Squeezed Vector and Its Phase Distribution
in a Deformed Hilbert Space

P. K. Das!

In this paper we study squeered vectoms, squeered Kerr vectors, and their phase distri-
butions in a deformed Hilbert space.

L INTRODUCTION

Two-photon processes are extremely interesting in quantum optics, for the
high degree of comrelation between the photons in a pair may lead to the genera-
tion of nonclassical states of the electromagnetic field such as squeezed states or
number states. This system offers a unique chance to study the interaction of a
single mode of the elecromagnetic field with a source of correlated pairs of pho-
tons under controlled conditions. Squeezed states are the eigenstates of a linear
combination of annihilation and creation operators of electromagnetic field. These
are pure quantum-mechanical states of light, which have reduced fluctuations in
one field quadrmature when compared with coherent states. These states are stud-
wed extensively (Mehta ef all, 1992) as they can considerably reduce noise inany
signal. These states are also known as two-photon coberent states.

In generalizing two-photon processes in a deformed Hilbert space, we face
a setback as the conventional Weyl-Heisenberg approach of defining squeezing
operator o genereate squeezed vector fails. We adopt the idea of Solomon and
Katriel (1990 to generate squeezed vector in the deformed Hilbert space.

The work is organized as follows. In Section 2, we discuss preliminaries
and notations. In Section 3, we discuss generation of squeczed vectors in Hy. In
Section 4, we define squeered Kerr vectors in M its coherent vector representation
and guas. probability distribution of squeezed Kerr vectors. In Section 3, after
briefly describing phase vectors in H, we study phase distribution of squeczed
and squeezed Kerr vectors. In Section 6, we give a conclusion.
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2. PRELIMINARIES AND NOTATIONS

We consider the set

Hy = I_,lF : flz) = Zﬂ,,;" where Z[Ml!!.ﬂ,,i2 = 001,
where [r] =(1 —g")/ (1 —g), 0= g = L.
For f.g € Hy, f(2)= Y epan" g(2) = ¥ o buz", we define addition
and scalar muliplication as follows:

=
(f +8) ()= fla) +glz) = ) (an+b,)" (1)
n=i)
and
=
(Rof)(D=1oflz2) =3 rau". (2)
=i}

It is ecasily seen that H, forms a vector space with respect to usual point-
wise scalar multphication and pointwise addinon by (1) and (2). We observe that
e,(z) =3, 2" /[n]! belongsto H,.

Now we define the inner product of two functions f(z) = ¥ a,z" and g(z) =
Y b,z" belonging to H, as

(f.8) =) [nlauba. (3)

Cormresponding norm is given by

117 = )= [nlllas)* < oc.
With this nommn, dedved from the inner product, it can be shown that H, is a
complete nomed space. Henee H,, forms a Hilbert space.
In arecent paper (Das, 1998, 1999a) we have proved that the set {2/ /n]!,
n=10,1,23 . .} formsacomplete orthonormal set. If we consider the actions

3 it i

T..f.ll — 'l."'[nl_.f.u—l and T _LI = 'q."[” + ]-I_.f.l|+| fq‘}
on M, where T is the backward shift and its adjoint T* is the forward shift operator
on H,and fz) =z"/+/n]| I, then the solution (Das, 1998, 1999 of the following
cigenvalue equation:

Tfy = afe (3)
15 given by

fe =eglalh) Z JWJF" (6)

a=l)

We call f, a coherent vectorin H, .
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3. GENERATION OF SQUEEZED VECTORS

Squeezed vector is generated by the actionof T — « T on an arbitrary vector
S in Hy (Solomon and Katriel, 1990} and which satisfies the following equation:

