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In this paper we study nonlinear phase changes of some states with respect to a phase
distribution on a deformed Hilbert space.

L. INTRODUCTION

Cuantum-mechamical descenption of phase has along history, starting with the
work of Dirac ( 1927), who attempted definition of a phase operator with the help
of polar decomposition of the annihilation operator in radiation field. Thereafter,
Susskind and Glogower (1964), Carruthers and Nieto (1968), Pegg and Barnett
( 1989), and Shapiro and Shepard (1991) have further studied this topic. Susskind
and Glogower modified Dirac’s phase operator, though it is a one-sided unitary
operator. Nevertheless, their phase operator has been extensively used in quan-
tum optics. Shapiro and Shepard introduced phase measurement statistics through
quantum estimaton theory (Helstrom, 1976). Pegg and Barnett (1989) camied out
a polar decomposition of the annihilation operator in a truncated Hilbert space of
dimension s 4+ 1, and defined a Hermitian phase operator in ths finite-dimensional
space. Now, given a state in the finite-dimensional Hilbert space one first com-
putes the expectation value with the restneted state o the (s 4+ D-dimensional
space. It is natural now w ke the limit 5 to infinity and recover a Hermitian
phase operator in the full Hilbent space. However, in this limit the PB phase op-
erator does not converge 10 a Hermitan phase operator, but the distnbuton does
converge W the SG phase distnbuton. Thus it appears 1o be computatonally ad-
vanlageous o desenbe the quantum-mechanical phase via a phase distnbution
rather than through a phase operator. This view was manifested in the work of
Shapiro and Shepard. Agarwal and coworkers (1992) adopted this point of view
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in investigating the quantum-mechanical phase properties of the nonlinear optical
phenomena.

Keeping the ideas of Susskind and Glogower in mind, 1 {Das, 1999, 2000
recently, described a phase operator in a deformed Hilbert space and studied phase
distribution of Kerr vectors. Here, 1 shall adopt the viewpoint of Agarwal and
coworkers 1o investigate the phase properties of several states (vectors) in a de-
formed Hilbert space.

The work is organized as follows. In Section 2, we give a brief description
of phase distribution that we would like 1o associate 1o a given density operator.
In Section 3, we describe a few illustrative examples. In fact, we describe how
the phase distnbution will look ke when we take incoherent vector, coberent
vector, coherent phase vector, and Kerr vector in the deformed space. In Section 4,
we consider the evolution of the phase distribution associated with a field as it
propagates through nonlinear mediums. We shall discuss two well-known Kerr-
like phenomena with examples. In Section 5, we observe how the phase distnbution
changes in the process of photon absomption from a thermal beam and finally we
give aconclusion.

2, PHASE DISTRIBUTION IN A DEFORMED HILBERT SPACE
Before we describe Phase distibution in brief, we narrate a few preliminaries
and notations.

2.1. Preliminaries and Notations

We consider the set

H, = I'f tfl) = Zﬂ,,z" where Z[”I!EHJI;E < :x,}

where [n] =(1 —g")/ (1 —g). 0 =g < 1.
For f.ge Hy, f(z2) =Y o a2 g(2) = ¥ oey buz", we define addition
and scalar muliplication as follows:

R
F@)+g@ =) (an+b)z" (1)
=i}
and
-
Ao flz)= Z)-_ﬂ,,;". (2)
n=I(}

Itis easily scen that H, forms a vector space with respect to usual pointwise
scalarmultiplication and pointwise addition by (1) and (2). We observe thate, () =
= ;A & ?
¥ oen {uyr belongs to H,.
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Now we define the inner product of two functions f(z) =% a,z" and g(z) =
¥ b,z" belonging to H, as

(f.8)= ) [nl!a, by. (3)

Comesponding norm 15 given by

I£1? = ¢ f. j}—Z[nl' la, | < oo.

With this norm derived from the inner product it can be shown that H,, is a
complete normed space. Hence H,, forms a Hilbert space.

Ina recent paper( Das, 1998, 1999b), | have proved that the set {2 //[n]l. n =
0,1,2,3 ...} forms a complete orthonormal set. If we consider the following
action on ;.

Tfi = oY1
T'_,f.:, = & [” + 1|.f:u+|~

where T and its adjoint T* are the backward shift and forward shift operators,
respectively, on H,, and f,(z) = 2" /+/[n]!. Then we have shown (Das, 1998,
1999b) that the solution of the following eigenvalue equation

Tfe =afs (3)

(4)

15 given by
fu = e a2 (6)
¢ Z(, J[ i

We call f, acoherent vectorin Hy.

