3 depicts the variation of
phase speed ¢y with power-law index #. It is evident that phase speed decreases as the non-Newtonian
grade of the fluid increases. Using long wavelength approximation, Eq. (58) is derived from Egs. (33)
and (34). It should be emphasized here that Eq. (58) is capable of describing the behaviour of any
set of flow rates with non-Newtonian flow properties where the dominant waves are predominantly
two dimensional and weakly non-linear. Fig. 4 describes the variation of the velocities of dynamic
waves with cot f//Re for different values of the power-law index #. It is clear that the non-Newtonian
character of the fluid has a profound influence on these wave velocities. Fig. 5 represents the graphs
of Eqgs. (64) and (66) for different values of #. It further indicates the critical Reynolds number where
k=0 and the solid line touches the Re-axis. It also depicts the line of maximum growth and clearly
demonstrates that slightly non-Newtonian fluids are more unstable then highly non-Newtonian fluids.
Fig. 6 shows the effects of the angle of inclination on the variation of critical Reynolds number Re,
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with power-law index ». It is clear from the figure that the inclination hastens the instability to the
How. These results confirms the earlier findings on the stability of thin film on an inclined plane
for Newtonian or other types of non-Newtonian fluids. Fig. 7 represents the variation of dispersion
curve for different values of n. It shows that the phase speed initially decreases with increase of the
wave number k&, attains a minimum and then increases with &. Further, it is clear from the figure
that the least value of ¢ can be obtained only with the least value of n

6. Conclusion

In this section, we shall summarize some of the results of this study. We have analysed the
waves that occur at the surface of a thin power-law fluid film Aowing down an inclined plane. To
do this, we have derived an evolution equation representing two waves equations under long wave
approximations. Based on the different ranges of the physical parameters, it is shown that different
types of waves are possible on the surface of the film. They are

1. Kinematic waves, Re ~ 1, We ~ 1/&%, |cotf] < I;

i i
— +op— | H =10
(ﬁ‘r rlr)
2. Inertial waves, Re ~ 1/&%, We ~ 1/ |cotfl| < 1;

il il il il i il
(— +|I'?E +J'I'f,1—) (— +ﬁTI —JH—) H=1,

ot X dx ot £ ix

where M = \/2n(1 + 2n)/(2 + 3n).
3. Gravitational waves, Re ~ 1/s, We ~ 1/&%,cot ~ 1/&%;

il il i, i,
—_— 4 N— ——N—|H=1,
ot Fiks ot fx

where N = \/{{l +2n},-’r1'_}cutﬂ;'Re The last two types of waves are known as dynamic waves.

At the next approximation in terms of the aspect ratio & for a dominating type of waves, we
have shown that the results of the interaction with other types of waves are either the exchange of
energy or dispersion effects. For example, at a small flow rate, kinematic waves dominate the flow
field and it acquires energy from the mean flow, while, for high flow rate, inertial waves dominate
and the energy comes from the kinematic waves. In both the cases, surface tension plays a double
role, for kinematic wave process, it exerts dissipative effects so that a finite amplitude case may
be established, but for a dynamic wave process, it yields dispersion. Further depending on the flow
rate, values of Weber number and the angle of inclination, we have shown that the results of the
interaction may lead either to forward breaking waves or solitary waves with dark soliton. It should
be pointed out here that power-law index n plays a vital role in the wave mechanism. We therefore,
summarize on the basis of the above analysis that the waves that occur on the surface of the film
of power-law fluid down an inclined plane under long wave approximation is a result of non-linear
interaction between kinematic, inertial and gravitational waves.
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