(T —aT*)fy =0, (7)
where
@ =3 a" =Y an/lnllfulz) (8)
a=l) n=(}
0or,
=
fo =D an/Inll fi.
n=(}
We have
=
Tfo = aw/Inl'Tf,
a=l)
=
TR T,
=Y any/Inl'ynlfu-s (9)
n=|
i e ———
=Y avIn+ 11 + 111,
a=ly
and

o
al*fy =Y aa/[nlIT*f,

JI;U {lﬂ}
= Zﬂ.ﬂ“ W [H II W [H + ]-I_.f:l|+|
a=(}

Now from (7)—(10) we observe that a, satisfies the following difference
equation:

anr1y/[n + N1In+ 11 = @au_14/In — 111/[n]. (11)

That s,
Sl e+ 1]
fyty =0 iy (12}
S+ 21 I + 2
and

a) =M. (13)
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Hence,
VT VT
i = ﬂ‘!ﬁ ﬁﬂ“
= u@ @ﬂ = u!" \J"IWJF}T' Jmmﬂ
TRVE VAT VRV VEivaEn

and so on. Thus,

g = o

1 [EZn—1]!!

Jionll et o

= a"

and
) =d3 =ds =+ =da_ =L

Thus, fg satisfying (7) has the form

.-f.ﬂ - Z“Jl \mﬁl = 4y Za" Mf {14}

n=i} =i} ]’II [EHIH s

To normalize, we have
=
i . [2n — 1!
L= (fp fa) = laol* )l ———. (15)

o [Zr]!!

Thus, aside from a trivial phase we have

12
... [2n— 1)1
= [Zi E“[ J[I!'h-illll i| (16)

a=(}

and the squeezed vector fy takes the form

12
(20 — 1] — , {[2n —1]!
o= [25‘1 il } Do\ o (17)
=l =i

4. SQUEEZED KERR VECTORS
Squeezed Kerr vector ¢ in H, is defined by

EeN{N-1)
oy =e;’ fas (18)
where fg in H, is a squeezed vector given by (170 p is the Kerr constant and
N = T*T, T isthe backwardshift (4).
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Mo,
¢§_ o EE}-.“.'I:.“.'—HI:H
T
= 1}'“-'1"'-'—” g [20 — 11 o, [[2n— 1]
- [;H [2n]!! } ;“y Gapi P

(19)

ac 12 T
2, 12n — 1! & ([2rn— 1] Ly [2aH[ 20— 1)
[Zm: [2n]!1 } 2. \,,'}{ Ralt fan

=il ai=0
A ., [2n — 1! —142 [2rn — 1]!! by [N [ 1)

o 2 ZF R | T S
a=0 || =0 [2n]!! V2] i

4.1. Coherent Vector Representation

To obtain the coberent vector representation of squeezed Kerr vector ¢;f wie
try tocaleulate the matrix element ( f,, ¢ ) that contains all important information

about the vector ¢'.H s
The matrix element is obtained by the following elegant method ( Kril, 1990).
We utilize the completeness relation (Das, 1998, 1999a) of coherent vectors in H,

I= ﬁ Lwdmu}ffu == fuls (20
where
dpia) = ey|al ey (—laf’) dyla|* do (21
where o = re', and obtain
(fer, 95) = (fo. Uf)

1
== dplon) (for, Ulfa, =< fa | fo) (22)

2"T o e

1
—_— ﬂ'l.{fﬂ|} f_.lFm fﬂ}'f.fu Lrﬁ”}

2m o e

1}'“-'1""-' 4]
where U = e; 4

Mo,
/2

= —1/2 -'"-"l_ !Jl[zﬂ_ll!! E
ffuhfﬂ}: Z fﬁ'{‘al!} IJ [ZEEE [21‘!'” }

wp=ih o=l n=i)
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" [2m — 1]
v’[ml' [Zn]!!

-1
—1)2 3“[ n— 1]!!
= E eq{iml ) [ E || 2l i|

=l =l

(foes fan)

3 1 [2rn— 1]
A 2n]! [Zn]!!