2.2. Phase Vectors

To obtain the phase vector, we first consider the Susskind-Glogower type
phase operator P = (g" + T*T)~"*T and try to find the solution of the following
eigenvalue cquation:

Pfg = Bfp. (1)

where

G

=) ad =Y a/inlfi. (8)

n=(} an=(}
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and we arnve at
b

_.fﬂ ) Zﬂu 'l."'mfu

a=lp

[m]! it

=% 2 3
o (g F10D0g= + [10g +[20---(g" 4+ [n — 1)
=ﬂuzjﬁ J i
=i}
where g = |f¢' is a complex number.
For details we refer to Das ( 1999a).

These vectors are normalizable in a sirict sense only for |§] < L
Now if we take ag = | and || = 1, we have

o 1
7 in g + [ﬂl}&_ + [ll}[f ? +[2”' gt + [H =5 1”
fp =Zf gt [ d { {

P )
=i} [” II f
Henceforth, we shall denote this vector as
. - g IO+ g + (2D lg" + [n—1])
fo= Zs"ﬁ fuo (10
n=(} [” I I

0 =@ = 27 and call fis a phase vector in H,.
The phase vectors fi are neither nommalizable nor orthogonal, but form a
complete set and yield the following resolution of the identity:

1 i . .
f:ELL duvlx, 8) | fa == fal (11}
where
diix, 8) = dpix)dd, (12)

which may be proved as follows:
Here we consider the set X consisting of the points x =0, 1,2, ... and pix)
15 the measure on X which equals
_ [n]!
T g+ 0Dg + 1D (g" +[n —1])
at the point x = n, and & 15 the Lebesgoue measure on the ciorele.
Define the operator

o

Ifs =< fol : Hy — H, 13y
by
Ifs =< fol f = (fo. F)fs. (14)
with f{z)= ¥ 2 a,2".
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MNow,
(Ja: F)
B iAo 1l 2 e
=1 Sa]! [ ]! L
= Ze“‘"”x’?‘! + (01 ig? + [1D{g? +[2D---ig" + [n — 1Da,. (15)
=i}
Then,
E e (q + [0D(g2 +[1])- - - (g™ + [m — 1])
R a o —a
oo Dl = 323 e J D
x /(g + [O1g2+ [1D-- - (g" + [n — 1) fu- (16)
Using
2
f ] elﬂ.ur—ul:lh’ 21 ﬁ”m, f]_?}
1]
wie have

Lf f“dm,m Ifa >< folf

f ) 3 an o /{q +[0D(g> + (1) - (g" + [m — 1)

|
a=il pr=() ["’I I i

g

1 el
x g+ 101G+ [1D- - (g" + [n — 5= f &Y g
2 L y s
A z : "“f"f (g +[0Dig~+[1D---(g" +[n—1]) S

.l|=(i ["I! {].H::I
=Z“ @+ 100G +(1D- " +[n — 1)
n=i} o ["II
[m]!

ifq + [01g2 + 1) ---(g" +[n —1])

= Z \'JII’[-HTHM fﬂl
=iy

Thus, (11) follows.
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We use the vectors fi Lo associale, 1o a given density operator p, a phase
distribution as follows:

1
Pg)= Effﬁ. o)

] = (g +[0])---(g™+ [m —1])
i o Z

|
= =0 [H’I I '

E.J.‘“_"r:lf_f.ur-. ﬂﬁ.} {19}

. (g +[0D---(g" +[n— 1]}
[r]!

The P(#) as defined in (19) is positive (owing to the positivity of o) and is
normalized

ff P(O) dvix,8) = 1. (20)
X Vi

where
dvlx,f) =dpix)dd {21)

for,

ff P(8) duf.r,ﬁ'}=f.rm{.r} [+ 10D (g +m — 1)
il X ur.a|=irl'l [H’II!

y /m+[ﬂ|}---mﬂ+[n—1n
\ [m]!

1 A
X — " O fo, pf)
2z Jo

g+ 00 g+ n—1]
= d f flh L
L ) 3 Fus BF)

|
a=l} [HI'

= ifﬁ.. aful

n=(}

= 1. (22)

In particular, the phase distribution over the window 0 < 8 < 27 for any vector
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[ 1s then defined by
1
Pld) = .)—fﬁ:. If == flfs)
3 (23)
= Eifﬁ:. I

3. EXAMPLES

We now consider some specific vectors in the Hilbert space H, and compute
their corresponding phase ditributions.

3.1. Incoherent Vectors

For the meoherent vectors we take the density operator 1o be

p =Y pilfy><fil 24)

n=(}
with

=
Pe =0 and Zp,,: 1.

n=(}

Now we calculate the phase distnbution P(8) as
Fi{g) = —{ﬁ, pfa)

—_— Zp.qfﬁ_; |.ﬁ-| g Ll[_.fr.r}

= n=()
(25)

.- En..fﬁ,. £l

= a=0
. (g +[0])---1g" +[n—1])
EZ : [n]!

3.2. Coberent Vectors
For the coherent vectors (Das, 1998)

.-fr.r = "-'q[!t.‘x;j}_l Z ﬂfal- fz'ﬁ‘}

a=(}

We take the density operator Lo be

p=fu >< fel. o= |ale™, (27)



el Das
and caleulate the phase distribution Pi#) as
Fid) 1 (fa. pfa)
= Jaofs

1
= j—ffm lfe == fulfo)
Py

1 .
= = I(fa. fo)l?
iy
3
1 | - ity —#) e[ 2, —142 /{q + [ﬂl} e ('f.f" +[n— 1”|
= E |§f ;III,[—;!—I!EQEI‘IE ::I ]‘ [" II
(28)
3.3. Coherent Phase Yectors
For a coherent phase vector (Das, 1999a)
P (g +[0D---(g"+[n—1]
L — 2, —1/2 n A 29
fo =(BI) “Z;ﬁ J = f (29)
with || = | and
=
(g +[0D---(g" +[n—1]
o 2 = I 2 ) 10
(119 g,ﬁi T (30)
We take the density operator 1o be
p=\1fz==< fal i31)
and calculate the phase distribution Pid) as
1
P{dh = 7_{fﬁ1 afi )
2x
- )
= E;f_fm | fs == fulfu)
1
= Effﬁi f,u}E" (32)

) Liq’fiﬁrly"”Zﬁ"eﬂ'*'ﬂ (@+[0D)---(g"+In—1)|

2 =) [HI!
1 e ?HP
2r (IR
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34. Kerr Veclors
For a Kemr vector (Das, 1999a)

T fgi'vmm_”f&
o (33)
) Zkﬂf;h
a=()
where
aoa” SylnMinl—
k, =f¢ffﬂtil}_l"z—f§ﬂ Klek-13 (34)

[ ]!
We take the density operator Lo be
p = |k =< p¥|, (35)

and caleulate the phase distribution Pi8) as
 ——
Pa)= _’_ffﬂ i fal
2n

1
= E{ﬁn b =< b fo)
] ’ (36)
= §|{fh~¢'f}|

1 |

.y

+ 2
if—mnk g +[0D---(g" +[n— |
! [n]! #

| o=t} |

ol

4. PROPAGATION THROUGH NONLINEAR MEDIUMS

Here, we consider the evolution of the phase distribution associated with a
field as it propagates through nonlinear mediums. We shall discuss two well-known
Kermr-like phenomena that fall in this category.

4.1. The first dynamic evolution of the density operator for our consideration is
given by

o(t) = e (—iy T T 1) p(Deyliy T T7r) (37)
where y is the Kerr constant of the medium. The ume evolution of the correspond-

ing phase distribution 15 given by

1
P, 1 = ﬁfﬁ,. pit) fu). (38)
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4.0, 1. For an mital incoherent vector
pl0) = | fo =< ful, (39)
P(8,1)is given by

]' ) a . a el 3
P, f = E{ﬁj e =y T T fu =< FulegliyT T 1) fa)
1 P et | PRREE, Lot
= E{fa.eq{—z YT fu, eiyTET 0 o) )

! - | . Do
= 5= (fur iy T2T 0 fo) (for ea(—iyTT0) 1)

]' - el p)
= E|{fn,eq{:yT‘-T-r}f,,}|z (40)
0 E,-nﬁ,/fq HOD- @ =) -
2x [n]! |
1| @ oD g in =1 -
=5 J il e lifi[n][n 1I}| .

where i = pr.

4.1.2. For an imitial Coherent vector
p0) = |fs == fuli -w= Ju]e™ (41)
FPid, 1) is given by

]. el - A
P8, f) = E{f,,, e (—iy TPT2 0| fu > < fule iy T T i)
1 e R | . . o, R | g
= E{ﬁ" e, (—iy T T 1) fo., e iy T TN f) f2)

! ) g P
= E{fmquf?’T*—T'f}fa}(ﬁ;.fq{—!yT‘-T-f}fu}

= stz )" aay [(@+10D)---(g" +[n —1])
ey 2y —172 i —t )
e ;f*‘ﬂ”” Nk \/ [n]
)

w e liffn]ln — 1)

| (42)

where i = p1.
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4.1.3. For an initial coherent phase vector (Das, 1999

Jm+myfm+m_m_

fo = 0B Y p° T AN CE)
=l
with || = | and
s, lg F 10D ---(g" +[n— 1]
¢wn—§wt = : (44)
we ke the initial density operator 1o be
pl0) = | fs =< fal- (45)
Then Pi#, 1) 1s given by
1
P8, 8) = E{fﬁ,qu—in‘szf}tfﬂ =< fale iy T T fi)
1 ; . | ; 1 - ;
= E{ﬁ" e (—iy T Tt ) fa. e (iyTT1) fa) f)
= E{jﬁ.eq{:yr 0 fa) (o e (—iy T2 T ) (46)

g+ [0 (g"+[n—1]
[m]!