&El.u o {2 3}

and

Splanp(2n)—1y (@ay )

=
(forr Ufi) = eqflon )Pyl PY 2y e

(24)
=0 [!‘!Il
Hence, we have
(fm f f,ﬂ }{fuh Uf"-"l} = Z 'Eqﬂﬂ-l i_’}—leq{luxig}_h.g
wp=ih =
= —1p2
2“[2”—1”! 1 [2”‘]—1'“
x[;iﬂti [2n]l1 i| V2m]! [2m]!!
b a"'"’ '"f‘:*'l‘-'nhl"'nl—lh{ﬂ ﬂ!|}l"_ 08)

“ [n]!

(forr O4) = —f Fdnfm}fﬁ.,.f,,}ffuhuﬂf;,,}

25
i (I’ P~ Z; i-u[Eri—ll“ 4
= Eql |
wr =)= ! =i} [—"I” -\,,ﬂ[_jﬂ‘ll.
[Zm — 101 ., iel2eM)-n 11
* Wﬂ‘! 'fﬂ'.::l E'q- [HIIE

Xf dlen) e (la )" a"a]
| E0

ac

—12
caviga| o, [20 =11 1
Y el P) [Zﬂ'”" = =

=}, n=(} n
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[2"’!_1|” i P L e B 1 1 - 2 2y Jamtn
® II—[EmI!! (@')"e; A dyr” e (—r)r

el |
Xf i Eﬂn—_’urj

0

: . —1/2
LR 2y =142 o 20 — 11 1 [2n—1]1
=Y el ) [Ziai o } i AT T

=0 n=(}

_r 2y Gy ldal[da)—1) 1 e y
e m!:; dyr* ey(—r) (P

5 i w1 1 ey,
=Zﬁ;fiai} Zii Bl m‘;‘l o

r { | da)—1 1 2
AL }E"f&qu ik f dyx ey — e
0

a=(} =l

[Z2n]!
o ool @ -] 1 flaeam
i gquia N ;tai T R AT w
x{_:}_ﬂ,, q,-;ulﬂalm-lu!—lj {2ﬁ}

where we have taken x = r* and utilized the fax:[_,lr(?; dyx e "x" = [n]! (Gray and
MNelson, 19900,

4.2. Quasiprobability Distribution

The guasiprobability distribution, known as the () function, for the squeezed
Kemr vector is introduced in the following form:

1
Q) = —(fur: oy >< gy |fu)

L (furr G5 1))

L| . Ky|2
- 1S #5)] (27)

—1;2
—1/2 2, [2n — 1]H! 1 2n —1]1
ngm.i} [g:s B } =\

2

Mt % }'HJI“HJII— 1y |

(@) e
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5. PHASE DISTRIBUTION

In this section, we describe the phase distribution of squeezed and squeezed
Kerr vectors. To do this we introduce first the phase vectors and its distributions
in details.

5.1. Phase Veclors

To obtain the phase vector we consider first the Susskind-Glogower type
phase operator P = (g" 4+ T*T)">T and try to find the solution of the following
eigenvalue equabon:

Pfp= Bfp. (28)
where
i =Y ad =Y au/inl ful2) (20)
a=() n=(}

We arnive at

aC

Z iy -,,.fr[n |!-_.ﬁ.

n=(}

fo

- 3 3 oot Ll e
H“Zﬁnijﬂﬂl}fq + [11Mg* + [2])---(g" +[n llllﬁ”

[m]!

=i}
where # = |f€'" is a complex number. For details we refer to (Das, 1999h).
These vectors are normalizable in a sirict sense only for |[§] < L
MNow, il we take ap = 1 and | 8] = 1, we have

- = e 1@ 10D+ 1D + 2D ---(g" + [n — 1])

[n]! fae (3
a=(}
Henceforth, we shall denote this vector as
o e @+ 10D(g? + [1D(g” + (2D - (g" + [n — 1])
P at ;
jﬁ_gej ]!/ [n]! Jus 31

0 =8 = 2m and call f; a phase vector in H,.
The phase vectors fi are neither nomalizable nor orthogonal, but form a

complete set and yield the following resolution of the identity:

1 2T
f:—f f dvix.8) | fo =< fal. (32)
2n fx Jo
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where
duvix, @) =dpix)dd. (33)
For a proof of completeness of phase vectors we refer o Das (2000).

We use the vectors fy Lo associate, to a given density operator p, a phase
distribution as follows:

1
F(a) = Efﬁh o)

1y Jfrf+[ill}---frf“’+[m—ll} i
2T hogrerets [ ]!
O] ---(g" — 1P .
® /Erf+[ L e I}e‘“""”fﬁ", aful.
‘, [m]!
Where P(d) is positive, owing Lo the positvity of p, and is normalized
Az
ff P(6) dvix,8) = 1, (35)
X JD
where
di(x,8) = dpix)dd (36)
for,
pl al ﬂ e e oA |
ff Pidydvix.#) = f ﬂlﬂf.f}l Z Eff+[ I {ff + [m }]
xJ0 X nr =il [m]!
5 f‘f+[”"""f‘f“+["—1”if"
[n]! 27 Jo
% L,Jhlr—.ll:lﬂ d'-':-'lf_.fm1 p_.f.u} (37)
= o ---(g" -1
= [aue YOI R D or)
X =i} [”I'
=
= Y (fu pfa)
=i}
= 1.

In particular, the phase distribution over the window 0 = 8 = 27 for any vector
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1
Py = z—fﬁ,-, If =< Flfa)
o (38)

1 g 2
= Eifﬁ:, Fil

5.2. Phase Distribution of Squeezed Veclor

To obtain the phase distribution over the window 00 <= 8 < 27 for the squeezed
vector fgin (17) we take the density operator p = | fg == f| and calculate P(#)
as follows:

1
PO) = 5—(fo. lfg =< folfu) o

1 .
= Eiiﬁ:. Jall=.

The phase representation (f, fg) of the squeezed vector fj is caleulated as
follows:

—1ip
_ S e 11 N,
ff”'f'”:[z"” T} 2

a=ly a=(}

(40

. qu 10> + (1D + 2D) - (g™ + [2n — 1]
[Z2n]!

[2n— 1)1
“V 2

From (39) and (40) we have the phase distribution P8 ) of the squeezed vector
f.ﬂ as

1 ; 2
Fig) = Eif.fl‘h Fal®

2"[ 1 ]'IH Ed - —2intt

n=i} n=i}

. (g + [0D(g*+ [1Dig? + 2D --- (g™ + [2n — 1|}a“ [2n — 1]!! |2
[Z2n]! [2n]!! | ’
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5.3. Phase Distribution of Squeezed Kerr Vector

To obtain the phase distribution of squee zed Kem vector ¢}f over the window
0 =8 = 27 we calculate the phase representation { fi, dr}f} as follows:

19
b _1 II —
{JF"’ ¢.|‘li{} o [ZE E-n[ J[I!z, |||I :| Zf -

=iy a=(}

 [(@+100@ + [1Xg* + 12D @ + (20— 1)

5
) [2n]! 42
. ||[7H et ].I”f1y|'-'.-|k|’.l||—|:|

1|’| [2n]!!

From (42) we have the phase distribution P(#) of the squeezed Kerr vector ¢r}f as

1 1
PO) = —|(fo 5)[

102
2 [2n —1]!! . —2in
|| S ] S

n=(} a=l)

(43)

[(a +10Xg>+[1D@* + 2D+ (g + [2n — 1]
\ [2n]!

2
[[2n — 111 fp2apiaal-1)
o f_i’" [2e] )
Y [2ap1t ¥

6. CONCLUSION

In conclusion, we have thus generalized the notion of squeezed vector in
a deformed Hilbert space and described its phase distribution. This notion is
then utilized o define squeezed Kerr vector, its coherent vector reprensentation,
quasiprobability distribution, and its corresponding phase distribution in the de-
formed Hilbert space.
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