| =
i Zq}ﬂﬁt!}—u}ﬁufmﬁ
ZJT

n=(}

a

® e lidln][n—11)| .
|

where § = yr.
4.2. The second dynamic evolution of the density operator for our consideration
15 given by

(1) = e, (—ip(T* TV D)p e, (iy(T*TFt) (47)
where p 15 the Kerr constant of the medium. The ime evolution of the correspond-

ing phase distribution is given by,

1
Pid, 1) = E(ﬁ"‘ et fis (48)

4.2.1. For an imtal incoherent vector

pl0) = | fu =< ful (49)
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P8 1) is given by
P(8,B) = ﬁ{fa.eqf—irfT*T}r’f}!ﬁ. =< fuleg Gy (T*T)Y0) fy)
- i{ﬁ,, e (—ip(T*T PO fn e, Gy (T TV fi) £i)
- i{_ﬂ,,eq{iyfT‘Tff}fﬁ}{fn. ey (—iy(T* TV f,)

1 ] 2
= 5= | iV )] 0

2

27

| [@+10D- "+ 10— 1D
I [m]!

1| [ 10D (g" + 1 — 1)
[n]!

|
e iytinl?) |
|

2

|
e, (ifln]’)

2

B

where i = pr.

4.2.2. For an imtal Coherent vector
p0) = |fa >< ful. a=|ale™ (51)
P8, 1)1 given by

1 3.
Fld, iy = E{ﬁ:, fq(—f}’{T'T}zf}lf& =< fulegiy(T*TY 1) f3)

]- o . H A
e E{f,,, e (—ip(T*TY 1) fu e (i (T*TY1) fi) fir)

1 a - 3
= E(fu,eqiiy{T‘T}-r}fﬁ}{ﬁ,, e (—iy(T*TY1) f) (52)
R a—rg2 101" e gy ((@+[0D---(g" +[n —1])
= ;f«r{iﬂl ) -

&
% e (ifiln F}i

where i = pt.

4.2.3. For an initial coherent phase vector (Das, 1999a)

J{f!+[ﬂ|}'"'{q"+[n—1|} _

fo=(BH Y B

n=(}

ol o (33)
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with |#] = 1 and

(A1) = Ziﬁig"{q +[0h---(g" +[n— 1|}|_

(54)
=i} [HI!
We take the imtal density operator 1o be
p(0) = | fs =< fal. (55)
Then Pid, 1) is given by
1
P8, 8) = —(fo e(—iv(T*TYDI fy >< fuleg Gy(T*TY'1)fi)
1 a 2 * 3 3 i
= E{ﬁ,,eq[—iy[T‘T}-f}{f,,,eg,{rer Y1) fu) f3)
= 5= (fo e iy (T TV fi) (for eg (—ip(T*TY'0) fy) (56)

o L _
Y oqpry P pre it Ll e

1
I
2T i [m]!

where § = yr.

5. PROCESS OF PHOTON ABSORPTION FROM A THERMAL BEAM

We next consider the phenomenon of photon absorption from a thermal beam
{Agarwal, 1992). The density operator associated with the process can be wril-
len as

p=cT*pT* (57)

where ¢ 15 a normalization constant.
If we take the input field as a coherent vector, then the density operators for
the input and the absorbed field are

pn=lfe =< fol. o= |afe™ (58)
and
Pon = TV | fo =< LT, 5= 0. (59)

Having obtained the density operator forthe output field, we can now calculate
the cormesponding phase distnbution. The phase distribution B, (8 ) corresponding
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o oy, has already been calculated in Section 3.2, The phase distdbution £, (8)
for the absorbed field is given by

1
Ponld) = ;(J‘H Dour fi )
1 : :
- E{ﬁ,,c?’“iﬁ, =< fulT* fa)

= (o T*(fas T* o) £o)

0

= 5 |fa: T'fo)] (60)
e vn Jo s (@ +IOD (g +n —1])
=i5e ;qufﬂi | [Hl!f !

3

% ynlln —1]---[n—5 + 1|i

6. CONCLUSION

In conclusion, we have shown how the phase distribution associated with
the field evolves in various nonlinear processes. Specifically, we observed how
phase distribution evolves when il propagates through Kerr-like mediums and
when it undergoes the process of photon absorption from a thermal beam. In all
the cases, we have defined phase distrbution with the help of quasiprobabilities
associated with the fields, and phase operator coming out of Susskind-Glogower
type decomposition of annihilation operator has been used.
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